New Trends in the Nuclear Shell Structure Part 2 O. Sorlin – GANIL Caen

Brief summary on the role of forces at N=20 – Generalization to other shells

III. Study of the N=28 shell closure The origin of the N=28 gap, role of nn forces, From rigid ⁴⁸Ca to deformed ⁴²Si, the role of tensor force

IV. Nuclear astrophysics: the rapid neutron capture process Brief introduction, key nuclear parameters The role of nuclear forces Impact of nuclear physics on the abundance of r elements

V. Summary

O. Sorlin and M.-G. Porquet Prog. in Part. Nucl. Phys. 61 (2008)

Ecole Joliot Curie, Maubuisson 2009

ESPE in N=20 isotones and structural changes

Great similarity between the three cases of HO shell numbers

Dramatic change of nuclear structure due to spin-flip pn interaction ! Very robust process...

Evolution of Harmonic Oscillator shell closures

Study of the N=28 shell closure far from stability

> Role of nuclear forces : Modification of the N=28 shell gap ? SO and Tensor interactions

Enhanced collectivity due to $\Delta j=2/$ reduction of Z=14 at N=28 seen in Part I $\pi d_{3/2}$ - $\nu f_{7/2}$, $\pi d_{3/2}$ - $\nu f_{5/2}$ interactions ΔL =1

The origin of the N=28 shell gap ?

The SO interaction ?

Yes BUT...

 $L^2 + \vec{L}.\vec{S}$

The origin of the N=28 shell gap viewed in the Ca chain

No increase of the N=28 shell gap when $vf_{7/2}$ is filled Same with realistic V_{lowK} interaction -> 3 body ? -> which experiment ?

The N=28 shell gap and the role of 3 body forces

Holt, Otsuka... 3 body forces help

No N=28 shell gap created as well with realistic interactions !

2- Evolution of the N=28 shell gap

→ Use of transfer (d,p) reaction with ⁴⁶Ar beam

SPEG : Energy loss spectrometer : **recoil ion** identification→ transfert-like products

Evolution of the neutron SPE below ⁴⁸₂₀Ca
Use of ⁴⁶₁₈Ar (d,p) transfer reaction
Size of the N=28 shell gap : reduced by 330keV
Reduction of SO splitting
L. Gaudefroy et al. PRL 97 (2006)

Variation of single particle energies (SPE)

-From ⁴⁷Ar to ⁴⁹Ca, 2 protons added to $d_{3/2}$ and $s_{1/2}$ equiprobably, i.e. 1.33 ($d_{3/2}$), 0.66 ($s_{1/2}$)

-The $\pi d_{3/2}$ acts differently on $\nu f_{5/2}$ and $\nu f_{7/2}$ orbits \rightarrow tensor forces ?

-> Tensor term ~ 20% of total monopole

-> Relative intensity between \Downarrow and $\downarrow\uparrow$ looks similar in Vlow k interactions !

Global trend of single particle energies between ⁴⁹Ca and ⁴³Si

derived from experimentally-constrained monopole variations

-A shrink of SPE's is occurring gradually when N>>Z due to two-body p-n interactions...

- Favor particle-hole excitations and E2 collectivity

Deformation at N=28 in ⁴²Si ? Measurement of 2⁺ energy

Nuclear forces and astrophysics

Astrophysical r-process around N=82

Evolution of N=82 shell gap -> location of waiting points

Beta-decay lifetimes (GT decay vg_{7/2}-> $\pi g_{9/2}$) -> building of r process peaks $1/T_{1/2} \approx S_{GT} (Q_{\beta}-E^*)5$

Neutron capture rates (p states)-> smearing of r abundance peaks while freeze-out

Sensitivity of nuclear structure at N=82 on the r abondance curve

Shape of the abundance peak depends strongly on the behaviour of the N=82 shell

Influence of the N≈82 Cd, Ag lifetimes on the A=130 peak

- Two classes of shell closures (magic numbers) : HO and SO
- Proton-neutron interactions usually act to modify them !!!
- Takes root in NN bare forces link with in-medium forces in progress
- -Link between astrophysical r process and nuclear forces
- Are extrapolation to superheavies or unknown regions reliable ?