

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Constraining the density dependence of the symmetry energy with experimental results from heavy-ion collisions

Marie-France Rivet

3 octobre 2009 / Ecole Joliot-Curie 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Introduction

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation a Fermi energies
- Neutron skin
- Constraint on the EOS at supra-saturation density
- Summary

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Ocmpetition of reaction mechanisms

- n/p ratios
 - Isospin distillation

- Neck fragmentation at Fermi energies
- Neutron skin

- Constraint on the EOS at supra-saturation density
- Summary

Introduction

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

The knowledge of the density dependence of the nuclear symmetry energy is critical in nuclear physics and astrophysics for understanding:

At low density

neutron skin, pigmy resonance - nuclear structure at the drip line competition between mechanisms - neutron distillation in fragmentation neutron star formation and crust

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

At high density

neutron star mass-radius relation transition to a deconfined phase formation of black holes

Experimental constraints ?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

First determination, at T=0 and $\rho = \rho_0$, from fits of binding energies with LD mass formula, with a symmetry term:

 $E_{sym}(N,Z) = C_{sym}(A) \frac{(N-Z)^2}{A}$

Bulk term only (Bethe-Weizsacker)

 $C_{sym}(A) = C_{sym} pprox 32 \; {\sf MeV}$

Bulk + surface terms (Myers & Swiatecki, Moller&Nix)

$$C_{sym}(A)=c_v+c_sA^{-1/3}$$

Accepted values of C_{sym} : 28-32 MeV

New Experimental constraints

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

How to explore densities different from ρ_0 ? Heavy-ion collisions provide the only means to compress/expand nuclear matter in a terrestrial laboratory. (N.B. $T \nearrow$)

Comparison of some isospin dependent variables measured in Heavy Ion collisions with the results of

- transport codes: follow dynamics of a nucleus-nucleus collision with time.
- statistical frameworks: No dynamics. Start at a "freeze-out" equilibrated stage, when nuclear interaction becomes negligible.

In both cases the excited (hot) fragments must be de-excited before comparing with experiment.

reaction time $\sim 10^{-22}-10^{-21}$ s; detection time $\sim 10^{-8}-10^{-7}$ s

Some observables sensitive to E_{sym}.

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Subsaturation densities

• Competition of reaction mechanisms : fusion vs deep inelastic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- isospin diffusion
- N/Z of fast nucleon emission
- isospin distillation : isospin content of light fragments
- Neck fragmentation at Fermi energies
- neutron skin

Suprasaturation densities

- n, p collective flows
- Meson production

Some observables sensitive to E_{sym}.

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Subsaturation densities

• Competition of reaction mechanisms : fusion vs deep inelastic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- isospin diffusion
- N/Z of fast nucleon emission
- isospin distillation : isospin content of light fragments
- Neck fragmentation at Fermi energies
- neutron skin

Suprasaturation densities

- n, p collective flows
- Meson production

The statistical ensembles

Introduction

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation a Fermi energies
- Neutron skin
- Constraint on the EOS at supra-saturation density
- Summary

Statistical ensembles:

- microcanonical: fixed total energy and particle number. Appropriate for isolated systems like nuclei. ex. MMM (Raduta), SMM(s) (Bondorf, Botvina and other variants)
- canonical: Fixed number of nucleons and T, can exchange E with a reservoir. Reasonable approximation for A ≥200 and T ≥ 6 MeV.
- grandcanonical: the system can exchange energy and particles with a reservoir. Only average values are fixed. Governed by T. Meaningful for nuclei at large E* when only mean values are considered.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

The statistical ensembles

Introduction

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation at Fermi energies
- Neutron skin
- Constraint on the EOS at supra-saturation density
- Summary

Statistical ensembles:

- microcanonical: fixed total energy and particle number. Appropriate for isolated systems like nuclei. ex. MMM (Raduta), SMM(s) (Bondorf, Botvina and other variants)
- canonical: Fixed number of nucleons and T, can exchange E with a reservoir. Reasonable approximation for A ≥200 and T ≥ 6 MeV.
- grandcanonical: the system can exchange energy and particles with a reservoir. Only average values are fixed. Governed by T. Meaningful for nuclei at large E* when only mean values are considered.

The statistical ensembles

Introduction

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation at Fermi energies
- Neutron skin
- Constraint on the EOS at supra-saturation density
- Summary

Statistical ensembles:

- microcanonical: fixed total energy and particle number. Appropriate for isolated systems like nuclei. ex. MMM (Raduta), SMM(s) (Bondorf, Botvina and other variants)
- canonical: Fixed number of nucleons and T, can exchange E with a reservoir. Reasonable approximation for A ≥200 and T ≥ 6 MeV.
- grandcanonical: the system can exchange energy and particles with a reservoir. Only average values are fixed. Governed by T. Meaningful for nuclei at large E* when only mean values are considered.

Iso(tope)scaling

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on th EOS at supra-saturation density

Summary

Consider two systems (1) and (2), with different masses (A(2) > A(1)). Look at the yield Y(N, Z) of nuclei produced in both systems.

isoscaling formulae

$$\begin{array}{l} \frac{Y_2(N,Z)}{Y_1(N,Z)} = C \exp\left[\alpha N + \beta Z\right] \\ S(N) = \frac{Y_2(N,Z)}{Y_1(N,Z)} \exp -\beta Z \\ S(Z) = \frac{Y_2(N,Z)}{Y_1(N,Z)} \exp -\alpha N \end{array}$$

Isoscaling

if statistical reaction mechanisms and close T in both systems.

Isoscaling in (dynamical) transport codes ? AMD: A. Ono et al., PRC 68 (2003) 051601

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition or reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

1.83 N - 2.31 Z Gogny 10² K₆₀(N,Z) / Y₄₀(N,Z)
 ⁴⁰
 ^(N,Z) 10¹ 10⁰ 10⁻¹ 10⁻² e^{1.60 N - 2.06 Z} Gogny-AS 10² /₆₀(N,Z) / Y₄₀(N,Z) 10¹ 10⁰ 10-1 10-2 12 0 2 6 N 8 10

 ${}^{60}Ca + {}^{60}Ca / {}^{40}Ca + {}^{40}Ca$

Isoscaling is observed as soon as the isotopic distributions are Gaussians around mean values. The coefficients are determined by the difference between mean values divided by the width (*V. Baran et al. Phys. Rep.* 410 (2005))

E/A=35 MeV; t=300 fm/c (10⁻²¹s)

Isoscaling and symmetry energy

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

In a grandcanonical framework, one has $Y^{(i)}(A, Z) = \exp\left(\frac{1}{T^{(i)}}(-G(N, Z) + \mu_N^{(i)}N + \mu_Z^{(i)}Z)\right)$ Considering two systems at same T and P, isoscaling is satisfied for this relation with: $\alpha = (\mu_N^{(2)} - \mu_N^{(1)})/T$

The free energy G(N, Z) can be approximated by:

 $G(N,Z) = a(Z) + c_0(Z)N + c_{sym}(Z)(N-Z)^2/A$

which gives for the most probable value for each system $\langle N \rangle (Z)$:

 $c_{sym}(Z) \left\{1 - 4[Z/\langle A \rangle(Z)]^2\right\} = \mu_N^{(i)} - a(Z)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Finally, subtracting (1) from (2): $4\frac{c_{sym}(Z)}{T} = \frac{\alpha}{\Delta(\frac{Z^2}{(A)^2})}$

Isoscaling and symmetry energy of what ?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

In the formalism, the symmetry energy is that of hot fragments:

$$4C_{sym}(Z)/T = \alpha / \left[\left(\frac{Z}{\langle A \rangle_1} \right)^2 - \left(\frac{Z}{\langle A \rangle_2} \right)^2 \right]$$

If C_{sym} did not depend on Z, and $(N/Z)_{frag} = (N/Z)_{sys}$, we could get the symmetry energy of the fragmenting system

$$4C_{sym}^{frag}/T = \alpha / \left[\left(\frac{Z_{S1}}{A_{S1}} \right)^2 - \left(\frac{Z_{S2}}{A_{S2}} \right)^2 \right]$$

This was done by several groups, who found very low values of c_{sym} . But these values are in contradiction with the inputs of the model used.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Isoscaling and symmetry energy

But ...MMM calculations A. Raduta and F. Gulminelli, PRC 75 (2006) 024605.

Introduction

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation at Fermi energies
- Neutron skin
- Constraint on the EOS at supra-saturation density
- Summary

Solid line: input C_{sym} of the model.

Symbols:

$$C_{sym} = \alpha T/4 \left[\left(\frac{Z}{\langle A \rangle_1} \right)^2 - \left(\frac{Z}{\langle A \rangle_2} \right)^2 \right]$$

Better for very excited large source and small fragments (grandcanonical).

hor. lines : $C_{sym} = \alpha T / 4 \left[\left(\frac{Z_{S1}}{A_{S1}} \right)^2 - \left(\frac{Z_{S2}}{A_{S2}} \right)^2 \right]$ Good only for very heavy fragments at low E^{*}.

・ロト・「聞・・「聞・・「聞・」 ひゃつ・

Isoscaling and symmetry energy

effect of secondary decays Yao Fu et al. Chin. Phys. Lett. 26 (2009) 082503

Introduction

Statistical framework

- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation a Fermi energies
- Neutron skin
- Constraint on the EOS at supra-saturation density
- Summary

Generally

 $\alpha_{\it fin} \ge \alpha_{\it prim}$ in stat. mod. $\alpha_{\it fin} \le \alpha_{\it prim}$ in dyn. mod.

Widths of excited isotopic dist. smaller in Dynamical, while final widths are more similar in both cases.

・ロット (雪) (日) (日)

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Finally the isoscaling α parameter extracted for light isotopes does not appear very reliable for a direct determination of the symmetry energy.

But as α was shown to linearly vary with the *I* value of the systems It appears as a useful isospin dependent variable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Isoscaling in the Lattice gas model

Zmax is promising (G. Lehaut et al. PRL102 (2009) 142503)

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

the EOS of asymmetric nuclear matter

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

To a good approximation, at T=0, the EOS of nuclear matter is:

 $\frac{E}{A}(\rho, I) = \frac{E}{A}(\rho, I = 0) + \frac{E_{sym}}{A}(\rho) \times I^{2}$

symmetric matter

with $I = \delta = \frac{\rho_n - \rho_p}{\rho} = \frac{N - Z}{A}$

The second term is smaller than the symmetric part \Rightarrow isospin effects should be rather small.

Better constrained if *I* can vary on a larger range (RIBs). Present results from stable beams.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

 E_{sym} gets a kinetic contribution from Pauli correlations and a potential contribution from the isovector part of the effective nuclear interactions.

$$\frac{E_{sym}}{A}(\rho) = \frac{\varepsilon_F(\rho)}{3} + \frac{C}{2}F(\rho/\rho_0)$$

with F(1)=1 and $C \approx 32$ MeV (a_4 term of the mass formula)

commonly approximated as : $\frac{E_{sym}}{A}(\rho) = \frac{C_{s,k}}{2} (\frac{\rho}{\rho_0})^{2/3} + \frac{C_{s,p}}{2} (\frac{\rho}{\rho_0})^{\gamma}$

or with a second order expansion around normal density :

$$rac{E_{sym}}{A}(
ho)=oldsymbol{a}_4+rac{L}{3}(rac{
ho-
ho_0}{
ho_0})+rac{ extsf{K}_{sym}}{18}(rac{
ho-
ho_0}{
ho_0})^2$$

(日) (日) (日) (日) (日) (日) (日)

 $\gamma,$ L define the asy-stiffness of the EOS and allow comparison between different formulations.

Some symmetry terms in mean field

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

The form of the (potential) symmetry term is still highly controversial.

40 30 E/A (MeV) 20 - - SKM* * * BPAL32 - SLy2308 -10 -20 25 om.pot/A (MeV) 20 15 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ρ (fm⁻³)

B.A. Li PRL102(2009)

The symmetry energy is termed

"asy-soft" if E_{sym}^{pot} presents a maximum (between ρ_0 and $2\rho_0$), followed by a decrease and vanishing ($\gamma < 1$) "asy-stiff" if it continuously increases with ρ ($\gamma > 1$)

The potential symmetry term of the mean field

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

n and p potentials have opposite signs.

 $\begin{array}{l} \mathsf{I=0.2} \ (\mathsf{ex} \ ^{124}\mathsf{Sn}) \\ U > 0 \ \mathsf{neutrons} \\ U < 0 \ \mathsf{protons} \end{array}$

Attractive potential for p (opposite to Coulomb !).

asy-soft more attractive than asy-stiff below $\rho_{\rm 0},$ less above $\rho_{\rm 0}$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

The ingredients of transport codes

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- Mean field : all results of the last two decades agree for a "soft" isoscalar term, K_{∞} =200-230 MeV. Isoscalar (+ isovector) momentum dependence or not.
- Residual interaction :

free $\sigma_{NN}(E, I, \theta)$ or in-medium correction.

In the following comparisons, each code keeps same properties of symmetric matter and same residual interaction, only E_{sym} is varied.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Transport codes : Glossary

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- BUU, VUU (Boltzmann/Vlasov-Uehling-Uhlenbeck), IBUU, RBUU (Bertsch, Danielewicz, Bao-An Li)
- Landau-Vlasov (Sébille) BNV (Boltzmann-Nordheim-Vlasov) (di Toro, Colonna)
- Molecular Dynamics
 - the QMD (Quantum Molecular Dynamics) family QMD (Aichelin), IQMD (Hartnack), ImQMD (Z. Li), UrQMD (Bass) ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• CoMD (Constrained MD - Bonasera & Papa, Catania)

Identification of fragments in transport codes

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Fragments are identified either

- with a clusterization algorithm, in *r* space or in *r*, *p* space.
- following local densities : low densities correspond to free nucleons, higher ones to clusters of nucleons (fragments).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Nuclear collisions at Fermi energies

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Central (\sim head-on) collisions: some nucleons/light nuclei escape rapidly (preequilibrium). The big remnant either de-excite to an evaporation residue, or multifragments.

(semi)Peripheral collisions: two remnants of projectile (QP) and target(QT). In between nucleons and light nuclei (mid-rapidity, neck). QP/QT de-excite by evaporation or multifragment.

Glossary: the 4π arrays used

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Detect and identify charged products, neutrons need additional devices.

 Fermi energies Miniball (+LASSA) - MSU (USA) INDRA - GANIL (France)

CHIMERA - LNS Catania (Italy)

- relativistic energies
 - FOPI GSI Darmstadt (Germany)

・ コット (雪) (小田) (コット 日)

Competition of dissipative mechanisms

Fusion vs deep inelastic in central collisions

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Effect of isospin understood in terms of the amount of repulsion existing during the interaction of two surfaces (i.e. below ρ_0).

- For n-rich systems, fusion is favoured with asy-soft : the proton symmetry field is more attractive and thus the interaction between the incoming nuclei is stronger, the dissipation larger.
- For n-poor conversely fusion is easier for asy-stiff : because of a repulsive field for p ("proton skin"), p are promptly emitted, which decreases Coulomb and makes fusion more likely.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Competition of reaction mechanisms

Amorini et al. PRL 102 (2009) 112701

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

a) to d): largest fragment

 ⁴⁰Ca @ 25A MeV at LNS Catania Detection with CHIMERA 4π array (1192 modules)

• Selection of events with: - $32 < \sum_{i} Z_{i} < 40(42)$ - $\sum_{i} P_{i} > 0.7 \times P_{beam}$ - M \geq 5 (⁴⁸Ca) or 6 (other targets) - d): 0.04 < $v_{1}/c < 0.15$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Competition of reaction mechanisms

Amorini et al. PRL 102 (2009) 112701

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- ⁴⁰Ca @ 25A MeV at LNS Catania Detection with CHIMERA 4π array (1192 modules)
- Selection of events with: - $32 < \sum_i Z_i < 40(42)$ - $\sum_i P_i > 0.7 \times P_{beam}$ - M ≥ 5 (⁴⁸Ca) or 6 (other targets)
 - d): $0.04 < v_1/c < 0.15$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

a) to d): largest fragment

Competition of mechanisms

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

 $\Delta M_{nor} = (m_1 - m_2)/m_{tot}$ data

CoMD-II + GEMINI (shaded histos) 3 symmetry energy terms: Soft = γ = 0.5 Stiff2 = γ = 1 Stiff1 = $\gamma \approx 1.5$ Comparison with data for the n-rich system

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Competition of mechanisms

Fusion vs deep inelastic in central collisions

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

For the 3 systems, good agreement between results (dots) and CoMD-II + GEMINI (shaded histos) using the asy-stiff parametrization, E_{sym}^{pot} linearly dependent on the density.

イロト 不良 とくほ とくほう 二日

Isospin diffusion Semi-peripheral collisions

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

"Exchange of isospin" between QP and QT during the collision, until N/Z equilibration (=that of the total system). Depending on t(b,E) at which QP/QT re-separate, equilibration might or not be reached

Interplay between

Isospin transport due to density gradients (migration) depends on the slope of the symmetry energy :

$$D_{
m n}^
ho - D_{
m p}^
ho \propto 4 I rac{\partial {\it E_{sym}}}{\partial
ho}$$

Transport due to isospin concentration gradients (diffusion) depends on the absolute value of the symmetry energy

$$D_{
m n}^{\prime}-D_{
m p}^{\prime}\propto4
ho E_{syn}$$

Use of imbalance (or isospin transport) ratio

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Study of isospin transport/equilibration for an isospin sensitive quantity *x*:

$$R_{P,T}^x = rac{2(x^M - x^{eq})}{(x^H - x^L)}$$
 with $x^{eq} = (x^H + x^L)/2$

H and L refer to two symmetric reactions between n-rich and n-poor nuclei, M to the mixed reaction.

 $R = \pm 1$ in projectile(P)/target(T) regions, R=0 when isospin equilibrium is reached.

Different observables x will provide the same result if they are linearly related.

The use of ratios is expected to minimize effects such as pre-equilibrium, Coulomb, secondary de-excitation ... and emphasize the influence of the asymmetry term.

Study of isospin diffusion vs dissipation

Di Toro et al. Prog. Part. Nucl. Phys. 62 (2009) 389

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

x = (N-Z)/(N+Z)

Results of the BNV transport code

Reactions Sn+Sn @35A and 50A MeV. H=124; L=112 "universal" curve when sorting with $E_{loss}/E_{c.m.}$ isospin equilibrium reached faster, with less dissipation, for asy-soft EOS.

・ロト・西ト・ヨト・ヨー シタぐ

Isospin diffusion

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

4 systems studied: ¹²⁴Sn+¹²⁴Sn, ¹¹²Sn+¹¹²Sn, ¹²⁴Sn+¹¹²Sn and ¹¹²Sn+¹²⁴Sn @ 50 *A*MeV.

For *x* use of the isoscaling parameter α and the ratio of yields of mirror nuclei ln [$Y(^7Li)/Y(^7Be)$]. Both are linearly connected with *I*

An experimental impact parameter is obtained from M_{cp} distributions.

Experimental cut $b/b_{max} > 0.8$.

Comparisons are made with transport codes with b=6 fm, in which x = I.

Isospin diffusion

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Comparison to IBUU04, b=6 fm (B.A. Li) Best agreement for asy-stiff: x=-1 $\equiv \gamma$ =1.6-2

・ロト・日本・日本・日本・日本・日本

Isospin diffusion

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Comparison to BUU97 (B. A. Li): asy-stiff $\gamma \sim 2$

 $x = \alpha$ (left) and R_7 (right *) both agree in QP region $y/y_{beam} > 0.7$ (*Tsang PRL 102 (2004*) 122701)

Comparison ImQMD (Z. Li): asy-soft $\gamma \sim 0.7$

Isospin diffusion vs impact parameter

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

One projectile, two targets : $^{58}\rm{Ni}$ + $^{58}\rm{Ni}$ and $^{58}\rm{Ni}$ + $^{197}\rm{Au}$ at 52A and 74A MeV.

sorting variable

 $E_{\rm diss} = E_{\rm c.m.} - \frac{1}{2} \mu V_{\rm rel}^2$ with $V_{\rm rel} = V_{\rm QP}^{\rm rec} \times \frac{A_{\rm tot}}{A_{\rm target}}$ BNV shows that this variable gives a good measure of the impact parameter

Isospin diffusion vs impact parameter

INDRA data E. Galichet et al. PRC 79 (2009) 064614/15

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

The isospin variable

$$(< N > / < Z >)_{CP} = \sum_{N_{evts}} \sum_{\nu} N_{\nu} / \sum_{N_{evts}} \sum_{\nu} P_{\nu}$$

 ν =H. He. Li, Be isotopes.

free protons are excluded, as neutrons are not measured.

Variable measured with particles (1) forward in the NN frame and (2) forward in the QP frame.

The latter value is compared with the results of a BNV calculation, after de-excitation of the QP* using the SIMON code of D. Durand.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Isospin diffusion vs impact parameter INDRA data compared with BNV results

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

When considering the 4 systems

A better overall agreement is obtained with the asy-stiff EOS,

in which the potential term of the symmetry energy varies linearly with the density.

・ロット (雪) (日) (日)

Isospin equilibration in Ni + Au at 52A MeV ?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

The values of $\langle N \rangle / \langle Z \rangle \rangle_{CP}$ forward of the NN velocity (dominated by MR particles) and forward in the QP frame (QP evaporation) become equal at high dissipation ($E_{diss}/E_{c.m.} \sim 0.75$); this is a good indication that we did observe the N/Z equilibration of the system, and should sign an asy-stiff EOS.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

n/p ratio at Fermi energies

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- This variable is directly sensitive to the symmetry energy, due to the opposite signs of the neutron and proton symmetry potentials. The most important information comes from high energy (early emitted) nucleons.
- Experimentally studied by the MSU group: they look at c.m. p and n energy spectra for $70^{\circ} < \theta_{cm} < 110^{\circ}$, in central collisions. They take into account the n and p contained in light clusters.
- To minimize uncertainties due to the different apparatuses, calibrations, efficiencies for n and p measurements, they use double ratios of spectra:

 $DR(n/p) = R_{n/p}(H)/R_{n/p}(L)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

n/p ratio at Fermi energies

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- This variable is directly sensitive to the symmetry energy, due to the opposite signs of the neutron and proton symmetry potentials. The most important information comes from high energy (early emitted) nucleons.
- Experimentally studied by the MSU group: they look at c.m. p and n energy spectra for $70^{\circ} < \theta_{cm} < 110^{\circ}$, in central collisions. They take into account the n and p contained in light clusters.
- To minimize uncertainties due to the different apparatuses, calibrations, efficiencies for n and p measurements, they use double ratios of spectra:

 $DR(n/p) = R_{n/p}(H)/R_{n/p}(L)$

n/p ratio at Fermi energies

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- This variable is directly sensitive to the symmetry energy, due to the opposite signs of the neutron and proton symmetry potentials. The most important information comes from high energy (early emitted) nucleons.
- Experimentally studied by the MSU group: they look at c.m. p and n energy spectra for $70^{\circ} < \theta_{cm} < 110^{\circ}$, in central collisions. They take into account the n and p contained in light clusters.
- To minimize uncertainties due to the different apparatuses, calibrations, efficiencies for n and p measurements, they use double ratios of spectra:

 $DR(n/p) = R_{n/p}(H)/R_{n/p}(L)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

n/p ratio: comparison with transport codes Tsang al. PRL102 (2009) 122701

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

50 AMeV ¹²⁴Sn+¹²⁴Sn and ¹¹²Sn+¹¹²Sn \star data 2.5 • $\gamma_{i} = 1.0$ $-\gamma_{1}=0.75$ $-e - \gamma_i = 0.5$ $\frac{DR(Y(n)/Y(p))}{\overset{N}{o}}$ $\neg \diamond \neg \gamma_{i} = 0.35$ 1.5 20 40 60 E_{CM} (MeV)

Compare with the ImQMD code, varying the symmetry energy term Within a 2σ uncertainty, the result is $0.5 \le \gamma \le 1.05$, with best value 0.7. Same value as that obtained from isospin diffusion

n/p ratio: comparison with transport codes Zhang al. PLB 664 (2008) 145

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

50 AMeV ¹²⁴Sn+¹²⁴Sn and ¹¹²Sn+¹¹²Sn Comparison with other codes (Bao-An Li 1997 and 2004): IBUU04 fails, BUU97 indicates a soft asy-EOS γ =0.5. BUUs results disagree with those from isospin diffusion

Isospin distillation (or fractionation) Central collision Multifragmentation data

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusior

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Test of symmetry energy in dilute matter. Signs a phase transition.

I = 0.2

 $\mu_n - \mu_p = 4E_{sym}(
ho)I/A$

$\rho < \rho_0 / 2$

n and p move in phase to higher ρ different slope \Rightarrow clusters from bulk instability more symmetric. n-enrichment of the gas phase Effect stronger for soft asy-EOS.

・ コット (雪) (小田) (コット 日)

Isospin distillation

with radial flow M. Colonna et al. PRC78 (2008) 064618

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

BNV calculation

Central symmetric Sn+Sn collisions @50 AMeV

dashed line+open points = soft full line and points = stiff

- Larger difference for asy-soft (*E_{sym}* larger at low *ρ*)
- Difference increases with N/Z
- *I*_{frag} < *I*_{syst} for n-rich systems
 *I*_{frag} > *I*_{syst} for "n-poor" systems
- Inversion liquid/gas at smaller N/Z for asy-stiff, because Coulomb effects dominate a smaller *E_{sym}* and more protons are emitted.

Isospin distillation with radial flow

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Central symmetric Sn+Sn collisions @50 AMeV- Hot fragments Exp. we cannot distinguish "liquid" and "gas", but we may follow N/Z vs kinetic energy of fragments.

dashed = soft full = stiff

Slope characteristic of N/Z_{sys} and asy-stiffness p-rich: Coulomb accelerate the more p-rich fragments \Rightarrow negative slope n-rich: *E*_{sym} more repulsive for n-rich fragments \Rightarrow positive slope, larger for asy-soft.

Isospin distillation with radial flow

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Final fragments : Some differences is expected to persist after fragment de-excitation.

・ コット (雪) (小田) (コット 日)

Analyses in progress at MSU and Orsay/Laval (PhD of F. Gagnon-Moisan)

Neck fragmentation at Fermi energies

ntroduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Neck dynamics observed at energies 15-50 AMeV in semi-peripheral collisions: large cross sections. It concerns light products (Z<10) emitted in the interaction zone, with a velocity intermediate between those of the 2 main partners (PLF/TLF)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Characterized by alignment of PLF, TLF and neck fragments: max. of in-plane angular distribution at $\Phi_{plane} = 0$

Neck fragmentation at Fermi energies

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusior

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Isospin transport effects: neck fragments produced in a slightly dilute region, $\rho_0/2 < \rho < \rho_0$, in contact with normal density PLF/TLF : effects of drift coefficient.

p and n move now in opposite directions: p from neck to PLF/TLF Larger n flow with asy-stiff EOS neck-IMF more n-rich than MF-IMF

Neck fragmentation at Fermi energies

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Pigmy resonance and neutron skin of heavy nuclei

Introduction

- Statistical framework
- the EOS of asymmetric nuclear matter transport codes
- Competition of reaction mechanisms
- Isospin diffusion
- n/p ratios
- Isospin distillation
- Neck fragmentation at Fermi energies
- Neutron skin
- Constraint on th EOS at supra-saturation density
- Summary

21 Skyrme forces (*LW Chen et al PRC72 (2005) 064309*)

In MF calculations the n-skin thickness depends linearly on the slope of the symmetry energy at normal density. PDR strength linearly depends on S.

Pigmy resonance of heavy nuclei

measurements Klimkiewicz et al. PRC76 (2007) 051603

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

By comparing the strength ratio PDR/GDR for 132 Sn and 130 Sn constraints are put on a_4 and L:

a₄ = 32.0 ± 1.8 MeV L = 43 ± 15 MeV

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This corresponds to a soft asy-EOS, with $\gamma \in [0.4; 0.6]$

n, p collective flows

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Flow observables expressed as the 1^{st} and 2^{nd} coefficients of the Fourier expansion of the azimuthal distribution of particles:

 $\frac{\mathrm{d}N}{\mathrm{d}\phi}(y,p_t) = 1 + v_1 \cos\left(\phi\right) + 2v_2 \cos\left(2\phi\right)$

 v_1 transverse flow \Rightarrow azimuthal anisotropy of the transverse nucleon emission.

 v_2 elliptic flow \Rightarrow competition between in-plane and out-of-plane emissions.

- $v_2 > 0$ in-plane emission favoured
- $v_2 < 0$ out-of-plane emission (squeeze-out)

n, p collective flows

FOPI/LAND Data W. Trautmann et al. nucl-ex0907.2822

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Au+Au@400 AMeV. Combined data for central and mid-peripheral collisions.

Comparison with UrQMD (b < 7.5 fm, filtered FOPI/LAND), with 2 γ values, 0.5 and 1.5. p_t dependence well described. n more sensitive to asy-stiffness. From the ratio $v_{2,n}/v_{2,h}$ a linear interpolation between predictions gives $\gamma \approx 0.9 \pm 0.3$

New exp. CHIMERA/LAND to be performed in 2011 at GSI.

Meson production at supra-saturation density di Toro et al. PPNP 62 (2009)

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillatio

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

RMF calculations for 1*A*GeV Au+Au collisions (b=0)

 π^{-}/π^{+} , K^{+}/K^{0} ratios should measure the N/Z of the dense participant zone. Kaons should be better probes, as pions are produced (and re-absorbed) all along the collision. Larger expected effect of

asy-EOS on K^+/K^0 than on π^-/π^+ .

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Supra-saturation density: K^+/K^0

FOPI data X. Lopez et al. PRC75 (2007) 011901

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

 $^{96}_{44}$ Ru+ $^{96}_{44}$ Ru, $^{96}_{40}$ Zr+ $^{96}_{40}$ Zr @ 1.5*A*GeV Same mass, different isospins.

Calculations = RMF of the Catania group.

At that energy, and in view of the large experimental error bars, no information on E_{sym} can be obtained.

π^-/π^+ Soft asy-EOS at supra-saturation density ? FOPI data *Reisdorf et al. NPA 781 (2007) 459*

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition o reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Central collisions, estimated density $2\rho_0$

Result discriminant for heavier systems, near the π threshold: a very soft asy-EOS is favoured.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation a Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- Impact parameter selection: it is better to calculate the same *b*-dependent variable in data and model. A *b* value just derived from data is more questionable.
- De-excitation. We measure cold fragments. Transport codes or statistical models consider hot fragments. In between we need a de-excitation code (reliability?).

- De-excitation weakens the expected effects.
- π , K in transport codes: in-medium effects ?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- Impact parameter selection: it is better to calculate the same *b*-dependent variable in data and model. A *b* value just derived from data is more questionable.
- De-excitation. We measure cold fragments. Transport codes or statistical models consider hot fragments. In between we need a de-excitation code (reliability?).

- De-excitation weakens the expected effects.
- π , K in transport codes: in-medium effects ?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- Impact parameter selection: it is better to calculate the same *b*-dependent variable in data and model. A *b* value just derived from data is more questionable.
- De-excitation. We measure cold fragments. Transport codes or statistical models consider hot fragments. In between we need a de-excitation code (reliability?).

- De-excitation weakens the expected effects.
- π , K in transport codes: in-medium effects ?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

- Impact parameter selection: it is better to calculate the same b-dependent variable in data and model. A b value just derived from data is more questionable.
- De-excitation. We measure cold fragments. Transport codes or statistical models consider hot fragments. In between we need a de-excitation code (reliability?).

- De-excitation weakens the expected effects.
- π , K in transport codes: in-medium effects ?

Summary

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Difficult to give the asy-stiffness of the EOS in view of the presently existing data.

How to go further?

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Experimentally

- Improve detection to get A and Z over a much larger Z range, and $\boldsymbol{\Omega}$
- New experiments to better constrain evaporation codes
- new RIBs
- High statistics experiments

2 Theoretically

- Implementation of predictive EOS (EDF)
- Analyze the results of calculation in the same way as the data

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Compare codes with all existing data

References

Introduction

Statistical framework

the EOS of asymmetric nuclear matter transport codes

Competition of reaction mechanisms

Isospin diffusion

n/p ratios

Isospin distillation

Neck fragmentation at Fermi energies

Neutron skin

Constraint on the EOS at supra-saturation density

Summary

Two review papers for many more details

V. Baran, M. Colonna, V. Greco and M. Di Toro, Phys. Rep. 410 (2005) 335

Bao-An Li, Lie-Wen Chen and Che-Ming Ko, Phys. Rep. 464 (2008) 113

▲□▶▲□▶▲□▶▲□▶ □ のQ@