A unique probe of strange quarks in nucleons and the neutron skin of a heavy nucleus Lecture 2

PARITY-VIOLATING ELECTRON SCATTERING

Krishna Kumar, UMass Amherst Ecole Internationale Joliot-Curie Lacanau, France (26 Sep. - 2 Oct. 2010)

OUTLINE OF LECTURE 2

- Experimental Technique
- Strange Quark Content of the Nucleon
- The HAPPEX and HAPPEXII experiments
- The Neutron Skin of a Heavy Nucleus
- The PREX Experiment
- Future Program of Parity-violating Electron Scattering
- Suggested further reading

OUTLINE OF LECTURE 2

- Experimental Technique
- Strange Quark Content of the Nucleon
- The HAPPEX and HAPPEXII experiments
- The Neutron Skin of a Heavy Nucleus
- The PREX Experiment
- Future Program of Parity-violating electron Scattering
 Suggested further reading this

REMINDER Parity-Violating Electron Scattering

Weak Neutral Current (WNC) Interactions at Q² << M_z²

Longitudinally Polarized Electron Scattering off Unpolarized Targets

 $\sigma \alpha |A_{\gamma} + A_{weak}|^2$

.

REMINDER Parity-Violating Electron Scattering

Weak Neutral Current (WNC) Interactions at Q² << M_z²

Longitudinally Polarized Electron Scattering off Unpolarized Targets

 $\sigma \alpha |A_{\gamma} + A_{weak}|^2$

Specific choices of kinematics and target nuclei probes different physics:

- In mid 70s, goal was to show $sin^2\theta_W$ was the same as in neutrino scattering
- Since early 90's: target couplings probe novel aspects of hadron structure
- Future: precision measurements with carefully chosen kinematics can probe physics at the multi-TeV scale

EXPERIMENTAL TECHNIQUE

OPTICAL PUMPING SLAC E122 Technical Innovation #1

5

Rapid Beam Helicity Flipping

Optical pumping of a GaAs wafer
Rapid helicity reversal: polarization sign flip
100 Hz to minimize the impact of drifts
Helicity-correlated beam motion: under sign flip, beam stability at the micron level

FLUX INTEGRATION SLAC E122 Technical Innovation #2

"Flux Integration": very high rates direct scattered flux to background-free region

FLUX INTEGRATION SLAC E122 Technical Innovation #2

"Flux Integration": very high rates direct scattered flux to background-free region

♦ Beam helicity is chosen pseudorandomly at multiple of 50 Hz

• sequence of "window multiplets"

Example: at 200 Hz reversal

FLUXINTEGRATION **SLAC E122 Technical Innovation #2**

"Flux Integration": very high rates direct scattered flux to background-free region

Detector D, Current I: F = D/I

I order: $x, y, \theta_x, \theta_y, E$ *II order: e.g. spot-size*

any line noise effect here

FLUX INTEGRATION SLAC E122 Technical Innovation #2

"Flux Integration": very high rates direct scattered flux to background-free region

Detector D, Current I: F = D/I

I order: $x, y, \theta_x, \theta_y, E$ II order: e.g. spot-size

 Experimental Challenge & Systematic Control
 Must minimize both random and helicity-correlated fluctuations in the integrated window-pair monitor response of electron beam trajectory, energy and spot-size.

Four electron scattering laboratories: SLAC, MIT-Bates, Mainz & JLab Parity-violating electron scattering has become a precision tool

MOLLER

Steady progress in technology
part per billion systematic control
1% normalization control
Intensive R&D on:

Photocathodes
Polarimetry
High Luminosity cryotargets
Nanometer beam stability
Precision Beam Diagnostics
Counting Electronics
Radiation hard detectors

Four electron scattering laboratories: SLAC, MIT-Bates, Mainz & JLab Parity-violating electron scattering has become a precision tool

Steady progress in technology
part per billion systematic control
1% normalization control
Intensive R&D on:

Photocathodes
Polarimetry
High Luminosity cryotargets
Nanometer beam stability
Precision Beam Diagnostics
Counting Electronics
Radiation hard detectors

Jefferson Lab has a bright future with this programKrishna Kumar7J-C Summer School, Lecture 2

STRANGE QUARKS IN NUCLEONS

NUCLEON FLAVOUR STRUCTURE

Quantum Chromodynamics is intractable at low Q^2 ($\ge 0.2 \text{ fm}$)

bare quark

baryon

meson

valence quark: bare quark "dressed" with quark-antiquark pairs and gluons

Why don't sea quarks destroy Quark Model predictions?

three flavors dominate: u, d, s

Strangeness Flavor:

- relatively light
- no valence contribution
- flavor separation now possible

Are proton properties modified?

Strange quarks are relatively light; What can we say about its role?

Lepton-nucleon deep inelastic scattering

Semi-inclusive DIS (Needs fragmentation functions) 0.30

$$"\Delta s" = \int_{0.023} \Delta s(x) \, dx = +0.03 \pm 0.03 (\text{stat}) \pm 0.01 (\text{syst})$$

Semi-inclusive DIS (Needs fragmentation functions) 0.30 $\Delta s'' = \int \Delta s(x) dx = +0.03 + 0.03(stat) + 0.0$

$$"\Delta s" = \int_{0.023} \Delta s(x) \, dx = +0.03 \pm 0.03 (\text{stat}) \pm 0.01 (\text{syst})$$

Krishna Kumar

 πN scattering:

Strange mass: 0-20% What about the nucleon's charge and magnetization distributions? J-C Summer School, Lecture 2

$$\begin{array}{ll} \text{Cross-section for Born scattering} & Q^2 = -q^2 = -t \\ \frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \begin{bmatrix} \left(F_1^2 + \tau F_2^2\right) + 2\tau \left(F_1 + F_2\right)^2 \tan^2 \frac{\theta}{2} \end{bmatrix} \\ & \tau = \frac{Q^2}{4M^2} \end{array}$$

Alternatively, Sachs Form Factors G_E and G_M can be used

$$G_E = F_1 - \tau F_2$$

$$G_M = F_1 + F_2$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + \tau G_M^2 \tan^2 \frac{\theta}{2}\right]$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + \tau G_M^2 \tan^2 \frac{\theta}{2}\right]$$

Krishna Kumar

STRANGE FORM FACTORS

STRANGE FORM FACTORS

STRANGE FORM FACTORS

PARITYVIOLATION

Spin=0,T=0 (⁴He): G^s_E only!

nuclear corrections require forward angle, low Q² only Deuterium QE (back-angle): Enhanced G_A

PARITYVIOLATION

<u>Spin=0,T=0 (⁴He):</u> G^s_E only!

nuclear corrections require

forward angle, low Q² only

Deuterium QE (back-angle): Enhanced G_A

$$G_E^{p,Z} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_E^u - \left(1 - \frac{4}{3}\sin^2\theta_W\right)G_E^d - \left(1 - \frac{4}{3}\sin^2\theta_W\right)G_E^d$$

THEORETICAL "BIAS"

Experimental determination of non-zero G^s is unambiguous

R.L. Jaffe, Phys. Lett. B 229 (1989) 275

Various theoretical estimates: •Vector Meson Dominance Models

Quark modelsDispersion Theory

•Lattice Gauge theory •Ching! Quark Soliton Mod

•Chiral-Quark Soliton Model

- 1. Skyrme Model N.W. Park and H. Weigel, Nucl. Phys. A 451, 453 (1992).
- Dispersion Relation H.W. Hammer, U.G. Meissner,
 D. Drechsel, Phys. Lett. B 367, 323 (1996).
- 3. Dispersion Relation H.-W. Hammer and Ramsey-Musolf, Phys. Rev. C 60, 045204 (1999).
- **4. Chiral Quark Soliton Model** A. Sliva et al., Phys. Rev. D **65**, 014015 (2001).
- 5. Perturbative Chiral Quark Model V. Lyubovitskij et al., Phys. Rev. C 66, 055204 (2002).
- Lattice R. Lewis et al., Phys. Rev. D 67, 013003 (2003).
- 7. Lattice + charge symmetry -Leinweber et al, Phys. Rev. Lett. 94, 212001 (2005) & hep-lat/ 0601025

THEORETICAL "BIAS"

Experimental determination of non-zero G^s is unambiguous

R.L. Jaffe, Phys. Lett. B 229 (1989) 275

Various theoretical estimates:

Vector Meson Dominance Models
Quark models
Dispersion Theory
Lattice Gauge theory
Chiral-Quark Soliton Model

1. Skyrme Model - N.W. Park and H. Weigel, Nucl. Phys. A 451, 453 (1992).

- Dispersion Relation H.W. Hammer, U.G. Meissner,
 D. Drechsel, Phys. Lett. B 367, 323 (1996).
- 3. Dispersion Relation H.-W. Hammer and Ramsey-Musolf, Phys. Rev. C 60, 045204 (1999).
- **4. Chiral Quark Soliton Model** A. Sliva et al., Phys. Rev. D **65**, 014015 (2001).
- 5. Perturbative Chiral Quark Model V. Lyubovitskij et al., Phys. Rev. C 66, 055204 (2002).
- Lattice R. Lewis et al., Phys. Rev. D 67, 013003 (2003).
- 7. Lattice + charge symmetry -Leinweber et al, Phys. Rev. Lett. 94, 212001 (2005) & hep-lat/ 0601025

Little theoretical guidance on Q² dependence

Krishna Kumar

THEORETICAL "BIAS"

Experimental determination of non-zero G^s is unambiguous

R.L. Jaffe, Phys. Lett. B 229 (1989) 275 Various theoretical estimates: •Vector Meson Dominance Models •Quark models •Dispersion Theory •Lattice Gauge theory •Chiral-Quark Soliton Model

Little theoretical guidance on Q² dependence

Krishna Kumar

Λ

A4

SAMPLE

open geometry, integrating Open geometry

Fast counting calorimeter for background rejection

 G_{M}^{s} , (G_{A}) at $Q^{2} = 0.1 \ GeV^{2}$

 $G_{E}^{s} + 0.23 \ G_{M}^{s}$ at $Q^{2} = 0.23 \ GeV^{2}$ $G_{E}^{s} + 0.10 \ G_{M}^{s}$ at $Q^{2} = 0.1 \ GeV^{2}$ $G_{M}^{s}, \ G_{A}^{e}$ at $Q^{2} = 0.23 \ GeV^{2}$

WORLD PROGRAM **A4** SAMPLE **Open** geometry open geometry, Fast counting calorimeter fo integrating background rejection G_{F}^{s} + 0.23 G_{M}^{s} at Q^{2} = 0.23 GeV^{2} G_{M}^{s} , (G_{A}) at $Q^{2} = 0.1 \ GeV^{2}$ G_{F}^{s} + 0.10 G_{M}^{s} at Q^{2} = 0.1 GeV^{2} G_{M}^{s} , G_{A}^{e} at $Q^{2} = 0.23 \ GeV^{2}$ HAPPEX $G_{\rm E}^{\rm s}$ + 0.39 $G_{\rm M}^{\rm s}$ at Q² = 0.48 GeV² G_{F}^{s} + 0.08 G_{M}^{s} at Q^{2} = 0.1 GeV² Precision spectrometer, $G_{\rm F}^{\rm s}$ at Q² = 0.1 GeV² (⁴He) integrating $G_{\rm F}^{\rm s}$ + 0.48 $G_{\rm M}^{\rm s}$ at Q² = 0.62 GeV²

HAPPEXEXPERIMENT
CEBAF AT JEFFERSON LAB

-C Summer School, Lecture 2

Krishna Kumar

HRSINHALLA late 1990's

e Distribution at Detectors

HAPPEXATJLAB

Hall A Proton Parity EXperiment

1998-99: Q²=0.5 GeV², ¹H 2004-05: Q²=0.1 GeV², ¹H, ⁴He Scattering angle 12.5° to 6° with addition of septum magnets The HAPPEX Collaboration

Thomas Jefferson National Accelerator Facility -Argonne National Laboratory - CSU, Los Angeles -William and Mary - Duke -DSM/DAPNIA/SPhN CEA Saclay - FIU - Harvard -INFN, Rome - INFN, Bari - IAE, Beijing -IPT Kharkov - Jozef Stefan Institute - Kent State - MIT - NPIRAS, St. Petersburg - ODU - Rutgers - Smith College - Syracuse - Temple - U. Blaise Pascal - U. of Illinois Urbana-Champagne - UMass, Amherst -U. of Kentucky - U. of Virginia - UST, Heifei J-C Summer School, Lecture 2

HAPPEXIINHALLA

Rapid Helicity Flip: Measure the asymmetry at 10⁻⁴ level, 30 million times

Rapid Helicity Flip: Measure the asymmetry at 10⁻⁴ level, 30 million times

21

False Asymmetries

• Beam Asymmetries - Source laser control, careful measurement and correction

- **Electronics pickup**
- **Background Asymmetries**

Rapid Helicity Flip: Measure the asymmetry at 10⁻⁴ level, 30 million times

False Asymmetries

- Beam Asymmetries Source laser control, careful measurement and correction
 - **Electronics** pickup
- **Background Asymmetries**

Normalization

- Polarimetry continuous measurement/monitoring. Control of systematic error
- Linearity / Deadtime
 - **Background Dilution**

BEAMASYMMETRIES

22

Position difference goal: 3 nanometers!

Helicity-correlated asymmetries in the electron beam create FALSE ASYMMETRY

Problem: Helicity signal deflecting the beam through electronics "pickup" Large beam deflections even

Krishna Kumawhen Pockels cell is off

BEAMASYMMETRIES

Position difference goal: 3 nanometers!

Helicity-correlated asymmetries in the electron beam create FALSE ASYMMETRY

All's well that ends well

- Problem clearly identified as beam steering from electronic cross-talk
- Large position differences mostly cancel in average over both detectors

BEAM ASYMMETRY CORRECTIONS TO APV

BEAM ASYMMETRY CORRECTIONS TO Apv

BEAM ASYMMETRY CORRECTIONS TO Apv

Krishna Kumar

J-C Summer School, Lecture 2

Surpassed Beam Asymmetry Goals for Hydrogen Run

> Energy: -0.25 ppb X Target: 1 nm X Angle: 2 nm Y Target : 1 nm Y Angle: <1 nm

Corrected and Raw, Left arm alone, Superimposed!

Total correction for beam position asymmetry on Left, Right, or ALL detector: 10 ppb J-C Summer School, Lecture 2

24

Hydrogen Systematic control ~ 10⁻⁸ $A_{PV} = -1.58 \pm 0.12$ (stat) ± 0.04 (syst) ppm $A(G^{s}=0) = -1.66$ ppm ± 0.05 ppm

Hydrogen Systematic control ~ 10⁻⁸ A_{PV} = -1.58 ± 0.12 (stat) ± 0.04 (syst) ppm $A(G^{s}=0)$ = -1.66 ppm ± 0.05 ppm

Helium Normalization control ~ 2% A_{PV} = +6.40 ± 0.23 (stat) ± 0.12 (syst) ppm A(G^s=0) = +6.37 ppm

24

Hydrogen Systematic control ~ 10⁻⁸ $A_{PV} = -1.58 \pm 0.12$ (stat) ± 0.04 (syst) ppm $A(G^{s}=0) = -1.66$ ppm ± 0.05 ppm

Helium Normalization control ~ 2% A_{PV} = +6.40 ± 0.23 (stat) ± 0.12 (syst) ppm A(G^s=0) = +6.37 ppm

STRANGENESS SMALL!

<u>at low Q²</u> ~3% +/- 2.3% of G_M^P ~0.2 +/- 0.5% of G_E^P

This simple fit ignores numerous (small) issues.

Published fits:

R. Young et al., Phys. Rev. Lett 97, 102002 (2006);

If fit floats G_A^p, G_Aⁿ: Central value more zero, error bar slightly larger

J.Liu et al., Phys. Rev. C 76, 025202 (2007)

Very consistent with this analysis

CURRENT STATUS

HAPPEX-III Q² ~ 0.62 GeV² Data taking completed in 2009

 $\delta(G_{E}^{s} + 0.48 G_{M}^{s}) \sim 0.015$

Statistics-limited error bar, with leading systematic error from polarimetry

Also: forward angle point from MAMI-A4 at same Q²

Both expected soon!

J-C Summer School, Lecture 2

CLEAN MEASUREMENT OF THE NEUTRON SKIN

ELECTROWEAK PROBE

28

The proton distribution of heavy nucleus: mapped via electron scattering
The neutron distribution:

probed with hadrons
highly model-dependent
neutron "skin" ~ 0.1 - 0.3 fm?

Neutron density a fundamental observable:

Impacts a variety of physics

ELECTROWEAK PROBE

 $Q^{p}_{W} \sim 1 - 4 \sin^2 \theta_{W}$

The proton distribution of heavy nucleus: mapped via electron scattering
The neutron distribution:

probed with hadrons
highly model-dependent
neutron "skin" ~ 0.1 - 0.3 fm?

Neutron density a fundamental observable:

Impacts a variety of physics

28

ELECTROWEAK PROBE

 $Q^n w \sim 1$ 0.1 208Pb 0.08 $R_p \sim 5.5 \, fm$ Density (fm⁻³) 0.00 C. Horowitz E+M charge Weak charge 0.02 Proton Neutron 0 0 2 6 8 10 r (fm) Krishna Kumar 28

 $Q^{p}_{FM} \sim 1$

 $Q^n_{EM} \sim 0$

 $Q^{p}_{W} \sim 1 - 4 \sin^2 \theta_{W}$

 $\rho_{W}(r) = \int d^{3}r' [G_{W}^{n}(r'-r)\rho_{n}(r') + \frac{Q_{W}^{p}}{Q_{W}^{n}}G_{W}^{p}(r'-r)\rho_{p}(r')]$ $A_{pv} = \frac{G_{F}Q^{2}}{2\pi\alpha\sqrt{2}} \frac{F_{W}(Q^{2})}{F_{ch}(Q^{2})}$ $F_{W}(Q^{2}) = \int d^{3}r \frac{\sin(Qr)}{Qr}\rho_{W}(r)$ $R_{p} \sim 5.5 \, fm$

The proton distribution of heavy nucleus: mapped via electron scattering
The neutron distribution:

probed with hadrons
highly model-dependent
neutron "skin" ~ 0.1 - 0.3 fm?

Neutron density a fundamental observable:

Impacts a variety of physics

EQUATION OF STATE

C. Horowitz

- Pressure forces neutrons out against surface tension. A large pressure gives a large neutron radius.
- Measuring R_n in ²⁰⁸Pb constrains the pressure of neutron matter at some subnuclear density ~0.1 fm⁻³.

Neutron Star Crust vs Liquid/Solid Transition

²⁰⁸Pb Neutron Skin

• Neutron star has solid crust (yellow) over liquid core (blue).

- Nucleus has neutron skin.
- Both neutron skin and NS crust are made out of neutron rich matter at similar densities.
- Common unknown is EOS at subnuclear densities.

Density

- Thicker neutron skin in Pb means energy rises rapidly with density-> Quickly favors uniform phase.
- Thick skin in Pb->low transition density in star.

Neutron Star Crust vs Liquid/Solid Transition

²⁰⁸Pb Neutron Skin

• Neutron star has solid crust (yellow) over liquid core (blue).

- Nucleus has neutron skin.
- Both neutron skin and NS crust are made out of neutron rich matter at similar densities.
- Common unknown is EOS at subnuclear densities.

Density

- Thicker neutron skin in Pb means energy rises rapidly with density-> Quickly favors uniform phase.
- Thick skin in Pb->low transition density in star.

EXPERIMENTAL DESIGN

ρ(r)	$ F(q^2) $	Example	
pointlike	constant	Electron	
exponential	dipole	Proton	
gauss	gauss	⁶ Li	
homogeneous sphere	oscillating	_	
sphere with a diffuse surface	oscillating	⁴⁰ Ca	
r 🗕	al→		

EXPERIMENTAL DESIGN

EXPERIMENTAL DESIGN

Tight control of beam properties
New "warm" septum
High power Lead target
New 18-bit ADC
New radiation-hard detector
Polarimetry upgrade

 $Q^2 \sim 0.01 \text{ GeV}^2 \implies A_{PV} \sim 0.5 \text{ ppm}$

A technically demanding measurement:

•Rate ~ 2 GHz

- •Separate excited state at 2.6 MeV
- •Stat. Error ~ 15 ppb
- •Syst. Error ~ 1 to 2 %

 $\delta(A_{PV}) \sim 3\% \implies \delta(R_p - R_n) \sim 0.06 \, fm$

J-C Summer School, Lecture 2

Krishna Kumar

Ran from April-June 2010
20% of statistics collected
Number of technical challenges overcome
Result targeted for Spring 2011

J.M. Lattimer, M. Prakash Science, 304, 536 Krishna Kumar

Ran from April-June 2010
20% of statistics collected
Number of technical challenges overcome
Result targeted for Spring 2011 • Plan to make necessary beamline modifications to ensure efficient running

• Propose to come back either just before or just after 12 GeV upgrade shutdown

• Designing new experiment on ⁴⁸Ca

J.M. Lattimer, M. Prakash Science, 304, 536 Krishna Kumar

Ran from April-June 2010
20% of statistics collected
Number of technical challenges overcome
Result targeted for Spring 2011

• Propose to come back either just before or just after 12 GeV upgrade shutdown

• Designing new experiment on ⁴⁸Ca

Statistical error at JLAB Hall A: assuming 100µA, 5° for 30 days

	Е	Rate	A _{pv}	R _n	t(1%)
	(GeV)	MHZ	ppm	%	days
²⁰⁸ Pb	1.05	1700	0.72	0.66	13
	1.8	53	2.1		
¹²⁰ Sn	1.2	1080	1.06	0.56	9.4
⁴⁸ Ca	1.7	270	2.2	0.43	5.5
	2.1	21	2.8		

J.M. Lattimer, M. Prakash Science, 304, 536 Krishna Kumar

Ran from April-June 2010
20% of statistics collected
Number of technical challenges overcome
Result targeted for Spring 2011

J.M. Lattimer, M. Prakash Science, 304, 536 Krishna Kumar ⁴⁸Ca 12 GeV era Proposal?

- Far from ²⁰⁸Pb
- Compare to ⁴⁰Ca
- Microscopic
- calculations: 2 & 3 nucleon forces
- Important doublebeta decay nucleus

• Plan to make necessary beamline modifications to ensure efficient running

• Propose to come back either just before or just after 12 GeV upgrade shutdown

• Designing new experiment on ⁴⁸Ca

Statistical error at JLAB Hall A: assuming 100µA, 5° for 30 days

	Ε	Rate	A _{pv}	R _n	t(%)
	(GeV)	MHZ	ppm	%	days
²⁰⁸ Pb	1.05	1700	0.72	0.66	13
	1.8	53	2.1		
¹²⁰ Sn	1.2	1080	1.06	0.56	9.4
⁴⁸ Ca	1.7	270	2.2	0.43	5.5
	2.1	21	2.8		

C. Horowitz and R. Michaels

SUMMARY

parity-violating electron scattering has become a unique, precision tool for nuclear physics

- Sensitive limits on strangeness contributions to the charge and magnetization distributions of nucleons: challenge for low energy QCD theory
- Clean measurement of the neutron radius in heavy nuclei: impact on nuclear structure and neutron stars
- Future experiments will probe new aspects of nucleon structure
- Legacy: more and more sensitive measurements & new nuclear systems to search for physics beyond the standard model

PRECISION EW PHYSICS

Start with 3 fundamental inputs needed: α_{em}, G_F and M_Z

Other experimental observables predicted at 0.1% level: sensitive to heavy particles via higher order quantum corrections

4th and 5th best measured parameters: $sin^2\theta_W$ and M_W All weak neutral current amplitudes are functions of $sin^2\theta_W$

 $\frac{Muon \, decay}{\Pi_{WW} - \Pi_{ZZ}} \propto m_t^2 - m_b^2$

Krishna Kumar

COMPREHENSIVE SEARCH Neutral Current Interactions at Low AND High Energy

COMPREHENSIVE SEARCH Neutral Current Interactions at Low AND High Energy

There are often mechanisms to suppress Flavor Changing Neutral Currents

COMPREHENSIVE SEARCH Neutral Current Interactions at Low AND High Energy

There are often mechanisms to suppress Flavor Changing Neutral Currents

Flavor Diagonal Interactions Consider $f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$ or $f_1f_2 \rightarrow f_1f_2$ $L_{f_1f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij}\bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma^{\mu}f_{2j}$

Many new physics models give rise to such terms: Heavy Z's, compositeness, extra dimensions, SUSY...

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

- L,R combinations accessed are mostly parity-conserving

$$\left|\mathbf{A_Z} + \mathbf{A}_{\mathrm{new}}
ight|^{\mathbf{2}}
ightarrow \mathbf{A_Z^2} \left[\mathbf{1} + \left(rac{\mathbf{A}_{\mathrm{new}}}{\mathbf{A_Z}}
ight)^{\mathbf{2}}
ight]$$

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

- L,R combinations accessed are mostly parity-conserving

$$\begin{vmatrix} \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{new} \end{vmatrix}^2 \rightarrow \mathbf{A}_{\mathbf{Z}}^2 \left[1 + \left(\frac{\mathbf{A}_{new}}{\mathbf{A}_{\mathbf{Z}}} \right)^2 \right]$$
 no interference!

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

- L,R combinations accessed are mostly parity-conserving

$$\begin{vmatrix} A_{Z} + A_{new} \end{vmatrix}^{2} \rightarrow A_{Z}^{2} \left[1 + \left(\frac{A_{new}}{A_{Z}} \right)^{2} \right]$$
no interference!

New Physics/Weak-Electromagnetic Interference • Spin-dependent electron scattering • opposite parity transitions in heavy atoms

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA - L,R combinations accessed are mostly parity-conserving

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

$$\begin{vmatrix} \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{new} \end{vmatrix}^2 \rightarrow \mathbf{A}_{\mathbf{Z}}^2 \left[1 + \left(\frac{\mathbf{A}_{new}}{\mathbf{A}_{\mathbf{Z}}} \right)^2 \right]$$
no interference!

New Physics/Weak-Electromagnetic Interference • Spin-dependent electron scattering

• opposite parity transitions in heavy atoms

Electromagnetic amplitude interferes with Z-exchange as well as any new physics

$$\left|\mathbf{A}_{\gamma} + \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{\mathrm{new}}
ight|^{2}
ightarrow \mathbf{A}_{\gamma}^{2} \left[1 + 2\left(rac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}_{\gamma}}
ight) + 2\left(rac{\mathbf{A}_{\mathrm{new}}}{\mathbf{A}_{\gamma}}
ight)
ight]$$

Krishna Kumar

J-C Summer School, Lecture 2

ELECTRON WEAK CHARGE

Parity-Violating Electron-Electron (Møller) Scattering

Purely leptonic reaction

Derman and Marciano (1978)

$$\mathbf{A}_{\mathbf{PV}} = -\mathbf{m}\mathbf{E}\frac{\mathbf{G}_{\mathbf{F}}}{\sqrt{2}\pi\alpha}\frac{\mathbf{16}\sin^{2}\Theta}{(\mathbf{3}+\cos^{2}\Theta)^{2}}\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}$$

50 GeV at SLAC: ~ 150 ppb!

E158 at SLAC Major technical challenges

ELECTRON WEAK CHARGE

Parity-Violating Electron-Electron (Møller) Scattering

Purely leptonic reaction

Derman and Marciano (1978)

$$\mathbf{A}_{\mathbf{PV}} = -\mathbf{m}\mathbf{E}\frac{\mathbf{G}_{\mathbf{F}}}{\sqrt{2}\pi\alpha}\frac{\mathbf{16}\sin^{2}\Theta}{(\mathbf{3}+\cos^{2}\Theta)^{2}}\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}$$

50 GeV at SLAC: ~ 150 ppb!

E158 at SLAC Major technical challenges

Final Result:

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Phys. Rev. Lett. 95 081601 (2005)

Krishna Kumar

J-C Summer School, Lecture 2

Krishna Kumar

J-C Summer School, Lecture 2

THE WEAK MIXING ANGLE

Running of θ_W : Bookkeeping for off-resonance measurements

THE WEAK MIXING ANGLE

Running of θ_W : Bookkeeping for off-resonance measurements

• NuTeV result requires careful consideration of nuclear corrections

Krishna S. Kumar

THE WEAK MIXING ANGLE

Running of θ_W : Bookkeeping for off-resonance measurements

- ¹³³Cs Atomic Parity Violation
- NuTeV result requires careful consideration of nuclear corrections
- **Future Electron Scattering Measurements**
 - e-q measurements: QWeak (elastic e-p) and deep-inelastic scattering
 - Improve on E158 by a factor of 5: MOLLER at 12 GeV JLab

Krishna S. Kumar

QUARK WEAK CHARGES

 $\delta(C_{1q}) \propto (+\eta_{RL}^{eq} + \eta_{RR}^{eq} - \eta_{LL}^{eq} - \eta_{LR}^{eq}) \longrightarrow PV \text{ elastic e-p, APV}$ $\delta(C_{2q}) \propto (-\eta_{RL}^{eq} + \eta_{RR}^{eq} - \eta_{LL}^{eq} + \eta_{LR}^{eq}) \longrightarrow PV \text{ deep inelastic}$

Krishna S. Kumar

QWEAK@JEFFERSON LAB Precision Measurement of the Proton's Weak Charge **Elastically Scattered Electron** Luminosity Monitors Region I, II and III detectors are for Q² measurements at low beam current ~3.2 m **Region III Drift Chambers Toroidal Magnet** Region II 50 **Drift Chambers** Eight Fused Silica (quartz) Čerenkov **Region I GEM Detectors Detectors - Integrating Mode** Primary Collimator with 8 openings 35 cm Liquid Hydrogen Target Polarized Electron Beam, 1.165 GeV, 150 μA, P ~ 85%

- Design and construction over past several years
- Installation recently completed
- Commissioning has begun
 First physics run begins in late Fall
 Final run in early 2012

New, complementary constraints on leptonquark interactions at the TeV scale

Krishna S. Kumar

QWEAK@JEFFERSON LAB Precision Measurement of the Proton's Weak Charge **Elastically Scattered Electron** Luminosity Monitors Region I, II and III detectors are for Q² measurements at low beam current ~3.2 m **Region III Drift Chambers Toroidal Magnet** Region II 50 **Drift Chambers Region I**

Eight Fused Silica (quartz) Čerenkov **Detectors - Integrating Mode**

Primary Collimator with 8 openings

35 cm Liquid Hydrogen Target Polarized Electron Beam, 1.165 GeV, 150 μA, P ~ 85%

More details: Saturday talk by W. van Oers

Design and construction over past several years

Installation recently completed

 Commissioning has begun •First physics run begins in late Fall Final run in early 2012

New, complementary constraints on leptonquark interactions at the TeV scale

Krishna S. Kumar

GEM Detectors