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Introductory Remarks

@ Student background and preparation varies

@ Most of you will have had nuclear and/or particle physics at an advanced
level but I decided not fo assume if.

@ I have some slides on basic undergraduate and graduate subatomic physics

@ As postdoctoral researchers, you will learn fo cope with
imperfect knowledge

@ Qualitative rather than quantitative understanding

@ I am an experimentalist! I will focus on measurements but theory is
critical. Unfortunately, I wont have time to justice to it.

o I will try to communicate the "big picture”
@ necessary general knowledge for students focused on other subfields
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Parity Symmetry
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Symmetries and
Conservation Laws

If Euler-Lagrange equation is invariant under any
coordinate transformation, - an integral of motion

Noethers Theorem:

Symmetry ﬁ conservation law
translation ﬁ momentum
time ﬁ energy
rotation ﬁ angular momentum
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Symmetries and
Conservation Laws

If Euler-Lagrange equation is invariant under any
coordinate transformation, - an integral of motion

Noethers Theorem:

Symmetry “ conservation law
translation “ momentum
time “ energy
rotation “ angular momentum

Not just space-time symmetries: Invariance of Lagrangian/Hamiltonian

e.g. Charge = oy i
Conservation U e, e Q¥ >= g|¥ >

Conserved Quantities/Quantum Numbers
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Symmetries and Groups

Group of all operations: display closure &

Symme'l'ry Opera'l'iOnSi Associativity and have identity and inverse

Finite Group <@ Discrete Symmetry
Infinite Group <@ Continuous Symmetry

In Physics, group operations can be represented by matrices

SO(n): n-D rotations SO(3) <= SU(2)
Invariance under SU(2): Angular Momentum Conservation
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Discrete Symmeftries
C,P&T

Parify P L5 Y, < T Ty — < Pw('F) = w(_,,?)
P2 =1  Group has 2 elements, P and I

HPl=0mp-H)=FEy & PYy=n¢y B 7w =+1

If hamiltonian is invariant under parity transformations, then 7T is conserved and observable
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Discrete Symmeftries
C,P&T

Pari'l'y P L5 Y, < T Ty — < Pw(F) = w(_F)
P2 =1  Group has 2 elements, P and I

HPl=0mp- H)=E¢y & PYy=ny) Hp 7= +1

If hamiltonian is invariant under parity transformations, then 7T is conserved and observable

All quantum numbers flip sign
except mass and spin

Charge Conjugation C  Clp >= |p >

particles that are its own anti-particles are eigenstates of C

Ty
Cly >= S » T » O|7TO o _HWO > » A
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Discrete Symmeftries
C,P&T

Pari'l'y P L5 Y, < T Ty — < Pw("—') = w(_F)
P2 =1  Group has 2 elements, P and I

HPl=0mp- H)=E¢y & PYy=ny) Hp 7= +1

If hamiltonian is invariant under parity transformations, then 7T is conserved and observable

All quantum numbers flip sign
except mass and spin

Charge Conjugation C  Clp >= |p >

particles that are its own anti-particles are eigenstates of C

Ty
Cly >= S » T — Yy » O|7TO s _HWO 2 » A

Time R€V€I"SG| T Tw (t) 54 w*(_t) reactions are reversible in

principle if T is conserved
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A Guiding Principle for
Experimentalists

If a process is not explicitly
forbidden, it must occur!

Discovering a rare process that violates a known
symmetry is a powerful way to probe the
fundamental laws of nature

Lepton Number Violation and Neutrinoless Double-Beta decay

T-Violation and the Electric Dipole Moment of elementary particles

Nuclear and Atomic Systems are fertile hunting grounds!
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Discovery of
Parity Violation

Particle Classification S” e.g. pions: (0 pseudoscalar mesons

Tau-theta pUZZIG (1956) (9+ s 7r+71'0 (P=+1) 7_-|- =y 7'('_'_7'(0770 (P=-1)
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Discovery of
Parity Violation

Particle Classification S” e.g. pions: (0 pseudoscalar mesons

Tau-theta puzzle (1956) Oty 71'_'_71'0 (P=+1) 7‘+ iy 7'('_'_7'(0770 (P=-1)

same mass but different parities! Lee and Yang propose:

The SAME particle is produced in strong interactions, but decays via weak interactions;
P conserved in strong interactions, but not in weak interactions
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Discovery of
Parity Violation

Particle Classification S” e.g. pions: (0 pseudoscalar mesons

Tau-theta PUZZIG (1956) Oty 71'_'_71'0 (P=+1) 7‘+ iy 7'('_'_7'(0770 (P=-1)

same mass but different parities! Lee and Yang propose:

The SAME particle is produced in strong interactions, but decays via weak interactions;
P conserved in strong interactions, but not in weak interactions
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' /@ C.S. Wu et al: Betas in decays of
®0Co nuclei aligned in a magnetic _
WWealt Skoaieh field showed anisotropy - -

60Co Nucleus

~ ~ not observed

Parity-violating electron scattering 9 Krishna Kumar, J-C School Lecture 1, Sep 30 2010



Discovery of
Parity Violation

Particle Classification S” e.g. pions: (0 pseudoscalar mesons

Tau-theta PUZZIG (1956) Oty 71'—'_7'('0 (P=+1) 7‘+ iy 7'('_'_7'(0770 (P=-1)

same mass but different parities! Lee and Yang propose:

The SAME particle is produced in strong interactions, but decays via weak interactions;
P conserved in strong inferactions, but not in weak interactions

' /@ C.S. Wu et al: Beta$s in decays of | }'v

®0Co nuclei aligned in a magnetic  Teflectio {

Weak decay of : - ¢
hipagric 2 field showed anisotropy U

Classic example: Puzzle in accelerator result; theorists propose a
solution; test on a different process (table-top)
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Fundamental
Interactions

Gravity and Electromaanetic
Infinite range

[ Weak or
(Electro Sfl‘ong Gnd Weak

= oph.:d I 101> meter

Camed Graviton
(not yet observed)

Quarks
All Ch:l;‘q:%’Loptons and Gluons
Radio- Nuclei
‘¥
activity & Nucleons N

—

parity transformation

o~ rrrteloh, o U

— —

— —

p— —p, L —>L, s— 5
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Fundamental
Interactions

Gravity and Electromaanetic
Infinite range

Strona and Weak
101> meter

—

parity transformation

Carried
By Graviton
(not yet observed)»

1 bR el s e ¥

—

p— —p, L —>L, s— 5
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Fundamental
Interactions

Gravity and Electromaanetic
Infinite range

Strona and Weak
101> meter

—

parity transformation

Carried
By Graviton
(not yet observed)»

1 bR el s e ¥

p— —p, L —>L, s— 5

Charged Weak Interactions have pure V-A structure (maximal parity violation)
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Fundamental
Interactions

Gravity and Electromaanetic
Infinite range

Strona and Weak
101> meter

—

parity transformation

Carried
By Graviton
(not yet observed)»

1 bR el s e ¥

ﬁﬁ_ﬁv LHL) gﬁg
What does this mean?

Charged Weak Interactions have pure V-A structure (maximal parity violation)

Parity-violating electron scattering 10 Krishna Kumar, J-C School Lecture 1, Sep 30 2010



why are wesk Fundamental

iInteractions

short range?  Tnteractions

Gravity and Electromaanetic
Infinite range

Strona and Weak
101> meter

—

parity transformation

Carried
By Graviton
(not yet observed)»

1 bR el s e ¥

ﬁﬁ_ﬁv LHL) gﬁg
What does this mean?

Charged Weak Interactions have pure V-A structure (maximal parity violation)
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How are weak

Why are weak Fundamen'l'al and EM

iInteractions Interactions

short range? In'l'eraC'hons unified given
P-Violation?
Gravity and Electromaanetic

Infinite range

Strona and Weak
101> meter

=

parity transformation

Carried
By Graviton
(not yet observed)»

1 bR el s e ¥

ﬁﬁ_ﬁv LHL) gﬁg
What does this mean?

Charged Weak Interactions have pure V-A structure (maximal parity violation)
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Continuous Symmetries

Dirac free particle L = p(iy"0, — m)y
Lagrangian U(1) Invariance: conserved current 0, J" =0

Local U(1) Invariance: A, J* Electromagnetic Interactions
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Continuous Symmetries

Dirac free particle L = p(iy"0, — m)y
Lagrangian U(1) Invariance: conserved current 0, J" = ()

Local U(1) Invariance: A, J* Electromagnetic Interactions

p> nucleon-nucleon interaction Hamiltonian invariant

Rotation in (TL under SU(2) transformations in Isospin Space
W : 7
ISOSPln SPGCQ (%) the “massless” left-handed electron and electron-
L

o neutrino are part of a similar "weak isospin” doublet

SU(2) invariance vields 3 (there are 3 independent

independent conserved currents 2x2 Pauli spin matrices)
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Symmetries of the
Electroweak Lagrangian

Accept the existance of u & d quarks, electrons, and electron-neutrinos

SU (2 T 4 conserved currents

local gauge invariance yields 4 bosons: W*, W-, W°, B°
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Symmetries of the
Electroweak Lagrangian

Accept the existance of u & d quarks, electrons, and electron-neutrinos

SU(2)r x U1y 4 conserved currents

local gauge invariance yields 4 bosons: W*, W-, W°, B°

After spontaneous symmetry breaking via Higgs Mechanism:

two weak charged currents electromagnetic current weak neutral current

Wﬂ: y ZO
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Symmetries of the
Electroweak Lagrangian

Accept the existance of u & d quarks, electrons, and electron-neutrinos

SU(2)r x U1y 4 conserved currents

local gauge invariance yields 4 bosons: W*, W-, W°, B°

After spontaneous symmetry breaking via Higgs Mechanism:
two weak charged currents electromagnetic current weak neutral current

Wﬂ: y ZO
SU(3)c and gluons <@ Quantum Chromodynamics

Exact symmetries of nature: fully manifest in the early universe

Unbroken exact symmetries: massless mediator & infinite range force
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Electroweak Interactions
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Charge & Handedness
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Electric charge determines strength

of electric force

Electrons and protons have same charge

-

I i

observed

magnitude: same strength

Neutrinos are “"charge
neutral”: do not feel
the electric force

-~ v

Ny
not observed

For massless particles: y’u = (D *>)u

Weak charge determines strength of
weak force

Left-handed particles

(Right-handed antiparticles)
have weak charge

723:60 60 Nj2n

w- EL

—-—
observedV.

‘Ranti-neutrino
o 0
0 o

right-handed

S =

Right-handed particles

(left-handed antiparticles)
are “weak charge neutral”

#80Co SONjis
W~ 4 /f R
not observed Vey

left-handed
anti-neutrino

peS=h

helicity operator



Electric charge determines strength
of electric force

Electrons and protons have same charge
magnitude: same strength

- Neutrinos are “charge

v 3 v
neutral”: do not feel

£———><¢ the electric force "
observed not observed

For massless particles: y’u = (D *>)u

2U=+uUr) (I‘Tys)u=0

Left-handed particles
(Right-handed antiparticles)

Right-handed particles

(left-handed antiparticles)

have weak charge are “weak charge neutral”

r?:’.ﬂn60 60 r.r?.;‘)n
GlCo “Nig

W —~ eL W~ e-R
observedV. ‘ﬁv
R not observed Veg
e o left-handed
i o o O ]_5 = h anti-neutrino
0 o helicity operator

5
2U=—-U Q%u=u



Electric charge determines strength
of electric force

Electrons and protons have same charge
magnitude: same strength

- Neutrinos are “charge

v ) v
neutral”: do not feel

£ the electric force -+

observed not observed

For massless particles: y’u = (D *>)u

Su=+ucy =), o
2
(1-v) 1+9°
P 2)/ PRE( 2y)

Left- and right-handed projections

P ru=uy BP) =0,P, ZPI:I

Left-handed particles
(Right-handed antiparticles)

have weak charge

r?:’.ﬂn60 60 r.r?.;‘in
GlCo “Nig

—

w- e,

obsefWVeR
Bl 73 s
2= B

2U=—U

)

(L= S

Right-handed particles

(left-handed antiparticles)
are “weak charge neutral”

#80Co SONits
W~ 4 /f R
not observed Vey

left-handed
anti-neutrino

peS=h

helicity operator

u
%



Electric charge determines strength
of electric force

Electrons and protons have same charge Left-handed particles Right-handed particles
magnitude: same strength (Right-handed antiparticles) (left-handed antiparticles)
have weak charge are “weak charge neutral”
: - Neutrinos are “charge - .
o _— 3 9 N ﬁ@}wfﬁ} Z#Co N
neutral”: do not feel - - ~——
i . 1 - o
£ the electric force Obse,;,ﬁvL ~
observed not observed R not obser@VeL
e o left-handed
5 By i vl o O ]_5 >=/h anti-neutrino
For massless particles: Tesllie (p e Z)M & 0O o helicity operator
i 1-9° 1-9°
Zu—+u:> ( y>u=0 2U=—-U C>( y)u=u
2 %%
1-7) 1+ 7°) Gl kA
P, = Po=-—"1 —T[uL (Co)y,u, (Ni)|[, (e)y"v, ()]
2 2 2

Left- and right-handed projections Only left-handed particles participate

I8 PP, =4,P, ZPi =1 in charged weak interactions



Weak Interactions

N

N\
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J' ~ gyt J' ~Pytyy
e 4%

g e e S

60C0 60Ni
A-v°)

]_5 ®*2 =N helicity operator P, left chirality operator

Important: Helicity # Chirality if m#0!



= q_J y“w vector ifal ™ 1/_} y“ysqj axial-vector V-A Interaction

V X A gives rise to pseudo-scalars e v,
G,
acy ~—T[u<cro>yu 1=y )u(ND) | we)y" (- y w)] Gy
%\Ve 4-Fermi Contact interaction with maximal parity violation
60C o 60N
=S S () s
12 > =h helicity operator Ih = left chirality operator

Important: Helicity # Chirality if m#0!

Helicity operator commutes with free-particle Hamiltonian
Conserved but not Lorentz invariant!



J* ~yYy*yp vector J* ~yYyty>y axial-vector V-A Interaction

2% V X A gives rise to pseudo-scalars e v,
- “ GF v 5 | u 5 —
& Lo M ~—E[u<00>yu<1—y Ju(Ni) | @)y (1= v* (@) G
“a ¢ 4-Fermi Contact interaction with maximal parity violation
0Co 60Ni
S = S ) o
12 > =h helicity operator Ih = left chirality operator

Important: Helicity # Chirality if m#0!

Helicity operator commutes with free-particle Hamiltonian
Conserved but not Lorentz invariant!

(Can race past a massive particle and observe it spinning the other way)

Chirality operator not conserved, but Lorentz invariant!
Freely propagating left-chiral projection will develop a right-chiral component



e Sl

Bhe W
£ Gy.m,

M~ - ﬁ[am)m—yS)uuo][ﬁ(e)y“a—y5>v<ve>]

Each decay mode provides a partial width 1,

Lifetime

1
ST

(e —

Conversion factor: 197 MeV-fm

L9

:> Muon lifetime in vacuum: 2.2 us



e \ G Lifetime

M~ - ﬁ[am)yua—ys)uuo][ﬁ(e)y“a—y5>v<ve>]

GF - zlr.
u- v Each decay mode provides a partial width 1 j
u
Partial width has units of energy Conversion factor: 197 MeV-fm
G.m’
ot el el ) Muon lifetime in vacuum: 2.2 us
Y 192n

Gedanken Experiments: The luxury of being a theorist

= 2
_CO"_S 'de_r ¢ Can use same”7 o= GFli
Ve SHCaERY i) 3




e \ G Lifetime

M~ - ﬁ[am)yua—ys)uuo][ﬁ(e)y“a—y5>v<ve>]

GF - zlr.
u- v Each decay mode provides a partial width 1 j
u
Partial width has units of energy Conversion factor: 197 MeV-fm
G.m’
ot el el ) Muon lifetime in vacuum: 2.2 us
Y 192n

Gedanken Experiments: The luxury of being a theorist

= 2
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e \ G Lifetime

><GF M~ - ﬁ[am)ml—ys)uw][ﬁ(e)y“(l—y5>v<ve>] Elr
M_ i

Each decay mode provides a partial width 1,

V
u
Partial width has units of energy Conversion factor: 197 MeV-fm
G:m’
ot el el ) Muon lifetime in vacuum: 2.2 us
Y 192n

Gedanken Experiments: The luxury of being a theorist

= 2
_CO"_S 'de_r ¢ Can use same” o= Gl
Ve iyl A3l 3

For E ~ 1 TeV, probability > 1!

More particles going out than coming in



Massive Vector Bosons

Py
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Massive Vector Bosons

Py
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BRE VA o u Ve TR e T I
W- 28 e

G 7
/i ) gW ~ > M
3w HE’—md)

ﬁ Y SM; ‘u_// v \e'

v S Sl
dme, r

Mass of the W between 10 and 100 GeV Short range

Real W production u+d —-W"—e' +v,

Fixed target: M?,, ~2ME Collider: M2, ~ 4E?

Very short lifetime (> Large width

r 1 A+B—->W —=C+D 471 FAB FCD

P(E)

= G =~
2 2 peak 9)
21 (E-my)* +(T12) 3m:i T, T,



The Z Boson &
Electroweak Unification

o=z B AS
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The Z Boson &
Electroweak Unification

o=z B AS

7
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The Z Boson &
Electroweak Unification

o=z B AS

Something
like this
must
occur

7

Parity-violating electron scattering 18 Krishna Kumar, J-C School Lecture 1, Sep 30 2010



‘Left-handed particles in isodoublets

‘Right-handed particles iso-singlets
*Including neutrinos!
Left- Right-
1582 D)
Y Charge q=0’il,i§,i§ q=Oili§,i§
1
W Charge Los T=0
Z. Charge T —gsin’ 6, —gsin® 6,

Ws and Zs are massive

Ws have no couplings to right-handed particles
oZs couple to both (provided the particles are charged): introduce g, and g,

*However, the Z couplings to left- and right-handed particles are different:
parity violation, but not maximal
W S 84 = 8L — 8k

Also use ¢, and ¢ ,:
Ev 54 Vector and Axial-vector couplings



Electron Scattering
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Free fermions fields are solutions to the Dirac equation iy, 0" =mn =0

Corresponding Lagrangian: £ ~ Y (iy M&“ —mny

Local gauge invariance gives rise 7 An Conserved electromagnetic current
to interaction with photon field: ~ J" =qyy'y 4-vector
Feynman Rules: emission and absorption of virtual current A )

photons by fermion electromagnetic current Y



Quantum
Electrodynamics

=7/

electron-muon scattering
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Free fermions fields are solutions to the Dirac equation (iy, 0" —=m)y =0

Corresponding Lagrangian: £ ~ Y (iy M&“ —mny

Local gauge invariance gives rise 7 A" Conserved electromagnetic current
to interaction with photon field: i i qu y“y  4-vector
Feynman Rules: emission and absorption of virtual current A1 )
photons by fermion electromagnetic current Y
P3, S3 e “‘ o Sy

2
Vi e (1, fep3)2 [ES3 (p;)y,u' (p1)]|:ﬁs4 (p, )y u” (pz)]

spins p and s




Free fermions fields are solutions to the Dirac equation (iy, 0" —=m)y =0

Corresponding Lagrangian: £ ~ Y (iy M&“ —mny

Conserved electromagnetic current

-J A" 5% 3
: J" =qyy"y 4-vector

Feynman Rules: emission and absorption of virtual current A )
photons by fermion electromagnetic current Y

P3; S3 e “‘ » Sy

g2 S, S =i S e
N g _( _e V [” (py)y, (p1)][u ‘()Y u z(pz)] _

{ spins p and s Logls ¢ )

Pi, Sy e H 2y Sy 7

4-momentum transfer

B lcross section. 2 dati b ) , 0
Inrerential Cross oection e MR T S /e e
4o 7" 7 q  =-4EE sin :



Free fermions fields are solutions to the Dirac equation (iy, 0" —=m)y =0

Corresponding Lagrangian: £ ~ Y (iy M&“ —mny

Conserved electromagnetic current

A i
: J" =qyy"y 4-vector
Feynman Rules: emission and absorption of virtual current A1 )
photons by fermion electromagnetic current Y

p3,’ s3 e u 4 S4

2
ge ) 5 7754 $ ]
Momeniaand. M~ T @ ey (e (py'ep)]
spins p and s Ll e \
, )2

S
( dO_ ) ik 4Z Y E 4-momentum transfer
M ott

J0) 4
df} q g =-4EE 'sinzg




Electromagnetic Probe
of Hadron Matter

Electron scattering: electromagnetic interaction,
described as an exchange of a virtual photon.

If photon carries low momentum -> long wavelength -> low resolution

Increasing momentum transfer -> shorter wavelength
-> higher resolution to observe smaller structures
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Electromagnetic Probe
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Electron scattering: electromagnetic interaction,
described as an exchange of a virtual photon.

If photon carries low momentum -> long wavelength -> low resolution
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-> higher resolution to observe smaller structures
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For a point-like target, accounting for target recoil:

Function of (E,0).
Cross-section for infinitely
heavy, fundamental target

T=Q?/4M? is a
Iconvenien’r

\d\da

o)

E B ml\/{ott

kinematic factor

{1+ 27tan”(0/2)}




For a point-like target, accounting for target recoil:

Function of (E,0). T=Q?/4M? is a
Cross-section for infinitely jconvenient
heavy, fundamental target \ ' '

vy g do do kinematic factor

— =— {1+27tan*(4/2)}
dQ?  dQuew \

|

parameterize the effect of proton structure.

do _do B
dﬂ B dQMottE

2 T®tan2(9 /2) } .

If the proton were like the electron:
Ge = 1 (proton charge)
Gy = 1 (and the magnetic moment
would be 1 Bohr magneton).

®/
y




Otto Stern (1932) measured the proton
magnetic moment y,~ 2.5 Ligyp,

(first indication that the proton was not a
point-like particle, Nobel prize 1943)



Cross-section measurements at
Otto Stern (1932) measured the proton various scattering angles

magnetic moment p,~ 2.5 Ligyp,
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Cross-section measurements at
Otto Stern (1932) measured the proton various scattering angles

magnetic moment p,~ 2.5 Ligyp,

(first indication that the proton was not a 10-25 \\ " FROM HYOROGEN
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Stanford U. Mark III Accelerator
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Cross-section measurements at
Otto Stern (1932) measured the proton various scattering angles

magnetic moment p,~ 2.5 Ligyp,

(first indication that the proton was not a 10-25 \\ " FROM HYOROGEN
point-like particle, Nobel prize 1943) \ (188 MEV LAB)

Stanford U. Mark III Accelerator
McAllister and Hofstadter, Physical
Review 102 (1956) 851.
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Parity-Violating Electron
Scattering
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A Classic Paper

LETTERS TO THE EDITOR

PARITY NONCONSERVATION IN THE
FIRST ORDER IN THE WEAK-INTER-
ACTION CONSTANT IN ELECTRON

SCATTERING AND OTHER EFFECTS

Ya. B. ZEL’ DOVICH

Submitted to JETP editor December 25, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 964-966
(March, 1959)
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Parity Violation in
Electron Scattering?

WE assume that besides the weak interaction
that causes beta decay,

g (PON) (¢~ Ov) + Herm. conj., (1)

there exists an interaction

g (POP) (e70e™) (2)

with g = 10~ ~49 and the operator O = Yu (1+1iys)
characteristic! of processes in which parity is not
conserved.*
Then in the scattering of electrons by protons
he interaction (2) will interfere with the Coulomb
scattering, and the nonconservation of parity will
appear in terms of the first order in the small
v_g.] Owing to this it becomes possible to
test the hypothesis used here experimentally and
to determine the sign of g.

In the scattering of fast (~ 10° ev) longitudi-
nally polarized electrons through large angles b;
unpolarized target nuclei it can be expected that
the cross-sections for right-hand and left-hand
electrons (i.e., for electrons with o+p > 0 2
o+p < 0) can differ by 0.1 to 0.01 percent.] Such
an elfect 1s a specific test for an interaction not
conservmg parlty

B, R Rt
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Observable Parity-
Violating Asymmetry
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—
longituinaly

polarized
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Observable Parity-
Violating Asymmefry

One of the incident beams longitudinally polarized
Change sign of longitudinal polarization
Measure fractional rate difference
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Observable Parity-
Violating Asymmefry

2

longituinaly

polarized

One of the incident beams longitudinally polarized
Change sign of longitudinal polarization

Measure fractional rate difference

The matrix element of the Coulomb scattering
is of the order of magnitude e*/k? where k is

quently, .
Coulomb term is of the order of gk®/e’.

tuting g=10""/M*, where M is the mass of the
nucleon, we find that for k ~ M the parity non-
conservation effects can be of the order of 0.1 to
0.01 percent.

Parity-violating electron scattering 29 Krishna Kumar, J-C School Lecture 1, Sep 30 2010



Observable Parity-
Violating Asymmetry

2

longituinaly

polarized

One of the incident beams longitudinally polarized
Change sign of longitudinal polarization

Measure fractional rate difference
The matrix element of the Coulomb scattering A
> 2 1.9 :
is of the order of magnitude e“/k*, where k is o) }- 0] weak G - Q2

quently, i i _ : B G§+ G* 14—EM 4710

Coulomb term is of the order of gk?/e?.

tuting g=10""/M*, where M is the mass of the APV ~ 10 * Q2(G3V2)
nucleon, we find that for k ~ M the parity non-

conservation effects can be of the order of 0.1 to

0.01 percent.

Parity-violating electron scattering 29 Krishna Kumar, J-C School Lecture 1, Sep 30 2010



Observable Parity-
Violating Asymmetry

—
longituinaly

polarized

One of the incident beams longitudinally polarized
Change sign of longitudinal polarization

Measure fractional rate difference

The matrix element of the Coulomb scattering

: 2 /1,2 ;
is of the order of magnitude e“/k*, where k is IL’V eak _ G Ia QZ

quently, the ratio of the i _ AEM 41T
Coulomb term is of the order of gk?/e?.

tuting g=10""/M*, where M is the mass of the 10 * Q2(G3V2)
nucleon, we find that for k ~ M the parity non-

conservation effects can be of the order of 0.1 to

0.01 percent.

The idea could not be tested for 2 decades:

Several circumstances aligned to make this an important measurement
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Weak Interaction Theory

A Model of Leptons
Steve Weinberg - 1967

The Z boson incorporated Gargqmelle finds one
eutral Current v, v, e~ event in 1973
(fwo more by 1976)

“w oz

One free parameter: the weak mixing angle Ow introduced

If Ow were strictly zero, W & -
Z bosons would weigh exactly 3 e

the same and right-handed = 5 I
particles would not exchange

Z bosons either
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The Z boson incorporated Gargqmelle finds one
eutral Current v, v, e~ event in 1973
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“w oz
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SLAC E122 Experiment

Parity Violation in Electron Scattering?

electron-nucleon scattering

Parity is violated

Parity is conserved
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SLAC El122 Experimen’r

Parlty Violation in Electron Scatterlng’?
eons d?&covered
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SLAC E122 Experiment

Parity Violation in Electron Scattering?

electron-nucleon scattering quarks inside nu ﬁeons discovered

ot “t’ﬁ"

LU" mld 5 "

) ]

%f&?ﬁmn or

0 GeV detector

ongitudinally R _Mmonitors
polarized L
electrons

asymmetry ~ 10™%
error~ 107>
C.Y. Prescott et.al. 1978
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SLAC E122 Experiment

Parity Violation in Electron Scattering?

éleons diScovered

» g

electron-nucleon scattering | quarks insidem
L id 00

N Tfii'. o

Parity is violated N gz |

"-7’

éﬁ/ La*\g“?fr .

(:,. - ; /;'/ S

0 GeV precision detector

longitudinally R monitors
polarized L
electrons

asymmetry ~ 10™%
error~ 107>

C.Y. Prescott et.al. 1978

Final anchor for SU(2)XU(1):
Glashow, Weinberg, Salam awarded the 1979 Nobel Prize
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Summary

@ A very successful theoretical framework
exists to describe electroweak interactions
over a wide range of energy scales

® Neutral weak interactions can be used to
probe novel aspects of hadron structure

@ Parity-violating electron scattering is the
ideal tool to probe low energy neutral weak
interactions
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Lecture 2 Overview

@ Strange Quark Content of the Nucleon
@ The HAPPEX and HAPPEXII experiments
@ The Neutron Skin of a Heavy Nucleus

@ The PREX Experiment

@ Future Program of Parity-violating Electron
Scattering
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