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Motto: Schools are for students
while experts prefer conferences

� This year EJC subject is particular in that it necessarily involves
both physics and mathematics (as well as instruments). Today there
are no non-trivial discussions of symmetries without theory & groups

� The physics and formal background of symmetries ranges from
advanced quantum mechanics to chromodynamics and field theories

� The students come from various schools, countries & specialities

� Moreover they differ in the duration and the domain of experience

� All that makes of EJC 2010 a particularly challenging enterprise

• All teachers will be willing to discuss physics (almost) any time!!
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Motto: Schools are for students
while experts prefer conferences

� Ecole Joliot-Curie 2010 - as the particularly challenging enterprise

� There are many unknowns - and one equation: Duration=90 mins
� Reminder: If the number of equations = n<m = the number
unknowns, we must chose the (m-n) solutions arbitrarily and proceed

• In what follows we chose a sub-set from a set of all the basic
themes that are developed during this year’s EJC and then proceed

• These subjects will be presented in an elementary way so that they
can be self-understandable, after the download - as an introduction

or a reminder
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Underlying Common Themes of the EJC 2010

Symmetries and Symmetry Violation in Relation to:

1. Nucleon structure; quark degrees of freedom; C, CP, T-violation
2. QCD degrees of freedom and the nucleon structure
3. Nucleons in nuclei; mean field, symmetry & symmetry restoration
4. Nuclear geometry, geometric models, dynamical symmetries
5. Isospin related symmetries and symmetry breaking, GR
6. Reactions, dynamics, associated symmetry issues

... listed in an arbitrary order ...
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Underlying Common Themes of the EJC 2010

In this presentation:

Lesson 1. From Molecular to Subatomic Symmetries
(Illustrations of Mathematics & Physics)

Lesson 2. Symmetry Groups and Quantum Mechanics
(To Refresh Memory)

Lesson 3. Fermions, Bosons, Spin and Isospin (Isospin Related Symmetries)

Lesson 4. Two-Nucleon Interactions and Their Symmetries

Lesson 5. Unitary Groups, U(n), and Underlying Symmetries
of the Nuclear N-Body Hamiltonians

Lesson 6. From Nuclear to Sub-Nuclear Particles,
Their Degrees of Freedom and Symmetries

Lesson 7. The Heaviest Quarks

Lesson 8. Quantum Relativistic Wave Equation, Related Symmetries

Lesson 9. A Short Descriptive Introduction to QCD
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Symmetries in Subatomic Systems

Energy: Huge

Sizes: Huge

Energy: Modest

Consequences for Experiment: Very diverse methods
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Energy: Huge

Sizes: Huge
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Symmetries in Subatomic Systems

Energy: Huge

Sizes: Huge

Energy: Modest

For that we will need a separate overlay!!!
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Let Us Be More Precise about these Sizes...
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Let Us Be More Precise: This Time He-Atom
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... and when I typed “Dimensions in the Universe”

• ... I obtained these two rather contrasting images:

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



... and when I typed “Dimensions in the Universe”

• ... I obtained these two rather contrasting images:

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



... and when I typed “Dimensions in the Universe”

• ... I obtained these two rather contrasting images:

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Before we start - A General Remark

I would like to quote a statement by a collaborator of A. Einstein
- the statement pertinent to the present context. He used to say:

”In physics, nobody has ever taught anything to anyone

- a physicist must learn him(her) self ”

Leopold INFELD

In other words: Those who wish to learn - please download the
lectures, re-read and discuss with the colleagues and your teachers!
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A Few Words About History: ‘The Curie’

At the beginning of our International School I would like to recall a
few important pages from the history of the French research related
in particular to the Curie ‘dynasty’ (the capital, Alsace and Poland)

The Beginning - Middle of XIX Century - Pierre Curie

• From biographies: Pierre Curie was born in Paris on 15 May 1859 into
a Protestant family of medical doctors from Alsace. • At the Sorbonne:
The discovery of piezoelectricity (electrical polarization produced by the
compression or dilatation of crystals) in collaboration with Jacques Curie.
• Pierre established the so-called Curie law and showed that above a certain
critical temperature, the Curie point, magnetic properties of ferromagnets
disappeared or were much reduced.
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The Beginning - Middle of XIX Century - Maria Sk lodowska

• From biographies: Maria was born on 7 November 1867, in Warsaw,
Poland, the fifth child of two teachers. • She took refuge in her studies
gaining the highest grades (5/5) in all subjects. • Maria wished to study
physics at the Sorbonne: Two years after arriving in Paris, she graduated
top of her class in physics, and the following year second in mathematics.

Maria and Pierre Curie

• Maria Sk lodowska and Pierre Curie have married on 26 July 1895.
• Marie’s thesis: New Radioactive Substances, exam in June 1903.
• In December 1903 Henri Becquerel, Pierre Curie and Marie Curie:
Nobel Prize for Physics - For the discovery of natural radioactivity.

The Nobel Prize in Physics 1903 was divided, one half awarded to
Antoine Henri Becquerel, the other half jointly to Pierre Curie and
Marie Curie, née Sk lodowska.
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The XX Century - Irène Curie and Jean Fréderique Joliot

• Irène Curie, daughter of Maria and Pierre, born on September 12, 1897.
• Jean-Frédéric Joliot was born on March 19, 1900, in Paris, son of a
Protestant family from Alsace. • Both are married on October 4, 1926.

• Together Frédéric and Irène discover the ‘artificial’ radioactivity in 1934.
• In December 1935, Frédéric and Irène receive Nobel Prize in Chemistry.

Radium Institute, Paris
(Inaugurated in 1919)

Radium Institute, Warsaw
(Inaugurated in 1932)
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• Irène Curie, daughter of Maria and Pierre, born on September 12, 1897.
• Jean-Frédéric Joliot was born on March 19, 1900, in Paris, son of a
Protestant family from Alsace. • Both are married on October 4, 1926.

• Together Frédéric and Irène discover the ‘artificial’ radioactivity in 1934.
• In December 1935, Frédéric and Irène receive Nobel Prize in Chemistry.

Radium Institute, Paris
(Inaugurated in 1919)

Radium Institute, Warsaw
(Inaugurated in 1932)

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Radioactivity: From Hangar of Marie-Pierre Curie...

• The research of Irène Joliot-Curie on the action of neutrons on the heavy
elements, was an important step in the discovery of fission of uranium ...
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Radioactivity: From Hangar of Marie-Pierre Curie...

• The research of Irène Joliot-Curie on the action of neutrons on the heavy
elements, was an important step in the discovery of fission of uranium ...

Ecole de physique et chimie:

Hangar where Maria and Pierre
worked on their discoveries

Left: Interior of their laboratory
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A Few Words About History: The School

• Between 1982 and 2008 the Ecoles Joliot-Curie are in French ...

• ... whereas the present School is its Second International Edition

THE SUPPORTING ORGANISATIONS:

• Institut National de Physique Nucléaire et de Physique des Particules

• Direction des Sciences de la Matiere du CEA

• ISOLDE - (CERN, Genève)

• Service de Physique Nucléaire du CEA/DAM
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SYMMETRIES in SUBATOMIC SYSTEMS

[Ecole Joliot-Curie 2010]

Symmetry - As a Matter of Fact: What Is It?
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The Word: Symmetry, Its Origin and Meaning

The word symmetry (συµµετρια) originates from the Greek
language: συµ (’together’) and µετρων (’measure’)

The implied meaning: ’measured together’, well proportioned

The meaning has evolved in time into: beauty, unity, harmony

In sciences the first meaning of the word symmetry was that
related to proportions

Today’s meaning of symmetry as equality of elements upon
applying geometrical transformations (translations, rotations,
reflections) arrived only towards the end of the Renaissance

Observe that today’s meaning is less general as compared to the
original sense! Today’s meaning is merely a particular case!
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Groups as a Language - Posing the Problem

• Do the symmetry-operations illustrated form the full set of symmetries?

• Observe a fundamental property: Combination of a symmetry operation
with another symmetry operation is yet another symmetry operation !!!
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Groups as a Language - Posing the Problem

• Do the symmetry-operations illustrated form the full set of symmetries?

• Denoting symmetry operations S1, S2, . . . Sf ≡ {S} we must have

∀ i , j ∃ k such that Si ◦ Sj = Sk ∈ {S}
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Groups as a Language - Posing the Problem

• Do the symmetry-operations illustrated form the full set of symmetries?

• Moreover - transforming nothing is also a symmetry operation E ∈ {S}

∀ i Si ◦ E = Si ∈ {S}
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Groups as a Language - Posing the Problem

• Do the symmetry-operations illustrated form the full set of symmetries?

• If we can rotate (reflect) from left to right - why not from right to left?

∀ Si ∃ S−1
i such that Si ◦ S−1

i = E ∈ {S}
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Groups as a Language - Posing the Problem

• Do the symmetry-operations illustrated form the full set of symmetries?

• Motivated by mathematical pedantry we can also verify easily that:

∀ i , j , k (Si ◦ Sj) ◦ Sk = Si ◦ (Sj ◦ Sk)
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The Formal Group Definition

• Any set of symmetry transformations must satisfy the properties

∀ ĝ1 and ĝ2 ∈ {ĝ} : ĝ1 ◦ ĝ2 = ĝ ∈ {ĝ} (1)

∀ ĝ ∈ {ĝ} : ĝ ◦ ê = ĝ and ê ◦ ĝ = ĝ (2)

∀ ĝ ∈ {ĝ} : ∃ ĝ ′ ∈ {ĝ} → ĝ ′ ◦ ĝ = ê (3)

∀ ĝ ∈ {ĝ} : ĝ1 ◦ [ĝ2 ◦ ĝ3] = [ĝ1 ◦ ĝ2] ◦ ĝ3 (4)

• In mathematics any set with the above properties is called a group
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A Lesson that Some Others Learned [?]

B. Adams et al. in “Lie Algebraic Methods and Their Applications”
observe, not without a certain dose of satisfaction∗):

“We wish to recall that the group theoretical methods, although greatly
developed by pioneers of quantum mechanics [Wigner 1931, Weyl 1931],
were subsequently in abeyance for a long time. In fact a certain number
of physicists expressed a certain proudness when claiming that they can
well get along without it [Condon and Shortley, 1935; pp.10-11], and the
approach was even referred to as group pest by some.”

“It is interesting to observe a rather dramatic change in this attitude during
the last decade which is perhaps best documented by comparing the old and
the new edition of Condon and Shortley’s atomic structure theory [Condon
and Shortley in 1935 vs. Condon and Odabasi, 1980] - the latter containing
two extensive chapters on the group theory.”

∗)In “Dynamical Groups and Spectrum Generating Algebras”,

Eds. Arno Böhm, Yuval Ne’eman, Asim Orhan Barut
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

Part I

From Molecular to Subatomic Symmetries
[Illustrations of Mathematics & Physics]
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

An Example of Ammonia
Abstract Groups and Homomorphisms

Symmetry Groups - An Elementary Example

• The NH3 (ammonia) molecule has the symmetry group ‘of the triangle’

3

Molecule  NH 3

3VSymmetry Group  C Ĉ

Ammonia molecule, NH3, is an example of the C3v symmetry in molecular
quantum chemistry. The nitrogen atom represented by a big circle lies off
the plane defined by the three hydrogen atoms.
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

An Example of Ammonia
Abstract Groups and Homomorphisms

Symmetry Groups - An Elementary Example

2

240
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o

C
^

3

(C  )
^
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c

b

a

c

a

b

Illustration of the symmetry rotations for the C3v group, left-hand
side and the plane-reflections, right-hand side. Lines passing through
the centre of the triangle represent reflections σ̂va , σ̂vb

and σ̂vc .
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An Example of Ammonia
Abstract Groups and Homomorphisms

Symmetry Groups - How To Remember Them

• Observe that combinations of reflections give rotations [low-right]

C3v e Ĉ3 Ĉ 2
3 σ̂va σ̂vb

σ̂vc

e e Ĉ3 Ĉ 2
3 σ̂va σ̂vb

σ̂vc

Ĉ3 Ĉ3 Ĉ2
3 e σ̂vc σ̂va σ̂vb

Ĉ 2
3 Ĉ 2

3 e Ĉ3 σ̂vb
σ̂vc σ̂va

σ̂va σ̂va σ̂vb
σ̂vc e Ĉ3 Ĉ 2

3

σ̂vb
σ̂vb

σ̂vc σ̂va Ĉ 2
3 e Ĉ3

σ̂vc σ̂vc σ̂va σ̂vb
Ĉ3 Ĉ 2

3 e

Example of a Group Multiplication Table: Here the C3v -Group
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An Example of Ammonia
Abstract Groups and Homomorphisms

Another Quick Morning Quiz

•What is the molecular interpretation of the symmetry groups:

G1 = {e, Ĉz
2, Ĉy

2, Ĉx
2} = ?

G2 = {e, Ĉz
2, σ̂v, σ̂

′
v} = ?

G3 = {e, Ĉz
2, Î, σ̂h} = ?

• Consider a four-element group with the generic structure

G = {e, g1, g2, g3} with g2
1 = e, g2

2 = e, g2
3 = e (A)

and consequently

g−1
i = gi and gi ◦ gk = gk ◦ gi for i, k = 1, 2, 3 (B)

gi ◦ gk = gj for i, j, k = 1, 2, 3. (C)
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

An Example of Ammonia
Abstract Groups and Homomorphisms

One among Many Powerful Group Properties

• One demonstrates that (A), (B) and (C) hold for all three groups

• This shows that all the three groups are equivalent realisations of
the group G or, in other words, that they are mutually isomorphic

• In fact they are the well known molecular groups D2, C2v and C2h

� Conclusion: We perform the mathematical analysis for one
abstract group and apply the result for all homomorphic ones

� This may be a considerable intellectual gain - there are often
many homomorphic images of the same ‘generic’ structure G
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Why Molecular
Symmetries

in Nuclear Physics?
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Because of a ‘new theorem’ which says:

� Each symmetry-group of the mean-field Hamiltonian that
is sufficiently rich in terms of the symmetry elements#) gives
rise to the shell-closures analogous to the ones associated with
the spherical symmetry at the proton and/or neutron particle
numbers

8, 20, 28, 50, 82, 126, ...

#)Roughly speaking: ‘Rich in symmetry’ refers to the groups
with as many irreducible representations as possible and the
irreducible representation with as high a dimension as possible
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Molecular-Type Symmetry Groups
Nuclear Point-Group Symmetries

Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Because of a ‘new theorem’ which says:

� For instance in the case of tetrahedral symmetry (symmetry
of a pyramid) the strong non-spherical shell-gaps are predicted
for the proton and/or neutron particle numbers

32, 40, 56, 64, 70, 90, 132, ...
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Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?
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Tetrahedral Deformation

Realistic single-particle neutron spectra in function of tetrahedral
deformation. Observe the ‘tetrahedral’ gap at N=40 comparable in
size to the gap at N=50.
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Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Examples of Realistic Calculations for Nuclei

Realistic Nuclear Structure Calculations
Illustration for Selected Symmetries

[High-Spins: D2d, D3d and C3h; Low-Spins Td]
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Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Nuclear D2d -Group: 3D Examples

The nuclear D2d -symmetric shapes have been predicted to coexist
with the axial super-deformed shapes at high spins (JD and X. Li)

Figure: Elongation axis Figure: Perspective 1 Figure: Perspective 2

Observations:

Nuclear elongation in the range of α20 ∼ (0.45→ 0.55);

Barriers between the coexisting minima ∼ (1→ 2) MeV
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Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Nuclear D3d -Group: 3D Examples

The nuclear D3d -symmetric shapes are expected at high spins; they
correspond to superposition of α20 and α43 (inversion symmetric)

Figure: Elongation axis Figure: Perspective 1 Figure: Perspective 2

Observations:

Moderately elongated nuclei can form D3d -symmetry shapes

Probably seen already (remain mis-interpreted as tri-axiality)
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Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Nuclear C3h-Group (’Octupole’): 3D Examples

The nuclear C3h-symmetric shapes are expected at high spins; they
correspond to superposition of α20 and α33

Figure: Elongation axis Figure: Perspective 1 Figure: Perspective 2

Observations:

Nuclei with C3h-symmetry predicted to coexist with octupoles

Probably seen already (and mis-interpreted in terms of Iπ=3−)
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Point-Groups Related to Super-Deformation
Tetrahedral Symmetry and Strong Interactions?

Nuclear Tetrahedral Shapes - 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three
increasing values of rank λ = 3 deformations t1: 0.1, 0.2 and 0.3:

Figure: t3 = 0.1 Figure: t3 = 0.2 Figure: t3 = 0.3

Observations:

There are infinitely many tetrahedral-symmetric surfaces

Nuclear ’pyramids’ do not resemble pyramids!
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Possible Experimental Manifestation: No Q2-Moments

Despite numerous tries nobody has ever succeed in observing E2’s
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The bands are identified thanks to the E1 transitions to the GSBs
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Hamiltonians and Their Symmetry Groups
Properties of Generators

Part II

Symmetry Groups and Quantum Mechanics
[A Short Lesson to Refresh Your Memory]
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Hamiltonians and Their Symmetry Groups
Properties of Generators

Example of the Group of Rotations
Transformations and Their Generators

Symmetry as Invariance of the Hamiltonian

• Symmetry of the system is equivalent to the invariance of Ĥ:

Ĥ ψn = En ψn → [R(~ω) ĤR−1(~ω)]︸ ︷︷ ︸
Ĥ′

[R(~ω)ψn]︸ ︷︷ ︸
ψ′n

= En [R(~ω)ψn]︸ ︷︷ ︸
ψ′n

Ĥ ′ = R̂(~ω)Ĥ R̂−1(~ω) and ψ ′n = R̂(~ω)ψn

• Invariance of the Hamiltonian does not mean invariance of ψn

• Symmetry of the system implies an infinity of relations

[R̂(~ω), Ĥ] = 0 ∀ ~ω ∈ Ω ↔ R̂ ∈ G
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Hamiltonians and Their Symmetry Groups
Properties of Generators

Example of the Group of Rotations
Transformations and Their Generators

Symmetry Groups - An Elementary! Illustration

to something we know
So let us apply it

very well
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Hamiltonians and Their Symmetry Groups
Properties of Generators

Example of the Group of Rotations
Transformations and Their Generators

Symmetry Groups - An Elementary! Illustration

Weelll... Holmes!! So let us apply it

very well
What should we apply it to?

to something we know
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Hamiltonians and Their Symmetry Groups
Properties of Generators

Example of the Group of Rotations
Transformations and Their Generators

Symmetry Groups - An Elementary! Illustration

Elementary Watson!
Of course!! To the group...

Elementary Watson!

... of rotations!!!
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Hamiltonians and Their Symmetry Groups
Properties of Generators

Example of the Group of Rotations
Transformations and Their Generators

Expressing Rotations - Good Old Days at School

• To simplify the presentation we will consider one-dimensional rotations first

• These are the elementary matrices that we have seen many times at school

Oz : ~r ′ = Rz(ωz)~r ↔

0@ x ′

y ′

z ′

1A =

0@ cosωz sinωz 0
− sinωz cosωz 0

0 0 1

1A0@ x
y
z

1A

Oy : ~r ′ = Ry (ωy )~r ↔

0@ x ′

y ′

z ′

1A =

0@ cosωy 0 − sinωy

0 1 0
sinωy 0 cosωy

1A0@ x
y
z

1A

Ox : ~r ′ = Rx(ωx)~r ↔

0@ x ′

y ′

z ′

1A =

0@ 1 0 0
0 cosωx sinωx

0 − sinωx cosωx

1A0@ x
y
z

1A
• There are infinitely many rotations ↔ infinitely many ωx , ωy , ωz ≡ {Ω}

• Combining gives three-dimensional ones Rx(ωx)Ry (ωy )Rz(ωz) ≡ R(~ω )
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Example of the Group of Rotations
Transformations and Their Generators

Expressing Rotations - Good Old Days at School

• To simplify the presentation we will consider one-dimensional rotations first

• These are the elementary matrices that we have seen many times at school

Oz : ~r ′ = Rz(ωz)~r ↔

0@ x ′

y ′

z ′

1A =

0@ cosωz sinωz 0
− sinωz cosωz 0

0 0 1

1A0@ x
y
z

1A

Oy : ~r ′ = Ry (ωy )~r ↔

0@ x ′

y ′

z ′

1A =

0@ cosωy 0 − sinωy

0 1 0
sinωy 0 cosωy

1A0@ x
y
z

1A
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0@ x ′

y ′

z ′
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y
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Transformations and Their Generators

Rotation Groups and Infinitesimal Transformations

• Consider infinitesimal transformations with angles of rotation

ωx → δωx, ωy → δωy and ωz → δωz

• At the limit of small angles, e.g.: ωx :

cos δωx ≈ 1 and sin δωx ≈ δωx

0@ 1 0 0
0 cos δωx sin δωx

0 − sin δωx cos δωx

1A =

0@ 1 0 0
0 1 δωx

0 −δωx 1

1A = 1I+
1

i

0@ 0 0 0
0 0 i
0 −i 0

1A δωx
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Rotation Groups and Infinitesimal Transformations

• For infinitesimal rotations we obtain linearized expressions:

R̂x(δωx) =

0@ 1 0 0
0 1 δωx

0 −δωx 1

1A = 1I+
1

i

0@ 0 0 0
0 0 i
0 −i 0

1A δωx ≡ 1I−i ĝx δωx,

R̂y(δωy) =

0@ 1 0 −δωy

0 1 0
δωy 0 1

1A = 1I+
1

i

0@ 0 0 −i
0 0 i
i 0 0

1A δωy ≡ 1I−i ĝy δωy,

R̂z(δωx) =

0@ 1 δωz 0
−δωz 1 0

0 0 1

1A = 1I+
1

i

0@ 0 i 0
−i 0 0

0 0 0

1A δωz ≡ 1I−i ĝz δωz.
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R̂z(δωx) =

0@ 1 δωz 0
−δωz 1 0

0 0 1

1A = 1I+
1

i

0@ 0 i 0
−i 0 0

0 0 0

1A δωz ≡ 1I−i ĝz δωz.
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Transformations and Their Generators

Infinity of Rotations with Just a Few Generators

• Above we have introduced new operators defined by

ĝx
df .
=

1

i
lim
ωx→0

dR̂x

dωx
=

0@ 0 0 0
0 0 i
0 −i 0

1A
and

ĝy
df .
=

1

i
lim
ωy→0

dR̂y

dωy
=

0@ 0 0 −i
0 0 0
i 0 0

1A
as well as

ĝz
df .
=

1

i
lim
ωz→0

dR̂z

dωz
=

0@ 0 i 0
−i 0 0

0 0 0

1A
• Generators are hermitian operators obeying the usual commutation relations

ĝ† = ĝ ↔ [ĝx , ĝy ] = i ĝz , [ĝy , ĝz ] = i ĝx , [ĝz , ĝx ] = i ĝy

• The infinitesimal rotations can be expressed using one operator each:

R̂x (δωx ) = 1I− i ĝx δωx , R̂y (δωy ) = 1I− i ĝy δωy and R̂z (δωz ) = 1I− i ĝz δωz
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Generators of Finite Rotations
Generators as Q. Mechanical Observables

Properties of Generators of Rotations

• Introduce an oriented infinitesimal angle of a rotation about an ~n axis

δ~ϕ ≡ ~n δϕ ↔ δωx ≡ nxδϕ, δωy ≡ nyδϕ and δωz ≡ nzδϕ

• Since ~n 2 = 1: ⇒ {nx , ny , nz , δϕ} contains 3 and not 4 degrees of freedom

• Within the first order in terms of the infinitesimal angles of rotation

R̂x(δωx) R̂y(δωy) R̂z(δωz) = 1I− i (ĝ ·~n) δϕ ≡ R̂~n(δωx, δωy, δωz)

• Consider a finite angle ϕ and define ∆ϕN ≡ ϕ/N. Since: lim
N→∞

(1± x

N
)N = e±x

R̂~n(ϕ) = [R̂~n(∆ϕN)]N = (1−i ĝ ·~n ∆ϕN)N = (1−i ĝ ·~nϕ/N)N → exp
`
−i ĝ ·~nϕ

´
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Mathematical Generators and Physical Observables

• We demonstrated that a finite rotation about O~n through ϕ is

R̂~n(ϕ) = exp
[
− i (ĝ ·~n)ϕ

]
This implies that the operator ĝ ≡ {ĝx , ĝy , ĝz} is a generator of
both the infinitesimal and finite rotations.

• Observe that generators {ĝα} and angular-momentum operators
in quantum mechanics, apart from the Planck constant are identical

[ĝx, ĝy] = iĝz ↔ [ˆ̀
x, ˆ̀

y] = i~ ˆ̀
z

Operators ĝα and ˆ̀
j can be connected by a unitary transformation;

they differ merely by a choice of the reference frame & are equivalent

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Hamiltonians and Their Symmetry Groups
Properties of Generators

Generators of Finite Rotations
Generators as Q. Mechanical Observables

Mathematical Generators and Physical Observables

• We demonstrated that a finite rotation about O~n through ϕ is

R̂~n(ϕ) = exp
[
− i (ĝ ·~n)ϕ
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Observables and Infinitesimal Transformations

• Finite rotations can be written down equivalently as:

R̂~n(~ω) = exp
[
− i (ˆ̀· ~ω)/~

]
with ~ω

df
=
(
nx ϕ, ny ϕ, nz ϕ

)
• In particular for the infinitesimal angles δωx , δωy and δωz

R̂x(δωx) = exp
`
− i ˆ̀

x δωx/~
´
≈ 1I− i ˆ̀

x δωx/~

R̂y (δωy ) = exp
`
− i ˆ̀

y δωy/~
´
≈ 1I− i ˆ̀

y δωy/~
R̂z(δωz) = exp

`
− i ˆ̀

z δωz/~
´
≈ 1I− i ˆ̀

z δωz/~ .

• From invariance expression then follows that

0 = [R̂x(δωx), Ĥ] = [ˆ̀x , Ĥ] iδωx/~, ∀ δωx → [ˆ̀x , Ĥ] = 0

0 = [R̂y (δωy ), Ĥ] = [ˆ̀y , Ĥ] iδωy/~, ∀ δωy → [ˆ̀y , Ĥ] = 0

0 = [R̂z(δωz), Ĥ] = [ˆ̀z , Ĥ] iδωz/~, ∀ δωz → [ˆ̀z , Ĥ] = 0
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What Did We Learn: A Summary
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Generators of Finite Rotations
Generators as Q. Mechanical Observables

Observables and Symmetries: Conclusions

Conclusion 1. Angular momentum operators can be identified with
generators of all rotations in the 3-dimensional space {ˆ̀

α} ↔ {ĝα}

Conclusion 2. If a physical system is spherically-symmetric its
Hamiltonian must commute with all the three components of the
angular momentum operator:

[Ĥ, ˆ̀
x] = 0, [Ĥ, ˆ̀

y] = 0 and [Ĥ, ˆ̀
z] = 0.

Conclusion 3. Except for matrices defining the rotations, nowhere
else we have used the properties of rotations→ our considerations
generalise to other groups→→→ Namely→→→
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Conservation Laws as the Result of Symmetries

• Time evolution of an observable Ô in Heisenberg representation

i~dÔ
dt

= [Ô, Ĥ] + i~∂Ô
∂t

• For an explicitly time-independent observable: ∂Ô/∂t = 0

• If in addition they commute with Ĥ as e.g. ˆ̀2 and ˆ̀
z then:

i~dˆ̀2

dt
= [ˆ̀2, Ĥ] = 0 → ` 2 = constant of motion,

i~dˆ̀
z

dt
= [ˆ̀

z, Ĥ] = 0 → `z = constant of motion.

Conclusion : Eigen-values of ˆ̀2 and ˆ̀
z are constants of motion as

the consequence of the spherical symmetry of the system
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• If in addition they commute with Ĥ as e.g. ˆ̀2 and ˆ̀
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z, Ĥ] = 0 → `z = constant of motion.

Conclusion : Eigen-values of ˆ̀2 and ˆ̀
z are constants of motion as

the consequence of the spherical symmetry of the system

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Hamiltonians and Their Symmetry Groups
Properties of Generators

Generators of Finite Rotations
Generators as Q. Mechanical Observables

Conservation Laws as the Result of Symmetries

• Time evolution of an observable Ô in Heisenberg representation
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Generalisation for an Arbitrary Group of Symmetry

• Given group G ≡ {g} with generators {ĝα} and parameters ωα:

G 3 g = exp[−i
∑
α

ĝα ωα] for α = 1, 2, . . .

• Group G is a symmetry group of a physical system if there exists
a representation in which

[Ĥ, ĝα] = 0 with ĝα ≡
1

i
lim
ωα→0

dg

dωα
for α = 1, 2, . . .

• Hermitian {ĝα} will often be directly interpretable as observables.
If in addition they do not depend explicitly on time, it follows that:

i~dĝα
dt

= [ĝα, Ĥ] = 0 → ĝα = constant of motion
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Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Part III

Fermion, Bosons, Spin and Isospin
[Isospin Related Symmetries]
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Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Pauli Principle in a 3D Space
Space-Spin Symmetrisation

Identical Particles and the Permutation Group

•We consider a many-body system composed of n identical nucleons

• We use position, linear momentum and spin, r̂ , p̂, ŝ, to describe
a particle x̂ ≡ {r̂ , p̂, ŝ}. The Hamiltonian Ĥ = Ĥ(x̂1, x̂2, . . . x̂n)
must be symmetric under any permutation of particles ‘i’ and ‘j’ →

P̂ij Ĥ(x̂1 . . . x̂i . . . x̂j . . . x̂n) P̂−1
ij

df
= Ĥ(x̂1 . . . x̂j . . . x̂i . . . x̂n)

= Ĥ(x̂1 . . . x̂i . . . x̂j . . . x̂n)

and it follows: P̂ij Ĥ P̂−1
ij = Ĥ → [P̂ij, Ĥ] = 0, ∀ i 6= j ≤ n

• Conclusions: 1. Both observables P̂ij and Ĥ can be diagonalized

simultaneously; 2. The eigenvalues of P̂ij are constants of motion
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= Ĥ(x̂1 . . . x̂j . . . x̂i . . . x̂n)
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simultaneously; 2. The eigenvalues of P̂ij are constants of motion

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Pauli Principle in a 3D Space
Space-Spin Symmetrisation

3D Identical Particles: Either Fermions or Bosons

• Since P̂2
ij = 1 it follows that in P̂ijΨ = pijΨ, we must have

p2
ij = 1 → pij = ±1

• This implies that identical particles are either

Fermions : P̂ij Ψn1, ... ni, ...nj, ... nn = −Ψn1, ... ni, ...nj, ... nn , ∀ i, j

or

Bosons : P̂ij Φn1, ... ni, ...nj, ... nn = +Φn1, ... ni, ...nj, ... nn , ∀ i, j.

and this → all life-long for all identical particles of a given type
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Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Pauli Principle in a 3D Space
Space-Spin Symmetrisation

About Identical Particles: Pauli Principle

• We say that the wave-functions for identical Fermions are totally
anti-symmetric and those for Bosons are totally symmetric

• By setting for Fermions i = j (two identical states) we have

Fermions : Ψn1, ... ni, ...ni, ... nn = −Ψn1, ... ni, ...ni, ... nn

• Then the wave-function satisfies neccessarily Ψ = −Ψ or Ψ ≡ 0.

Pauli: We must not have two identical Fermions
in the identical quantum states

Physical many-body states are either totally symmetric
or totally anti-symmetric
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Anti-Symmetrising Fermion Wave-Functions
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Pauli Principle in a 3D Space
Space-Spin Symmetrisation

Fermion Wave-Functions: Anti-Symmetrisation

• Let us begin by posing a certain elementary problem that many of you
know already how to tackle:

What is the structure of s = 1
2 two-particle wave functions at ~r1 and ~r2 ?

• The wave functions depend on the spatial parts ϕα(~r ) and ϕβ(~r ) and
the spin part χs,sz : the total wave functions must be antisymmetric:

Ψαβ ∼ Anti-symm.[ϕα(~r1 ), ϕβ(~r2 )]× Symm.[χs,sz,1 , χs,sz,2 ]

Ψαβ ∼ Symm.[ϕα(~r1 ), ϕβ(~r2 )]× Anti-symm.[χs,sz,1 , χs,sz,2 ]

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Pauli Principle in a 3D Space
Space-Spin Symmetrisation

Fermion Wave-Functions: Anti-Symmetrisation

• Let us begin by posing a certain elementary problem that many of you
know already how to tackle:

What is the structure of s = 1
2 two-particle wave functions at ~r1 and ~r2 ?

• The wave functions depend on the spatial parts ϕα(~r ) and ϕβ(~r ) and
the spin part χs,sz : the total wave functions must be antisymmetric:

Ψαβ ∼ Anti-symm.[ϕα(~r1 ), ϕβ(~r2 )]× Symm.[χs,sz,1 , χs,sz,2 ]

Ψαβ ∼ Symm.[ϕα(~r1 ), ϕβ(~r2 )]× Anti-symm.[χs,sz,1 , χs,sz,2 ]

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Pauli Principle in a 3D Space
Space-Spin Symmetrisation

Space Symmetrisation and Anti-Symmetrisation

• The symmetrisation and anti-symmetrisation in space can be done in a
simple, unique manner: for spatially anti-symmetric 2-nucleon functions

ÂΨαβ(~r1,~r2) = 1√
2
[ϕα(~r1 ) · ϕβ(~r2 )− ϕα(~r2 ) · ϕβ(~r1 )]

↔ 1√
2
[ϕα(~r1 ) · ϕβ(~r2 )− ϕβ(~r1 ) · ϕα(~r2 )]

and for spatially-symmetric 2-nucleon functions we find:

ŜΨαβ(~r1,~r2) = 1√
2
[ϕα(~r1 ) · ϕβ(~r2 ) + ϕα(~r2 ) · ϕβ(~r1 )]

↔ 1√
2
[ϕα(~r1 ) · ϕβ(~r2 ) + ϕβ(~r1 ) · ϕα(~r2 )]
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Fermion Spin-Symmetrisation & Anti-Symmetrisation

• We have three spin-symmetric wave-functions for s1 = s2 = 1
2 , namely:

χ1,2
S=1,Sz=+1

= χ
(1)
1
2 ,+ 1
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χ
(2)
1
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S=1,Sz=−1
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1
2 ,−

1
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χ
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1
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1
2

and

χ1,2
S=1,Sz=0

= 1√
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1
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1
2

χ
(2)
1
2 ,−

1
2

+ χ
(1)
1
2 ,−

1
2

χ
(2)
1
2 ,+

1
2

]

• We have only one spin-anti-symmetric function for the two nucleons

χ1,2
S=0,Sz=0

= 1√
2
[χ

(1)
1
2 ,+

1
2

χ
(2)
1
2 ,−

1
2

− χ
(1)
1
2 ,−

1
2

χ
(2)
1
2 ,+

1
2

]

• These are spin-triplet χ1,2
S=1,Sz

and spin-singlet χ1,2
S=0,Sz=0 wave-functions
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Isospin in Low-Energy Nuclear Physics

Historical Spin-Isospin Analogy
Isospin-Related Symmetries

Isospin - a Younger Brother of Spin

• The concept of isospin (isobaric spin) has been introduced by Werner
Heisenberg in 1932. The name was proposed by Eugene Wigner in 1937.

• Spin s = 1
2 is a dichotomic variable associated with one and the same

particle: we note that masses of sz = + 1
2 and sz = − 1

2 particles are equal.

• Compare: The nucleons (protons and neutrons) have nearly the same
mass and the dichotomic variable is here the electric charge q = 0 or 1 e.

• We say that the nucleon has isospin t = 1
2 and tz = − 1

2 if the charge is
q = +1e (i.e. proton) while tz = + 1

2 if the charge is q = 0 (i.e. neutron).

• Analogy:

χs= 1
2 ,sz=± 1

2
↔ spin-up vs. spin-down

χt= 1
2 ,tz=± 1

2
↔ charge-on vs. charge-off
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Historical Spin-Isospin Analogy
Isospin-Related Symmetries

Nucleon Isospin-Symmetrisation

•We have three isospin-symmetric wave-functions for t1 = t2 = 1
2 , namely:

χ1,2
T=1,Tz=+1

= χ
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1
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and χ1,2
T=1,Tz=−1

= χ
(1)
1
2 ,−

1
2

χ
(2)
1
2 ,−

1
2

and

χ1,2
T=1,Tz=0

= 1√
2

[
χ

(1)
1
2 ,+

1
2

χ
(2)
1
2 ,−

1
2

+ χ
(1)
1
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χ
(2)
1
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• There is only one isospin-anti-symmetric two-nucleon wave-function

χ1,2
T=0,Tz=0

= 1√
2

[
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1
2 ,+

1
2

χ
(2)
1
2 ,−
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− χ
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1
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1
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χ
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1
2 ,+

1
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]
• These are: iso-vector χ1,2

T=1,Tz
, and iso-scalar, χ1,2

T=0,Tz=0 wave functions
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Historical Spin-Isospin Analogy
Isospin-Related Symmetries

Pauli Principle Generalized for the Nucleons

• Generalized Pauli principle implies total anti-symmetry of wave-functions

Ψαβ = ψαβ(~r1,~r2) χα,βS,Sz
χα,βT,Tz

↔ anti-symmetric

• The physically acceptable two-body wave functions are

ψA12 χ
S
S,Sz

χST,Tz
→ ψA12 χ

S
S,Sz

[χST=1,−1︸ ︷︷ ︸
pp

or χST=1,0︸ ︷︷ ︸
pn

or χST=1,+1︸ ︷︷ ︸
nn

]

ψA12 χ
A
S,Sz

χAT,Tz
→ ψA12 χ

A
S,Sz

[χAT=0,0︸ ︷︷ ︸
pn

]

ψS12 χ
A
S,Sz

χST,Tz
→ ψS12 χ

A
S,Sz

[χST=1,−1︸ ︷︷ ︸
pp

or χST=1,0︸ ︷︷ ︸
pn

or χST=1,+1︸ ︷︷ ︸
nn

]

ψS12 χ
S
S,Sz

χAT,Tz
→ ψS12 χ

S
S,Sz

[χAT=0,0︸ ︷︷ ︸
pn

]
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Historical Spin-Isospin Analogy
Isospin-Related Symmetries

EJC Morning Quiz

Physically Acceptable 2-N Wave Functions

• How many physically acceptable w.fs. do we have in total?

• How many of these functions are spatially anti-symmetric?

• Basing on the universal symmetry-anti-symmetry properties:

What can be said about the dominating feature of the nucleon-
nucleon interactions: More attractive - or just the opposite?
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Isospin - a Younger Brother of Spin: Formulae

• A comment about various forms of notation for states (wave f.):(
0
1

)
↔ χp ↔ χ 1

2
,− 1

2

p←− χt,tz
n−→ χ 1

2
,+ 1

2
↔ χn ↔

(
1
0

)

• A comment about one-body isospin operators

t̂ ≡ 1
2 τ̂ ≡

1
2{τ̂x , τ̂y , τ̂z} ↔

{(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

)}

• Analogy with the spin operators

ŝ ≡ 1
2 σ̂ ≡

1
2{σ̂x , σ̂y , σ̂z} ↔

{(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

)}
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The Most General Dependence of Nuclear Forces...

... on Spin and/or Isospin

• Recall the elementary algebraic property of the 3 Pauli matrices:

σ2
x = σ2

y = σ2
z = 1I = τ 2

x = τ 2
y = τ 2

z

• The most general dependence of any potential on σα has the form

v(σα) =
∞X
n=0

v (n)|0
n!
· σn

α =
∞X

k=0


v (2k)|0
(2k)!

· (σα)2k| {z }
1I

+
v (2k+1)|0
(2k + 1)!

· (σα)2k+1| {z }
σα

ff

• Conclusion: The most general dependence on spin or isospin is

v(σα) = a · 1I + b · σα → v(ŝ1, ŝ2) = A0 1I + Bs·s ŝ1 · ŝ2

where A and B are in general function functions of operators r̂ and p̂

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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A Question in Passing [Another Quiz?]

• As we just recalled, spin is a vector-operator ŝ = {ŝx , ŝy , ŝz} ∈ 3D
• When rotating the coordinate frame the spin transform like this:ŝ′x

ŝ′y
ŝ′x

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 =

ŝx

ŝy

ŝx



• The wave function for the spin s = 1
2 particle has two components

χs= 1
2

=

(
ψ↑
ψ↓

)
• Did you think: How does this wave function transform?

χ′
s= 1

2

= [ ? ]× χs= 1
2
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We’ve
got

a problem!
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We’ve
got

a problem!

What 

problem?

kind
of
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to surprize me ...
managed

You always
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... and ?
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I don’t dare guessing ...
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Watson!

Representations of the group of rotations!

of group representations!
Ask details about the theory

Cable immediately Professor Wigner.
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Watson!

Representations of the group of rotations!

of group representations!
Ask details about the theory

Cable immediately Professor Wigner.

... But Holmes!
Wagner’s preoccupation

is rather ... music!
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Watson!

and wash your hears!
Take aspirin ... and vitamins ...

Stop playing on my nerves.

I said: Eugene WIGNER!

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Q. Mechanics and Group Theory on One Page

Starting Point:  A Group
[e.g. transformations]

{G,  }

g    G act

∋
on {x,y,z}
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Hamiltonian H Vector Space

Starting Point:  A Group
[e.g. transformations]

{G,  }

g    G act

∋
on {x,y,z}

ψ ’= D(g) ψ
ψ{V} <=> {    }

wave functions
acts on 
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Q. Mechanics and Group Theory on One Page

{V} <=> {    }

wave functions
acts on 

Hamiltonian H Vector Space

Starting Point:  A Group
[e.g. transformations]

{G,  }

g    G act

∋
on {x,y,z}

ψ ’= D(g) ψ
ψ( Field F )

C − numbers
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ψ
{V} <=> {    }

wave functions
acts on 

Hamiltonian H Vector Space

{D(g),  }
Operators D(g)
act on the wave
wave functions

Homomorph.

"a function"

Starting Point:  A Group End Point:  Representations
[e.g. transformations] Operators

{G,  }

g    G act

∋
on {x,y,z}

’= D(g) ψ
ψ( Field F )

C − numbers
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ψ ’= D(g) ψ
ψ{V} <=> {    }

wave functions
acts on 

Hamiltonian H Vector Space

{D(g),  }
Operators D(g)
act on the wave
wave functions

Homomorph.

"a function"

Starting Point:  A Group End Point:  Representations
[e.g. transformations] Operators

{G,  }

g    G act

∋
on {x,y,z}

Matrices

ij[M(D(g))]    =

C − numbers
( Field F )

<    | [M(D(g)] |     >ψψi j
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◦ Consider a group {G , •}; ◦ Consider a vector space V over the field F ; ◦ In-
troduce an ensemble of linear operators D that are functions of g ∈ G ; ◦ They
by definition, act in V . ◦ We assume they form a new group {D(g), ◦}. ◦ If
this group is homomorphic to G we call it a representation of G .
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Formal Definition of a Group Representation

• Consider a group {G , •}, a vector space V over the field F , and an ensemble
of linear operators D that are functions of g ∈ G and, by definition, act in V .

• We assume that those operators form a group {D(g), ◦}. Suppose that there
exists a homomorphic mapping between the two groups, G → D(g) so that:

D(g1 ◦ g2) = D(g1) · D(g2)

as well as
D(g−1) = D−1(g)

where from it follows that for the neutral elements

D(e) = 1I.

• When the above conditions are satisfied, the group composed of operators
{D(g), ·} is called representation of the original group G .
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After the intrusion from the British experts
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Charge and Isospin Operators

• For the neutron and proton wave functions we find the identities

t̂z χn = + 1
2 χn →

(
1
2 − t̂z

)
χn = 0 · χn

t̂z χp = −1
2 χp →

(
1
2 − t̂z

)
χp = 1 · χp

• The above relations suggest the definition of the charge operator:

q̂ ≡ e ·
(

1
2 − t̂z

)
→ q̂ χp = 1 · e χp and q̂ χn = 0 · e χn

• It follows the definition of the total nuclear charge operator:

Q̂
df
=
∑A

i=1 q̂i = 1
2 e · A− e

∑A
i=1 t̂z(i) ≡ 1

2 e · A− e · T̂z
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Charge Conservation in Nature and the Isospin

• Experimental results are compatible with charge conservation[
Ĥ, Q̂

]
= 0 →

[
Ĥ, 1

2 e · A− e · T̂z

]
= 0 →

[
Ĥ, T̂z

]
= 0

� Charge conservation implies an absolute conservation
of the third component of the total nuclear isospin vector

� This implies a constraint on the other two components[
Ĥ, (T̂2

x + T̂2
y)
]

= 0

�What can be said about the other components alone?
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Ĥ, (T̂2

x + T̂2
y)
]

= 0

�What can be said about the other components alone?

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Historical Spin-Isospin Analogy
Isospin-Related Symmetries

Charge Conservation in Nature and the Isospin

• Experimental results are compatible with charge conservation[
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Ĥ, T̂z

]
= 0

� Charge conservation implies an absolute conservation
of the third component of the total nuclear isospin vector

� This implies a constraint on the other two components[
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From Charge Conservation to Charge Independence

• Suppose, as a working hypothesis, that for all other components[
Ĥ, T̂x

]
= 0,

[
Ĥ, T̂y

]
= 0 and

[
Ĥ, T̂z

]
= 0 →

[
Ĥ, T̂ 2

]
= 0

• When this happens the following standard four relations are valid

T̂ ≡ {T̂x , T̂y , T̂z},
[
T̂ 2, T̂z

]
= 0,

[
Ĥ, T̂ 2

]
= 0 and

[
Ĥ, T̂z

]
= 0

• This allows introducing the common solutions to Ĥ, T̂ 2 and T̂z :

T̂ 2 |T ,Tz〉 = T (T + 1) |T ,Tz〉 and T̂z |T ,Tz〉 = Tz |T ,Tz〉

• These relations allow formulating charge independence hypothesis
→→→→→

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Ĥ, T̂z

]
= 0 →

[
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Ĥ, T̂ 2

]
= 0 and

[
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Formulating the Charge Independence Hypothesis

• The Eckart-Wigner theorem implies the projection-independence

〈T,Tz|Ĥ|T
′,T′z〉 = δTT′ δTzT′z 〈T||Ĥ||T

′〉 ← red. m. element

• In other words we have the following particular relations for T=1

〈1,+1|Ĥ|1,+1〉 = 〈1, 0|Ĥ|1, 0〉 = 〈1,−1|Ĥ|1,−1〉

• This is why [Ĥ, T̂ ] = 0 is called Charge Independence Hypothesis

• Observe that in general 〈T ||Ĥ||T 〉 = f (T ) i.e. a function of T →

〈T = 1||Ĥ||T = 1〉 6= 〈T = 0||Ĥ||T = 0〉
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• This is why [Ĥ, T̂ ] = 0 is called Charge Independence Hypothesis
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′,T′z〉 = δTT′ δTzT′z 〈T||Ĥ||T
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Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Historical Spin-Isospin Analogy
Isospin-Related Symmetries

Charge Independence and the N-N Interaction

• Since [Ĥ, T̂ 2] = 0, interaction term must be a functional of T̂ 2

⇒ To lowest order : VN−N ∼
(
α 1I + β T̂ 2

)

• On the other hand from T̂ ≡ t̂1 + t̂2 it follows the identity

T̂ 2 =
[
t̂(1)
]2

+
[
t̂(2)
]2

+ 2 t̂(1) · t̂(2) → T̂ 2 ↔ 3
4 + 3

4 + 2 t̂(1) · t̂(2)

• Charge-Independence implies the isospin dependence of interaction

VN−N ∼
(
a 1I + b t̂(1) · t̂(2)

)
where a and b are arbitrary functions of nucleon observables r̂ and p̂
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Charge Symmetry Hypothesis

• Spectra of nuclear pairs such as
[

15
7N8 ↔ 15

8O7

]
,
[

17
8O9 ↔ 17

9F8

]
,[

39
19K20 ↔ 39

20Ca19

]
,
[

41
20Ca21 ↔ 41

21Sc20

]
,
[

42
20Ca22 ↔ 42

22Ti20

]
, ... etc.

shows very strong similarities and suggest that the rotation RT
⊥(π)

(Z→ N, N→ Z) ↔ RT
⊥(π)

df
= exp[iπT̂⊥]

is an approximate symmetry of the nuclear interaction Hamiltonian

• Usually we take as the direction perpendicular to OT
z the OT

y -axis

RT
⊥(π)→ RT

y (π) = exp[iπT̂y]
df
= P̂CS ← Charge Symmetry

• This approx. symmetry of interaction is called Charge Symmetry

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Charge Symmetry Hypothesis: Consequences

• Since t̂(1) ·t̂(2) is scalar and since P̂CS changes signs of t̂
(1)
z and t̂

(2)
z

[
P̂CS, t̂(1) · t̂(2)

]
= 0 and

[
P̂CS, t̂

(1)
z · t̂(2)

z

]
= 0 (∗)

• From the Charge Symmetry→ the interaction Hamiltonian obeys

[
Ĥ, P̂CS

]
= 0

• It follows that the most general charge-symmetric Hamiltonian is

Ĥ = A0 1I + Bt·t t̂(1) · t̂(2) + Ctz,tz t̂
(1)
z t̂

(2)
z

with A0, Bt·t and Ctz,tz - arbitrary functions of observables r̂ and p̂
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Isospin-Structure of the Coulomb Interaction

• The two-nucleon Coulomb potential is generally written down as:

V
(1,2)
C = e2

|~r1−~r2| ×
(

1
2 − t̂

(1)
z

)(
1
2 − t̂

(2)
z

)
• It can be rewritten in terms of iso-scalar, iso-vector and iso-tensor

V
(1,2)
C =

e2

|~r1 −~r2|

nˆ
1
4 + 1

3 t̂(1) · t̂(2)
˜
− 1

2

ˆ̂
t

(1)
z + t̂

(2)
z

˜
+
ˆ̂
t

(1)
z t̂

(2)
z − 1

3 t̂(1) · t̂(2)
˜o

• Expressions below give rise to various symmetry-breaking effects

ˆ
T̂2 , V

(1,2)
I−S

˜
= 0,

ˆ
T̂2 , V

(1,2)
I−V

˜
6= 0,

ˆ
T̂2 , V

(1,2)
I−T

˜
6= 0

ˆ ˆ̂PCS,V
(1,2)
I−S

˜
= 0,

ˆ ˆ̂PCS,V
(1,2)
I−V

˜
= 0,

ˆ ˆ̂PCS,V
(1,2)
I−T

˜
6= 0
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Symmetrisation or Anti-Symmetrisation
Isospin in Low-Energy Nuclear Physics

Historical Spin-Isospin Analogy
Isospin-Related Symmetries
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Part IV

Two-Nucleon Interactions and Their Symmetries
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Two-Nucleon Systems: Principles
Complex Systems: Principles

Forms of Interactions Imposed by Symmetries
Spontaneous Symmetry Breaking: The Mean-Field

Relativity and the Implied
Symmetries
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Two-Nucleon Systems: Principles
Complex Systems: Principles

Forms of Interactions Imposed by Symmetries
Spontaneous Symmetry Breaking: The Mean-Field

Relativity Principle and Space-Time Properties

• According to Einstein’s formulation∗ of the relativity principle:

If a system of coordinates Σ is chosen so that, in relation to it,
physical laws hold good in their simplest form, the same laws hold
good in relation to any other system of coordinates Σ′ moving in
uniform translation relatively to Σ.

Albert Einstein: “The foundation of the general theory of relativity”

• Uniformity of Space: All points in our 3D space are equivalent

• Isotropy of Space: All directions in our 3D space are equivalent

• Uniformity of Time: No time instant in our space is priviledged

∗ In a non-relativistic approach as the one which follows we may use the historically earlier, Galilean formulation.
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Forms of Interactions Imposed by Symmetries
Spontaneous Symmetry Breaking: The Mean-Field

Hamiltonian Form Allowed by Symmetries (1)

Hermiticity of the Hamiltonian: We must assume that the Hamiltonian
is an observable and therefore Hermitian

Ĥ(x̂1, x̂2) ≡ t̂1 + t̂2 + V̂ (x̂1, x̂2); Ĥ† = Ĥ → V̂ † = V̂

Nucleons Are Indistinguishable: It follows that the Hamiltonian must
be symmetric with respect to exchange of the two particles

Ĥ(x̂1, x̂2) = Ĥ(x̂2, x̂1) → V̂ (x̂1, x̂2) = V̂ (x̂2, x̂1)

Translational Invariance: Reference frames are equivalent, Hamiltonians
expressed in Σ - and Σ ′ related to Σ by translation - must be identical

V̂ = V̂ [(r̂1 − r̂2); (p̂1, p̂2); (ŝ1, ŝ2); (t̂1, t̂2)]
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Hamiltonian Form Allowed by Symmetries (2)

Equivalence of Inertial Frames: Consider a reference frame Σ ′ moving
with respect to Σ with an arbitrary constant velocity ~v

Σ : {~v1, ~v2} → Σ ′ :
~v1 → ~v ′1 = ~v1 + ~v

~v2 → ~v ′2 = ~v2 + ~v

}

According to Galilean invariance, interactions expressed in either Σ or Σ ′

must be exactly the same and it follows that:

V̂ = V̂ [(r̂1 − r̂2); (p̂1 − p̂2); (ŝ1, ŝ2); (t̂1, t̂2)]

Notation. Introduce the relative positions r̂12 and relative momenta p̂12:

r̂12 ≡ r̂2 − r̂1 and p̂12 ≡ p̂2 − p̂1

then:

V̂ = V̂ [ r̂12, p̂12, (ŝ1, ŝ2); (t̂1, t̂2)]

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Two-Nucleon Systems: Principles
Complex Systems: Principles

Forms of Interactions Imposed by Symmetries
Spontaneous Symmetry Breaking: The Mean-Field

Hamiltonian Form Allowed by Symmetries (2)

Equivalence of Inertial Frames: Consider a reference frame Σ ′ moving
with respect to Σ with an arbitrary constant velocity ~v

Σ : {~v1, ~v2} → Σ ′ :
~v1 → ~v ′1 = ~v1 + ~v

~v2 → ~v ′2 = ~v2 + ~v

}

According to Galilean invariance, interactions expressed in either Σ or Σ ′

must be exactly the same and it follows that:

V̂ = V̂ [(r̂1 − r̂2); (p̂1 − p̂2); (ŝ1, ŝ2); (t̂1, t̂2)]
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Hamiltonian Form Allowed by Symmetries (3)

Rotational Invariance: It is assumed that our space is isotropic and thus
any two reference frames that differ by orientation must be equivalent.
This implies that interaction potential must be constructed out of scalars

Examples: r̂12 · r̂12, p̂12 · p̂12, r̂12 · p̂12, r̂12 · ŝ12, p̂12 · ŝ12 . . .

Invariance Under Space Inversion: Since strong interactions conserve
the parity, Hamiltonian must depend on scalars and not pseudo-scalars:

Examples: r̂ 2
12, p̂ 2

12, r̂12 · p̂12, ˆ̀
12 · ˆ̀

12, (r̂12 ∧ p̂12) · (ŝ1 + ŝ2) . . .
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Time-Reversal Invariance: We assume that the interaction Hamiltonian
is time-reversal invariant. Recall:

T̂ r̂ T̂−1 = +r̂ , T̂ p̂T̂−1 = −p̂, T̂ ˆ̀T̂−1 = −ˆ̀ and T̂ ŝT̂−1 = −ŝ

Hamiltonian must be contructed out of time-scalars, see a few examples:

p̂12 · (ŝ1 + ŝ2), (ˆ̀
1 + ˆ̀

2) · (ŝ1 + ŝ2), (r̂12 ∧ p̂12) · (ŝ1 + ŝ2) . . .
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Training Our Imagination of Space & Interaction

• Hamiltonians of fundamental interactions
are invariant under the translations in any
direction in any step

• Hamiltonians of fundamental interactions
are invariant under any rotation through
any angle

• They are simultaneously invariant under
these and still some more transformations:

How Many Symmetries Do You Know?
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General Interaction Form Allowed by Symmetries

Conclusions about the N-N Force & Symmetries

• Hamiltonians are: Hermitean and exchange-symmetric, Galilean
symmetric, translation- and rotation-invariant, parity- and time-even

• The symmetry considerations determine the forms of the simplest
building-blocks, combinations of operators r̂, p̂, ŝ and t̂, see above

• The symmetries alone cannot determine the radial dependence of
the interactions. For instance in a possible interaction operator

V̂12 = v(r12) ŝ1 · ŝ2

function v(r12) remains undetermined by symmetry considerations

• Those functions must be determined by fitting to experimental
results; fitting procedure remains phenomenological and not unique
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function v(r12) remains undetermined by symmetry considerations

• Those functions must be determined by fitting to experimental
results; fitting procedure remains phenomenological and not unique

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Two-Nucleon Systems: Principles
Complex Systems: Principles

Forms of Interactions Imposed by Symmetries
Spontaneous Symmetry Breaking: The Mean-Field

General Hamiltonian Form Allowed by Symmetries

Numerous experiments are compatible

with the following forms of the

Nucleon-Nucleon Interaction Hamiltonian

→→→
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Fundamental Properties of Nucleon-Nucleon Forces

Let x̂
df .
= {r̂ , p̂, ŝ, t̂ }. Nucleon-Nucleon interactions have the form:

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

where: C -central, T -tensor, LS-spin-orbit and LL2-quadratic LS

Central Interaction (r12 ≡ |~r1 −~r2|)

V̂C (x̂1, x̂2) = V0(r12) + Vs(r12) [ŝ (1) · ŝ (2)]

+ Vt(r12) [t̂ (1) · t̂ (2)]

+ Vs−t(r12) [ŝ (1) · ŝ (2)] [t̂ (1) · t̂ (2)]

Invariant under rotations, translations, inversion and time-reversal
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where: C -central, T -tensor, LS-spin-orbit and LL2-quadratic LS

Tensor Interaction [Non-Central]

~S (12) df .
=

3 (ŝ1 ·~r12)(ŝ2 ·~r12)− (ŝ1 · ŝ2) r 2
12

r 2
12

and r12
df .
= |~r1 −~r2|

V̂T (x̂1, x̂2) = [Vt0(r12) + Vt1(r12) t̂1 · t̂2] Ŝ (12)

Invariant under rotations, translations, inversion and time-reversal
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Spin-Orbit Interaction [Non-Local]

~L
df .
= 1

2 (~r1 −~r2) ∧ (p̂1 − p̂2), r12
df .
= |~r1 −~r2| and Ŝ

df .
= ŝ1 + ŝ2

V̂LS(x̂1, x̂2) = [V t0
LS(r12) + V t1

LS(r12) t̂1 · t̂2 ]L̂ · ~S

Invariant under rotations, translations, inversion and time-reversal
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= {r̂ , p̂, ŝ, t̂ }. Nucleon-Nucleon interactions have the form:

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

where: C -central, T -tensor, LS-spin-orbit and LL2-quadratic LS

Quadratic Spin-Orbit Interaction [Non-Local]

~L
df .
= 1

2 (~r1 −~r2) ∧ (~p1 − ~p2) and r12
df .
= |~r1 −~r2|

V̂LL(x̂1, x̂2) = VLL(r12){(ŝ1 · ŝ2) L̂ 2 − 1
2 [(ŝ1 · L̂)(ŝ2 · L̂) + (ŝ2 · L̂)(ŝ1 · L̂)]}

Invariant under rotations, translations, inversion and time-reversal
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Dynamics: What Is Doable and What Is Not?

• Consider the motion of a system of N = 100 nucleons

• What is the expected complexity of the description?

Ĥ( x̂1, x̂2, . . . x̂N︸ ︷︷ ︸
100×12=1200 operators

)Ψ = E Ψ

Conclusion:
It is out of question to attack by brutal force...
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But there exist helpful mechanisms - among others:

Symmetries and Spontaneous Symmetry
Breaking
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Spontaneous Symmetry Breaking - An Example

Given a system with symmetry {G} i.e. [H(β),G ] = 0. Here β is a
parameter. Often a critical value, βcrit., exists such that:

For β < βcrit. symmetry of solution is compatible with {G}
For β > βcrit. symmetry of solution is not compatible with {G}
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Spontaneous Symmetry Breaking - An Example

Given a system with symmetry {G} i.e. [H(β),G ] = 0. Here β is a
parameter. Often a critical value, βcrit., exists such that:

For β < βcrit. symmetry of solution is compatible with {G}
For β > βcrit. symmetry of solution is not compatible with {G}

A Classical Example Original system ↔ axial symmetry

For F > Fcrit. we find infinitely many
solutions at the same energy

Yet: The original axial symmetry will
be spontaneously broken and only one
among many directions - ”privileged” !!!
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Symmetry vs. Asymmetry - Historical Perspective

Caricature - A Classical (Macro) Example: Buridan’s Donkey

Figure: Buridan’s donkey, having two strictly identical bundles of carrots
on both sides has no reason to select one of them, and dies of starvation
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Symmetry: Spontaneously Broken

From preceding discussion we assume that the N-N interaction type

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

is invariant under rotations, translations, inversion and time-reversal

Spherical Symmetry? The Nuclear Mean Field Theory ...

... is usually very successful. It is based on

V̂mf (x̂) =

∫
ψ∗(x ′)V̂ (x̂ , x̂ ′)ψ(x ′) dx ′

Some or all of the above symmetries will be
broken by the mean-field Hamiltonian
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Spontaneous Symmetry Breaking - An Illustration

Did anybody tell you the story of 8 French Gentlemen?

Neeever??

In such a case just listen, it is short but instructive ...
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A Few Remarks about the Mean-Field Concept

• A mean-field interaction can be seen as an algorithm probing the
two-body interactions through a generalized weighted average V̂

V̂(x̂) = 1
N−1

∑(N−1)
j=1

∫
dxjψ

∗(xj) V̂(x̂, x̂j)ψ(xj)

• Obseve that summation implies the
averaging over (N-1)-particles

• Notice also that the mean-potential
V̂ = V̂(x̂) is a one-body operator

• Relativistic theory illustrated in the
following provides a similar concept
but using quantum field theory

An N−Body System

Schematic: Probing 2-body
interactions with an ‘external’

test-particle
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Nearly 3000 Systems Have Been Seen Experimentally

Among them, about two hundreds are stable; they are marked in black
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In Majority of Them Spherical Symmetry is Broken

Among nearly 3000, more than 80% are strongly deformed
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The Dominating Role of the Mean-Field Concept

A Few Important Conclusions:

Experiments suggest that the nuclear mean-field, in general
deformed, should be a dominating feature of the systems

The mean-field is by construction a one-body operator what

implies significant simplifications

Ĥnature(x̂1, x̂2, . . . x̂N) ≈ Ĥmean field =
∑N

i=1 ĥ(x̂i)

From now on, effective theories can be constructed:

Ĥnature ≈ Ĥmean field + Ĥresidual
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More Precisely: Mean-Field and Residual Interactions

A Possible General Structure of Hamiltonians

• The unknown ‘true’ Hamiltonian is replaced by two effective ones

Ĥnature → Ĥ ≈
N∑

i=1

ĥ(x̂i)︸ ︷︷ ︸
Ĥmf

+ 1
2

N∑
i=1

N∑
j=1

V̂res(x̂i ↔ x̂j)︸ ︷︷ ︸
Ĥres

• The mean-field term is in practice a self-consistent Hartree-Fock

• The form of the effective residual interactions, is influenced by the
microscopic theories (scalar, inversion-invariant, time-even)

Ĥres = V̂pairing + V̂long range + V̂vib.coupling + ...
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Ĥnature → Ĥ ≈
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From Now On - In this Part of Presentation:

The Global Structure of the N-Body Effective Hamiltonians

• The unknown ‘true’ Hamiltonian is replaced by two effective ones

Ĥ =
∑
αβ

hαβ ĉ+
α ĉβ + 1

2

N∑
αβ=1

N∑
γδ=1

vαβ;γδ ĉ+
α ĉ+

β ĉδ ĉγ

• In low-energy sub-atomic physics the theory calculations without
considering the residual pairing are considered not realistic

Pairing: ↔ vpairing
αβ;γδ ← to be defined
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α ĉβ + 1

2

N∑
αβ=1

N∑
γδ=1

vαβ;γδ ĉ+
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Realistic Theories and their Today’s Applicability

Present-day theories pretending to control ∼7000 nuclear systems, out of

which more than a half is still to be produced
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... and now: How about an Anecdote?

Jean and Jacques meet at the Atlantic cost (no doubt close to Lacanau)
and chat about their professional life.

Jean says: I study symmetries - and monologues for half-an-hour about
the experimental apparatus he was building.

Jacques says: I study the symmetries - and monologues for half an hour
about a fantastic theorem he succeeded in demonstrating.

A friend of both who was incidentally listening looks at them and says:
Hmm! Strange. I listened to both stories - but in fact:

Where are the symmetries?
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Part V

Unitary Group U(n) and Symmetries of the
Nuclear N-Body Hamiltonians
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Relation to Microscopic Hamiltonians
Irreducible Representations

Unitary Groups and Infinitesimal Transformations

Consider x ∈ Rn and transformations x ′ = Ux for U†U = 1I
For infinitesimal transformations

Uε ≡ 1I + i εS , U†U = 1I→ S = S†

Consider f = f (x) and infinitesimal transformation x ′ = Uεx :

f ′ = f (x ′) = f ({xj+iε
∑

k Sjkxk}) = f (x)+i ε
∑

jk Sjk xk∂j f |x

Defining the generators as usual ĝjk ≡ xj∂k one has

[ ĝαβ, ĝγδ] = δβγ ĝαδ − δαδ ĝγβ
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Relation to Microscopic Hamiltonians
Irreducible Representations

N-Body Systems with Two-Body Interactions

Consider an N-particle system with a two-body Hamiltonian

Ĥ =
∑
αβ

hαβ c+
α cβ + 1

2

∑
αβ

∑
γδ

vαβ;γδ c+
α c+

β cδ cγ

Recall: For Fermions

{c+
α , cβ} = δαβ; {c+

α , c
+
β } = 0 = {cα, cβ}; ∀α, β

Introduce operators
N̂αβ

df .
= c+

α cβ

It is easy to verify that

[ N̂αβ, N̂γδ] = δβγ N̂αδ − δαδ N̂γβ thus N̂αβ ↔ ĝαβ
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U(n) Generators and the Many-Body Hamiltonian

• Let us trivially anticommute the operators

ĉ+
α (ĉ+

β ĉδ)ĉγ = (ĉ+
α ĉδ)(ĉ+

β ĉγ)− δβγ (ĉ+
α ĉγ)

• Introduce the renormalised one-body term

〈α|ĥ′1|β〉 = 〈α|ĥ1|β〉+ 1
2

∑n
γ〈αγ|ĥ2|βγ〉

• It follows that the Hamiltonian is a simple function of generators

Ĥ =
∑n

αβ 〈α|ĥ′1|β〉 N̂αβ − 1
2

∑n
αβ

∑n
γδ 〈αβ|ĥ2|γδ〉 N̂αδ N̂βγ

• Interactions ↔ matrices; unitary group formalism ↔ generators
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Comment about Irreducible Representations: O(3)

• Consider orthogonal group O(3) and its generators L+, L− and L0

• Consider homogeneous, generally complex, linearly independent
polynomials {ψ(x , y , z)} of the order p, satisfying ~r · ∇ψ = p ψ

• Note that ~r · ∇ commute with L+, L− and L0; it follows that the
polynomials in question verify

L0 ψp = mψ and Lo (L± ψ) = (m ± 1) L± ψ m=weight

• We say: L0 generates weights; at the same time L+ and L− are
weight raising and lowering operators, respectively

• Using the maximum-weight polynomial with mmax = l we obtain
the bases {ψlm} of irreducible representations of O(3)
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Comment about Group Representations: Case U(n)

• Consider homogeneous, independent polynomials of the order p:

Ψ ≡
n∏

α=1

(ĉ+
α )pα with

n∑
α=1

pα = p; pα ≥ 0 : integer

• One can directly verify that for

N̂αβ ≡ ĉ+
α ĉβ one has N̂αα Ψ|0〉 = pα Ψ|0〉; α = 1, 2, . . . n

• From the commutation relations

[N̂αα, N̂αβ] = +N̂αβ and [N̂ββ , N̂αβ] = −N̂αβ follows:

N̂αα(N̂αβ Ψ) = (pα + 1) N̂αβΨ, α < β : weight-raising

N̂ββ(N̂αβ Ψ) = (pα − 1) N̂αβΨ, α > β : weight-lowering
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Comments about Irreducible Representations

• Gelfand and Zetlin (1950) have proposed an effective approach for
constructing the bases of the irreducible representations of U(n)

• In particular they construct explicitly N̂kk , N̂k−1,k and N̂k,k+1 and
show the recurrence relations

[N̂k−h,k−1, N̂k−1,k ] = N̂k−h,k ; k = 2, 3, . . . n

• Dimensions of the irreducible
representation (n, p):

Cn
p = n!/p!(n − p)!

i.e. the number of combinations
for p-particles on the n-levels

n
 −

 l
ev

el
s

p − particles
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Comments about Irreducible Representations (II)

• Gelfand and Zetlin (1950) also obtain the matrix elements of the
generators N̂αβ within their space of U(n) irreducible representations

• Thus for known ‘physical’ matrices hαβ and vαβ;γδ the Hamiltonian
below can be seen as a known matrix

Ĥ =
∑
αβ

hαβ N̂αβ + 1
2

∑
αβ

∑
γδ

vαβ;γδ N̂αγN̂βδ

• Moreover, under the condition:P
j nj = p, for nj = 0 or 1

each state can be seen as an integer that
corresponds to its binary representation

E =
nX

k=1

bk2k−1 → |0010101100010111〉
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
1

2

3

4

5

6

7

8
−

−

−

−

−

−

−

−

1=9

2=10

3=11

4=12

5=13

6=14

7=15

8=16
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Two-Body and Many-Body Hamiltonians
Dynamical Symmetries, Geometrical Symmetries, ...

FROM NOW ON ALSO COMPUTER STRATEGY IS SET:

• The N-particle configurations can be stored in their binary forms

• The arithmetic operations are transformed into bit-manipulations

• ... and besides all that, the sparse-matrix algorithms are applicable

In other words:

The whole ‘technology’ is set for an effective computer work using
e.g. shell-model techniques while keeping the link with the group-
theory through the explicit presence of the group generator matrices
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N-Body Hamiltonians and U(n)-Group Generators

N-Body Hamiltonians are functions of Un-group generators

Ĥ =
∑
αβ

hαβ N̂αβ + 1
2

∑
αβ

∑
γδ

vαβ;γδ N̂αγN̂βδ

Two-body interactions lead to quadratic forms of N̂αβ = c+
α cβ,

three-body interactions to the cubic forms of N̂αβ, etc.

Hamiltonians of the N-body systems can be diagonalised within
bases of the irreducible representations of unitary groups

Solutions can be constructed that transform as the Un-group
representations thus establishing a link H↔ Un-formalism and,
most importantly, block-diagonal structure of the Hamiltonian,
labelling the states with the good quantum numbers etc.
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N-Body Hamiltonians and U(n)-Group Generators

N-Body Hamiltonians are functions of Un-group generators

Ĥ =
∑
αβ

hαβ N̂αβ + 1
2!

∑
αβ

∑
γδ

vαβ;γδ N̂αγN̂βδ

+ 1
3!

∑
αβ

∑
γδ

∑
κρ

uαβκ;γδρ N̂αγN̂βδN̂κρ . . .

Assuming limitations in terms of matrix elements hαβ and vαβ;γδ

Hamiltonians of N-Fermion systems will emphasise certain sub-groups
of the underlying Un structure and sub-group symmetry

Consequences in Terms of Sub-Groups

Group Un has numerous sub-groups: Um and SUm with m < n,
similarly Om, SOm and in particular R3 and all the point groups
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• The subgroup chains, properties of the Casimir operators
give the mathematical framework to study - among others:

1. The so called ‘Dynamical symmetries’

2. Accidental degeneracies, etc.

Remark:

There is no unique definition of the ‘dynamical symmetry’;
various authors use the liberty of stressing various aspects -
we will here more on the subject later in the week

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Unitary Groups
Physics Applications

Two-Body and Many-Body Hamiltonians
Dynamical Symmetries, Geometrical Symmetries, ...

Subgroup Structure Can Be Very, Very Rich ...

32 Point Groups: Subgroups
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Figure: Richness of the sub-group
structures at the end of chain...

Dashed lines indicate thatsub-
groups marked are not invariant

The trivial groups are denoted as
follows:

C1 ≡ {1I}, Cs ≡ {1I, σ̂},
Ci ≡ {1I, π̂}, C2 ≡ {1I, R̂2},
C3 ≡ {1I, R̂3, R̂

2
3}

Here we show the structure only
at the very end of the Un chain -
this helps imagining how rich the
full group structure is ...
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If Tetrahedral Nuclei Have No Q2-Moments ...

At the exact tetrahedral symmetry the Q2 moments possibly vanish

Figure: Equilibrium shape t1 = 0.15
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Dynamical Symmetries, Geometrical Symmetries, ...

Such a project requires measuring the
branching ratios of well-selected transitions

with as sensitive/selective device as possible

Experiments at Jyvaskyla, Legnaro & Argonne
with the Gammasphere were performed,

others are being prepared
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Unitary Groups
Physics Applications

Two-Body and Many-Body Hamiltonians
Dynamical Symmetries, Geometrical Symmetries, ...

Figure: Gammasphere is the world’s most powerful gamma-spectrometer
(surrounded by the very friendly, warm, stimulating, American atmosphere)
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Baryons, Mesons, Partons and Quarks
Quark Model

Historical Discoveries
Elementary Sub-Nuclear Particles

Discovering Sub-Atomic Particles: The Pion

• Following the prediction of Hideki Yukawa of 1935...

The Discovery of the Pion

• In 1947: Charged pions π± are discovered by Cecil Powell, César
Lattes and Giuseppe Occhialini at the University of Bristol

• In 1949: Nobel Prize awarded to H. Yukawa, for predicting the
existence of mesons

• In 1950: Nobel Prize awarded to C. Powell, for developing the
technique of particle detection using photo-emulsions

• In 1950: Neutral pions, π0, discovered at the Berkeley cyclotron
through the decay into two photons
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First Particles Called Strange: Strangeness

• The discovery of the neutral, strange Λ-particle, in 1951

Here: An example of the results from
liquid hydrogen bubble chamber∗ at
Brookhaven National Laboratory. The yel-
low line at the bottom is an incoming high-
energy proton, it collides with a proton at
rest in the liquid hydrogen creating many
particles. Seven positive pions, a proton,
and a positive kaon (shown in red) curve
off to the right, while seven negative pi-
ons (blue) move to the left. A neutral
Λ is also produced which travels upwards
undetected and then decays into a proton
(yellow) and a negative pion (purple). NB:
the green curve at the bottom is due to an
electron which has been knocked out of its
orbit by the passing proton.

∗Credits: Brookhaven National Laboratory Λ→ π− + p
π− - purple, p - yellow
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Even More Strange Particles Discovered Soon After

• These new particles can be grouped; within the group they decay very
fast, but very slowly to the outside of the group - where from their name

• By attributing a new quantum number∗, ‘strangeness’ S, we are able to
systematise their decay and reaction properties (Table for s = 1

2 particles)

Symbol S 〈Life-time〉 sec Q Decay

Λ 0 −1 2.6×10−10 0


p + π−

n + π 0

Σ+ −1 8.0×10−11 +1


p + π 0

n + π+

Σ 0 −1 7.4×10−20 0 Λ0 + γ

Σ− −1 1.4×10−10 −1 n + π−

Ξ 0 −2 2.9×10−10 0 Λ0 + π 0

Ξ− −2 1.6×10−10 −1 Λ0 + π−

∗Strangeness: introduced by Murray Gell-Mann and Kazuhiko Nishijima to parametrize these properties
Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Even More Strange Particles Discovered Soon After

• These new particles can be grouped; within the group they decay very
fast, but very slowly to the outside of the group - where from their name

• Moreover, strange particles are produced always in pairs in the strong
interactions of the non-strange hadrons for instance π+ +p→ K+ +Σ+
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Elementary Sub-Nuclear Particles

Summarising the Results of the First Discoveries

• There exist ‘heavy’ particles such as nucleons (fermions), ‘medium
heavy’ mesons (bosons) and ‘light’ particles (fermions)

• Names: for nucleons, mesons and other heavy particles

Baryons - from Greek: βαρυζ = heavy

and for the light particles:

Leptons - from Greek: λεπτυς = delicate

• Experiments show that baryons and mesons interact, create other
particles and decay in very short times comparable with 10−24 secs

• We identify the short-time processes with the strong interactions;
nucleons and mesons belong to this category
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Elementary Sub-Nuclear Particles
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Baryons, Mesons and Partons

•We may observe that baryons are, on average, heavier than mesons
thus they may contain more really elementary constituents (partons)

• If we wish to keep simplicity: the smallest number of elementary
constituents must be 2 (mesons) and one bigger must be 3 (baryons)

• If we attribute the baryonic ‘charge’ to all the baryons B = +1,
then anti-baryons must have B = −1 and all other particles B = 0

• It follows that elementary constituents must have B = 1
3

so that

baryons may have B = 1
3

+ 1
3

+ 1
3

= 1

• ... while mesons must be composed of pairs: parton - anti-parton

and thus B = 1
3

+ 1̄
3

= 1
3
− 1

3
= 0

• Elementary charges of partons must be a multiple of Qel. = 1
3

e

• Partons must be Fermions so that both half-integer and integer
spins can be constructed

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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From Baryons, Mesons and Partons to Quarks

• The smallest number of partons is 2; the simplest interaction law
assures that the interactions do not depend on the type of parton[

u′

d′

]
=

[
U11 U12

U21 U22

]
×
[

u
d

]
↔ SU(2)-symmetry

• We must introduce the electric charges by convention:

Quark Symbol Spin B Q

up u 1/2 1/3 +2/3

down d 1/2 1/3 −1/3

• Partons with these properties are called quarks (see below)

• Test for the nucleons and pions

p = uud, n = udd, π+ = ud̄, π− = dū, π0 = uū and/or dd̄

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Baryons, Mesons, Partons and Quarks
Quark Model

Historical Discoveries
Elementary Sub-Nuclear Particles

From Baryons, Mesons and Partons to Quarks

• The smallest number of partons is 2; the simplest interaction law
assures that the interactions do not depend on the type of parton[

u′

d′

]
=

[
U11 U12

U21 U22

]
×
[

u
d

]
↔ SU(2)-symmetry

• We must introduce the electric charges by convention:

Quark Symbol Spin B Q

up u 1/2 1/3 +2/3

down d 1/2 1/3 −1/3

• Partons with these properties are called quarks (see below)

• Test for the nucleons and pions

p = uud, n = udd, π+ = ud̄, π− = dū, π0 = uū and/or dd̄
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Historical Remarks: Parton and Quark Models

• Quark Model, 1964 by Murray Gell-Mann and George Zweig

The quark model uses the concept of
quarks with several properties just as in-
troduced above (see also below).

The initial reaction of the physics com-
munity to the proposal was mixed. There
was particular contention about whether
the quark was a physical entity, or an
abstraction used to explain certain new
concepts that were not well understood
at the time.

Murray Gell-Man
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Historical Remarks: Parton and Quark Models

• Parton Model formulated in 1969 by Richard P. Feynman

In this model, a hadron is
composed of a number of
point-like constituents, called
”partons”. Additionally, the
hadron is in a reference frame
where it has infinite momen-
tum - a valid approximation at
high energies.

Quark model can be seen as
a particular realisation of the
parton model.

Richard P. Feynmann

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Strange Particles: Extension of the Quark Model

• The conservation of strangeness could not be accounted for with
the presence of two quarks only, where from the new hypothesis of
the existence of the third (‘strange’) quark s
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• Illustration of the process of quark - anti-quark annihilation in a
central ‘interaction area’. It can be viewed in analogy to the other
annihilation processes such as e+ + e− → 2γ and many others
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Baryons, Mesons, Partons and Quarks
Quark Model

Historical Discoveries
Elementary Sub-Nuclear Particles

Nucleon Spin & Orbital Motion of Quarks

Jefferson National Accelerator Facility, Virginia, USA. Report
of a discovery that the spins of the proton’s two up quarks (u)
are aligned parallel to the overall spin of the proton, but the
same is not true for the proton’s down quark (d)

In order to make the experimental
data on quark spin agree with theory,
the authors had to take into account
the once-neglected orbital motion of
quarks inside the proton

Credits: Jefferson Lab. and Zheng et al., Phys. Rev. Lett. 2003
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Baryons, Mesons, Partons and Quarks
Quark Model

Historical Discoveries
Elementary Sub-Nuclear Particles

Today’s Truly Elementary Particles: Quarks

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Principle of Experimental Tests of the Quark Model

• Probing the quark structure of protons through deep inelastic
scattering of high-energy electrons; the quark structure is resolved
through the virtual photons when λ� 1 Fm
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• Experiments on high energy e + p scattering fully confirmed these
qualitative considerations providing the basis for the quark model
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Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Convenient Observables: Hypercharge, Y, Isospin T
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Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Historical Remarks about SU(3)-Symmetry

• One shows that generators of the SU(3)-group can be taken as

λ1 =

0@0 1 0
1 0 0
0 0 0

1A λ2 =

0@0 −i 0
i 0 0
0 0 0

1A λ3 =

0@1 0 0
0 −1 0
0 0 0

1A λ4 =

0@0 0 1
0 0 0
1 0 0

1A

λ5 =

0@0 0 −i
0 0 0
i 0 0

1A λ6 =

0@0 0 0
0 0 1
0 1 0

1A λ7 =

0@0 0 0
0 0 −i
0 i 0

1A λ8 = 1√
3

0@1 0 0
0 1 0
0 0 −2

1A

• There are 3 independent SU(2) subgroups with generators:

{λ1, λ2, x}, {λ4, λ5, y} and {λ6, λ7, z}

where the x, y, z are linear combinations of the diagonal λ3 and λ8

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Historical Remarks about SU(3)-Symmetry

• One may define T̂3 ≡ λ3 and Ŷ ≡ 2/
√

3λ8 as well as

T̂± ≡ λ1 ± iλ2; V̂± ≡ λ4 ± iλ5; Û± ≡ λ6 ± iλ7

• One finds easily[
T̂+, T̂−

]
= 2T̂3;

[
Û+, Û−

]
= 2Û3;

[
V̂+, V̂−

]
= 2V̂3

with
2Û3 ≡ 3

2Ŷ − T̂3 and 2V̂3 ≡ 3
2Ŷ + T̂3

• These are the so-called T-, U- and V-spins of Gell-Mann; the max-
imum number of commuting operators is 2 for instance [T̂3, Ŷ ] = 0
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Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

U-Spin, V-Spin, T-spin and SU(3)-Symmetry

• Action of the shift operators on the common basis states |Y ,T3〉

.0 1/2 1 3/2 2 5/2 3

T3

2

3

1

Y Shift Operators

V−

+ V
+

U−

T− T+

U

• These simple constructions lead to the octet and nonet diagrams of the
baryons and mesons paving the way for the SU(3) symmetry in QCD
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Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Three Quarks and Resulting Baryon Periodic Tables

• Combining u, d and s quarks and using Y (alternatively∗ S) vs.
isospin T3 representation we obtain octet and decuplet structures

• The predictions of the existence of all these particles have been
confirmed experimentally supporting the idea of quark constituents

∗Since Y
df
= B + S, one can use alternatively S; indeed B = const. implies constant shift in this case

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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Baryons, Mesons, Partons and Quarks
Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Three Quarks and Resulting Meson Periodic Tables

• Combining quark - anti-quark pairs and using the strangeness S
vs. isospin T3 representation we obtain a nonet structure

• The predictions of the existence of all these particles have been
confirmed experimentally supporting the idea of quark constituents
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Quark Model

T-, U- V-Spins of Gell-Mann
Quark SU3 Multiplets

Three Quarks and Resulting Meson Periodic Tables

• Quark - anti-quark pairs implies s = 0 and s = 1 meson nonets

Spin s=0 Pseudo-Scalar
Mesons

Spin s=1 Vector Mesons

• The predictions of the existence of all these particles have been
confirmed experimentally supporting the idea of quark constituents
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The Heaviest Quarks

Part VII

The Heaviest Quarks
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The Heaviest Quarks

Elementary Constituents of Matter - Today

This is a subject about high-energy limit - Perhaps some other time?

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



The Heaviest Quarks
Charm, Top and Bottom Quarks
The Quarks, Leptons and Elementary Bosons

November Revolution: J and ψ that Became J/ψ

• The existence of the fourth quark has been predicted, among
others, by Glashow, Iliopoulos and Maiani, in 1970

• On the 14th of November 1974 a discovery of a new particle
has been announced simultaneously by Stanford Linear Accelerator
Center (SLAC) and Brookhaven National Laboratory (BNL) groups

• The SLAC group called the new particle ψ and the BNL called it
J - both discoveries concerned the same particle

• The particle (the only one named with two letters) was called J/ψ
- and the leaders∗ of the teams obtained Nobel prize in 1976

• The new particle is interpreted today as a pair new-quark new-
anti-quark, the former called ‘charm’, c : thus J/ψ ↔ cc̄
∗These are Burton Richter and Samuel Ting

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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The Heaviest Quarks
Charm, Top and Bottom Quarks
The Quarks, Leptons and Elementary Bosons

A New Version of the ‘Particle Periodic Table’

• Baryons with increasing number of charmed quarks (counting from
the bottom to the top of the figure)

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



The Heaviest Quarks
Charm, Top and Bottom Quarks
The Quarks, Leptons and Elementary Bosons

The Heaviest Elementary: Top and Bottom Quarks

• Precision calculations of Gerardus ’t Hooft and Martinus Veltman
predict the existence of yet another quark, called top, t

• After these predictions the top quark anti-quark pair was discov-
ered in 1995 at Fermilab (Tevatron) by CDF and D0 collaborations

• Nobel Prize for Gerardus ’t Hooft and Martinus Veltman in 1999

• Single quark production via weak interactions: in March 2009,
both CDF and D0 announced discovery of a single-top production

• According to Standard Model t-lifetime is ∼ 1× 10−25 sec, about
20 times shorter than the time-scale for strong interactions - there-
fore quark t does not hadronize

• Top t offers a unique opportunity to study a ”bare” quark

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems
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both CDF and D0 announced discovery of a single-top production

• According to Standard Model t-lifetime is ∼ 1× 10−25 sec, about
20 times shorter than the time-scale for strong interactions - there-
fore quark t does not hadronize

• Top t offers a unique opportunity to study a ”bare” quark
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From Mendeleiev’s to Baryon Periodic Table

Baryons are particles made of three quarks. The particles can exist in a ground state
(J=1/2) and an excited state (J=3/2). This figure shows the various three-quark
combinations with J=3/2 that are possible using the three lightest quarks – up, down
and strange – and the bottom quark. Past experiments discovered all of the baryons
made of light quarks. The CDF discovery is the first observation of baryons with one
bottom quark and spin J=3/2.

Collider Detector at Fermi-
lab (CDF). The discovery of
the positively charged Σ+

b and

the negatively charged Σ−b in
both spin configurations.

Credits: Fermi Lab. Press Release
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Summary of Quark Flavour Properties

• The meaning of some symbols: J-spin, B baryon-number, Q-charge, Tz-isospin,
C-charmness, S-strangeness, T-topness, B′-botomness

Name Symb M MeV/c2 J B Q Tz C S T B′

Up u 1.5 to 3.3 1
2

1
3

+ 2
3

+ 1
2

0 0 0 0

Down d 3.5 to 6.0 1
2

1
3
− 1

3
− 1

2
0 0 0 0

Charm c 1 270 1
2

1
3

+ 2
3

0 +1 0 0 0

Strange s 104 1
2

1
3
− 1

3
0 0 −1 0 0

Top t 171 200 1
2

1
3

+ 2
3

0 0 0 +1 0

Bottom b 4 200 1
2

1
3
− 1

3
0 0 0 0 −1

• Quarks are considered point particles; • A quark of one flavour can transform into a
quark of another flavor only through the weak interaction; • These transitions occur
through emission of virtual W bosons
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Quarks, Leptons and Force-Transmitting Bosons

You came here from the beginning of Part V. Wish to return?
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Key Issues in the Standard Model
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Quantum Relativistic Wave Equation

Part VIII

Quantum Relativistic Wave Equation,
Related Symmetries
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Quantum Relativistic Wave Equation
Dirac Equation, Elementary Symmetries
Producing Anti-Matter in Laboratory

Dirac’s Search for the Relativistic Wave Equation

• Dirac constructs his equation that describes relativistic s = 1
2 particles

and admits probabilistic interpretation:

(i~γµp̂µ −m0c)ψ(x) = 0; {γµ, γν} = 2 · 1I gµν , 4× 4 matrices

• Solutions ψ, Dirac spinors also called bi-spinors, have the structure

ψ =
“ξ
η

”
, ξ =

“ξ1

ξ2

”
, η =

“η1

η2

”
; γ0 =

»
1I 0
0 −1I

–
, γj =

»
0 σj

σj 0

–

Notation: x ≡ {xµ} = {ct,~r }, p ≡ {pµ} =
{

E
c , ~p

}
, ψ̄ ≡ ψ†γ0

• Dirac demonstrated the searched conservation of probability

̂µ
df
= ψ̄ γµψ, ∂µ̂

µ = 0 j0 = ψ̄ γ0ψ = ψ γ0γ0ψ = ψ†ψ ≥ 0
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Dirac’s Problem with the Relativistic Wave Equation

• The problem: Dirac equation admits negative energy solutions

ψ(±) =
(
ξ
η

)
o

exp
{
∓ i p x/~

}
with E = ±

√
(c~p)2 + (m0c2)2

• These solutions forced a bit artificial
Dirac sea interpretation: infinitely many
particles that form permanent ’vacuum’

• On the other hand it allowed for the
pair-creation mechanism:

- The hole of a given-charge appears as
one opposite charge particle;

- The corresponding excitation energy is
always positive, masses remain equal

0

mc

−mc 

2

2

E
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Discovery of Anti-Electrons: Matter and Anti-Matter

• In 1932: Paul Adrien Maurice Dirac, after a series of difficulties
with the negative energy solutions to the Dirac equation, postulates
the existence of a positron, anti-particle associated with electron

• In 1932: Carl David Anderson, Swedish American finds positrons,
electron-positron pairs, using gamma rays produced by the natural
radioactive nuclides: particle-anti-particle production

• In 1911-1913: Victor Francis Hess, American of Austrian origin,
discovers that radiation detected at 5 km above the sea level is twice
as high as at the sea level (cosmic origin)

• In 1936: Nobel Prize for C. G. Anderson (anti-electrons) and
V. F. Hess (cosmic rays) for their discoveries

• In 1933: Nobel Prize shared by P.A.M. Dirac and Erwin Schrödinger,
”for the discovery of new productive forms of atomic theory”
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Discovery of Anti-Electrons: Historical Documents

The discovery of the positron in 1932 by
Carl Anderson studying cosmic rays. The
particle was deflected by a magnetic field in
the opposite direction to the electron, but
was too light to be a proton

This bubble chamber photograph shows an
electron and a positron (anti-electron) that
are spiralling in opposite directions∗

∗Credits: CERN

Jerzy DUDEK, University of Strasbourg, France Symmetries in Subatomic Systems



Quantum Relativistic Wave Equation
Dirac Equation, Elementary Symmetries
Producing Anti-Matter in Laboratory

Particles and Anti-Particles: a New Symmetry

As a physicist - Whenever you see such an image - recall: particle-antiparticle
symmetry and doubling the universe. In physics: charge conjugation
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Some Historical Steps in Retrospection

• The free Dirac equation generalises simply, within the so-called minimal
coupling scheme, for electromagnetic interactions

pµ →
(
pµ − e

c Aµ
)

: ⇒
[
γµ(p̂µ − e

c Aµ)−m0c
]
ψ(x) = 0

•We can introduce a charge conjugation operator, Ĉ, transforming a given
solution ψ into opposite-charge same-mass solutions ψc :

Ĉ = Ĉ({γµ}) → Ĥc = Ĉ Ĥ Ĉ−1 and ψc = Ĉ ψ

• With the help of the charge conjugation operation one can show

〈ψc |Ĥ|ψc〉 = −〈ψ|Ĥ|ψ〉 and 〈ψc |p̂|ψc〉 = −〈ψ|p̂|ψ〉

i.e. the negative-energy particles seen as positive-energy anti-particles
moving in the opposite sense of time
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Some Historical Steps in Retrospection (2)

• Similarly to the concept of charge conjugation Ĉ, the other discrete
symmetries such as inversion P̂ and time-reversal T̂ have been introduced

• This led to the discoveries of the ĈP̂ as well as ĈP̂T̂ symmetries and
consecutively to the discovery of partial ĈP̂ symmetry breaking

• All these concepts were developed further by Richard Feynman while con-
structing quantum electrodynamics (QED); Nobel Prize in 1965, together
with Julian Schwinger and Sin-Itiro Tomonaga

• Using field theory formalism the concept of charge-conjugation has been
generalised to other charges such as baryonic, leptonic ... etc.

• These new concepts helped in constructing modern theories of elementary
particles (see below)
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Producing Anti-Matter: Today
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Producing Anti-Hydrogen: ATRAP Experiment

• Basing on his general equation governing the motion
of relativistic Fermions, Dirac has formulated for the
first time the prediction of the existence of antiparticles

• This prediction opened the way to the idea that each
particle has an anti-particle partner, not just electrons

• In this way we arrive at the hypothesis of Doubling the
Forms of Matter: There exists Matter and Anti-Matter

To the right: The ATRAP∗ apparatus combines positrons (which enter from the top)
with anti-protons (which enter from below) and meet about one-third of the way up
from the bottom to make neutral anti-hydrogen atoms. To do this the positrons
pass through a special rotable electrode (the element with the circular hole near the
bottom of the wide part of the apparatus)

∗Credits: Physical Review Letters, November 2002
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Anti-Hydrogen and Its Twin Brother: Portraits
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Part IX

A Short Descriptive Lesson about QCD
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Lagrangian Densities and Currents
Local Gauge Invariance

Action Integral and Variational Principle
An Example of a Gauge Theory

Lagrangian Densities and Field Equations

• Remarks about the notations (four-vectors, metric tensor, scalar)

dx ≡ {c dt, d~x}; dx0 = c dt; dx1 = dx ; dx2 = dy ; dx3 = dz

gµν = gµν = diag.{+1,-1,-1,-1}; dx2 = gµνdxµdxν = c2 dt2 − d~x 2

• Lagrangian: Classical mechanics compared to classical field theory

L = L(q, q̇; t) ↔ L = L({ψα}, {ψα,µ}; x); ψα,µ
df
= ∂ψα

∂xµ

• Action integral of the Lagrangian density defined as Lorentz-scalar

S df
=
∫

d4xL({ψα}, {ψα,µ}; x)
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L = L(q, q̇; t) ↔ L = L({ψα}, {ψα,µ}; x); ψα,µ
df
= ∂ψα

∂xµ

• Action integral of the Lagrangian density defined as Lorentz-scalar

S df
=
∫

d4xL({ψα}, {ψα,µ}; x)
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Lagrangian Densities and Field Equations

• Applying variational (‘least action’) principle gives field equations

Euler-Lagrange → ∂

∂xµ

„
∂L
∂ψα,µ

«
− ∂L
∂ψα

= 0 ← Field-Equations

• Defining Lα ≡
∂L
∂ψα

− ∂

∂xµ

„
∂L
∂ψα,µ

«
and Lµα ≡

∂L
∂ψα,µ

we obtain the usual form of the ‘generalised’ current conservation

∂µJµ = 0 where Jµ ≡ Lµα (δ′ψα) +
(
δµν L − ψα,ν Lµα

)
δxν

• Defining a physical problem means: Define the Lagrangian density
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An Example of a Classical Gauge Theory

• Consider n scalar fields ψa with common mass m. The action is:

S =

∫
d4x

n∑
a=1

[
1
2
∂µψa ∂

µψa − 1
2

m2 ψ 2
a

]
; δS → K-G Equations

• The above action can be written down using L taken in the form

L = 1
2

(
∂µΦ

)T
(∂µΦ)− 1

2
m2 ΦTΦ ↔ Φ ≡ {ψ1, ψ2, . . . ψn}

• Consider a group of orthogonal transformations so that O ∈ SOn

OTO = 1I : Φ→ Φ′ ≡ OΦ; (∂µΦ)→ (∂µΦ)′ = O(∂µΦ)
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An Example of a Classical Gauge Theory

• The Lagrangian density (and the theory) are invariant under SOn:

L =
1

2

`
∂µΦ

´T
(∂µΦ)− 1

2
m2 ΦTΦ =

1

2

`
∂µΦ′

´T
(∂µΦ′)− 1

2
m2 Φ′

T
Φ′ = L′

•We say that SOn provides the global symmetry of the Lagrangian

• The underlying group is also called the gauge group of the theory

• Let {T̂ k : k = 1, 2, . . . f } be generators of the group in question.
Theorem of Noether implies the existence of f conserved currents:

Jk
µ ≡ i ∂µ

(
ΦTT̂kΦ

)
; k = 1, 2, . . . f

• Note: Gauge symmetry implies an existence of conservation laws
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Lagrangian Densities and Currents
Local Gauge Invariance

Covariant Derivative, Compensating Fields
Quantum Chromodynamics - Descriptively

Local Gauge-Invariance and Gauge Field

• Let us request that analogue symmetry applies locally O = O(x):

∂µ[O(x)Φ] 6= O(x)
(
∂µΦ

)

• We introduce a coupling constant g , and the gauge field Aµ:

∂µ → Dµ ≡ ∂µ + g Aµ such that
(
DµΦ

)′
= O(x)

(
DµΦ

)
• One can show that gauge fields Aµ = Aµ(x) must have the form

A′µ = O AµO−1 − 1
g

[
∂µ,O

]
O−1

• One can show that there are as many gauge fields as generators
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Locally Gauge-Invariant Lagrangian

• After these steps we obtain the locally gauge-invariant Lagrangian:

Lloc = 1
2 (DµΦ)T(DµΦ)− 1

2 m2 ΦTΦ

• The Lagrangian takes the new form: L = Lglobal + Lint + Lg−f

Lint = 1
2 g
(
AµΦ

)T (
∂µΦ

)
+ 1

2

(
∂µΦ

)T (
AµΦ

)
+ 1

2 g 2
(
AµΦ

)T (
AµΦ

)
• One can show that gauge fields Aµ = Aµ(x) must have the form

Lg−f = − 1
2 Tr

(
FµνFµν

)
with Fµν = − i

g

[
Dµ,Dν

]
← Yang-Mills

• Finally, the classical fields (Lagrangian) will need to be quantised
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Quantum Chromodynamics - Descriptively

Local Gauge-Invariance - Interpretation

• The symmetries usually express a certain redundancy of description

• The equivalence principle of general relativity assures that each
point in the 4D space-time can be associated a local reference frame

• Gauge symmetry: can be seen as analogue of equivalence principle

• Classical field theories need to be quantised (‘a non-trivial step’)

• Quanta of the of the gauge field - A(x) - are called gauge bosons

• According to the interpretation of the Interaction Lagrangian, it
describes particles interacting via the exchange of the gauge bosons
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Local Gauge-Invariance - Electrodynamics

• Consider the electrons in classical electrodynamics. The Action is:

S =

∫
ψ̄(i~c γµ∂µ −mc2)ψ d4x

• The corresponding global gauge symmetry is written down as

ψ 7→ ψ′ = Oψ where O ≡ e iθ; θ = const.

• The global gauge group is U(1) (θ can be seen as a phase angle)

• Localising the gauge θ → θ(x) leads to covariant derivative with
e-charge

Dµ = ∂µ − i
e

~
Aµ

• The gauge-field Aµ(x) becomes four-vector potential of the E-M

Lint =
e

~
ψ̄(x)γµψ(x)Aµ(x) → LQED = ψ̄(i~c γµDµ −mc2)ψ − 1

4µ0
FµνFµν
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Local Gauge-Invariance - Electrodynamics

• Consider the electrons in classical electrodynamics. The Action is:
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∫
ψ̄(i~c γµ∂µ −mc2)ψ d4x
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Quantum Chromodynamics - The Principal Actors

• Compared to one-type of particles in QED - in QCD there are 6
quark fields denoted by ψn, each one being a Dirac four-spinor [ψµ]n

• In QCD, indices i ∈ [1, 6] are related to the so-called quark flavours
- they have given names up, down, charm, strange, top and bottom

• Gauge group is now SU(3) compared to U(1) in electrodynamics

• There are eight generators of this group (Gell-Mann matrices) T̂a[
T̂a, T̂b

]
= i Cc

ab T̂c; a, b, c = 1, 2, . . . 8
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Quantum Chromodynamics - The Principal Actors

• As discussed, there are 8 gauge bosons associated with gauge fields
- here gluons. The indices a, b and c are called gluon-color indices.
These indices correspond to the 8-dimensional vector irrep of SU(3)

• Quarks appear in 3 variants numbered with 3 indices, given the
names red, blue and green, the latter corresponding to the indices of
the basis vectors of the (3D) fundamental representation of SU(3)
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Quantum Chromodynamics - Lagrangian Density

• One can show that the QCD Lagrangian density is the following

L = − 1
4 F a

µνFµν
a︸ ︷︷ ︸

(A)

−
∑n

i=1 ψ̄i γ
µ
(
∂µ − ig Aa

µT̂a

)
ψi︸ ︷︷ ︸

(B)

−
∑n

i=1 mi ψ̄iψi︸ ︷︷ ︸
(C)

(A) - describes free gluon fields expressed with four-potentials Aa
µ

F a
µν = ∂µAa

ν − ∂νAa
µ + C a

bcAb
µAc

ν

The last term leads to the gluon-gluon interaction (unlike in E-D)

(B) - Quarks and gluons interact in terms of the color currents Ĵa

Jµa = −ig
∑n

i=1 ψ̄i γ
µAa

µT̂aψi

(C) - describes the ‘free’ six QCD quarks with the rest-masses mi
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Quantum Chromodynamics - Quarks and Nucleons

High energy collisions - red, green and blue quarks - an artist view
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