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- Mean field approaches widely used to study nuclear structure properties. 
(the advantage of describing the system in terms of simple wave functions)

What is the  problematic about ?

- However, it is not possible to take into account important correlations 
between nucleons by such wave functions, if we require simultaneously 
the proper symmetries. 

-Thus, in practice correlations are treated by symmetry-violating mean field 
approaches. 

- In a second stage, symmetries should be restored. Symmetry properties 
are currently treated with beyond mean field approaches by using projection 
techniques.
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1) The mean field approximation
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 Microscopic description of the atomic nucleus

Nucleus = N nucleons in strong interaction

Nucleon-Nucleon force
unknown  

The many-body 
problem
(the behavior of each nucleon
influences the others)

Can be solved exactly for N < 12

For N >> 10 : approximations

Shell model
• valence space

Approaches based 
on the mean field
• no inert core
• hierarchy of the 
correlations

Bare Force

Effective Force

Phenomenological 
Effective Forces

Zero range
Finite range
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Neutron number

K-H Schmidt et al., Nucl. Phys. A665 (2000) 221

Example of microscopic effects: 
Fission fragment yields

A heavy and a light fragments

            = asymmetric fission

Two identical fragments
= symmetric fission
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Mean field approach

The mean field approach is a theoretical tool for describing complex, open-
shell nuclei for which the dimension of the configuration space becomes 
intractable for other methods of theoretical nuclear structure such as ab-
initio or shell model approaches.

Main assumption: each particle is interacting with an average field 
generated by all the other particles : the mean field

The mean field is built from the individual excitations between the 
nucleons

No inert core is considered.
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The self consistent mean field approach
The Hartree-Fock method 
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Orbitals are obtained by minimizing the total energy of the nucleus
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Wave function                             = antisymmetrized product of A 
orbitals of the nucleons             with
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The basis ingredient is the effective Hamiltonian which governs the dynamics of 
the individual nucleons
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The phenomenological
effective finite-range Gogny force
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P : isospin exchange operator
P : spin exchange operator

Finite range central 
term

Density dependent term

Spin orbit term

Coulomb term

back
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The Hartree Fock equations

Hartree-Fock equations

(A set of coupled Schrodinger equations)
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Hartree-Fock potential
Single particle wave 
functions

Self consistent mean field : 
the Hartree Fock potential depends on the solutions 
(the single particle wave functions)

-> Resolution by iteration
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Trial single particle wave function 

Calculation of the HF 
potential

Resolution of the HF equations

New wave functions

Test of the convergence

Calculations of the properties of the nucleus in its ground state

Effective interaction

)( ii xφ

)( ii xφ

Resolution of the Hartree Fock equations
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Hartree-Fock equations and “technical points about symmetries”

•Symmetry imposed : for a sake of simplicity symmetries can be enforced

 -spherical nuclei : calculation of 1/8 of the nucleus
  axial symmetry + parity enforced : calculation of ¼
  triaxial shapes but parity enforced : ½
 

- spherical nuclei : 1 state should be treated instead of (2J+1)

* Intrinsic symmetries: [H,S]=0

Warning : if the first trial wave function does not break the symmetry S, the
solution will not break the symmetry, even if it should !!

-> Solution : to start with a w.f as general as possible  
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Symmetry breaking Hartree-Fock solutions



Héloïse Goutte                                           Ecole Joliot Curie                       2010

 

Mean-field approximation: to describe the system in terms of simple 
wave functions (Slater determinant).

Problems with symmetries:

Example of the translational invariance strongly broken in ALL nuclei :

 transitional invariant wave functions are products of plane waves

-> not adequate for the description of a (self-bound) finite nuclei

Symmetries of the exact Hamiltonian and symmetries 
of the Hartree-Fock Hamiltonian”

[ ] [ ] 0,Hbut0, HF ≠= SSH exact

But many correlations between nucleons are missing by so simple wave 
functions if we require simultaneously the proper symmetry  behavior
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Some correlations can be treated by a symmetry-violating mean-field approach:

Such as for instance:
• The long range particle-hole (ph) correlations responsible for stable deformations
• particle-particle (pp) correlations for superfluidity

-> can be treated by the Hartree-Fock-Bogoliubov theory that violates J and N.

The stronger the correlations, the better such an approximation. 

Philosophy
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Symmetry violation and phase transition (1/2)

With strong correlations a  symmetry-violating minimum develops

In analogy to solid state physics, the system undergoes a phase transition to 
a symmetry-violating state such as to a deformed state or to superfluid 
phase

Caution : The concept of phase 
transition  is only valid for infinite 
systems. 
In finite nuclei such effects are 
smoothed. 

Illustration of symmetry 
breaking

No 
breaking

Breakin
g

E

Minimum 
with non-
zero
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Symmetry violation and phase transition 2/2
Why a phase transition ?

Phase transition are due to a collective mode that becomes softer and softer:

* Breaking of the rotational invariance related to the spherical-     
deformed transition due to quadrupole vibration        

* Breaking of the particle number related to a transition from normal to   
 superfluid due to the pair vibration mode.

* Breaking of the translational invariance related to the         liquid-
gas transition and to fragmentation due to fluctuations of the         density. 
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Sm

HFB deformation and experimental spectra

Slide from D. Goutte
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Angular velocity of a rotating nucleus

  so

With

To compare with a wash machine: 1300 
tpm

For a rotating nucleus, the energy of a level is given by*�:

 

With J the moment of 
inertia

We also have

* Mécanique quantique by C. Cohen-Tannoudji, B. Diu, F. Laloe)

47
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Illustration of the symmetry breaking in HFB:

Breaking 
of the rotational invariance
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http;//www-phynu.cea.fr

http://www-phynu.cea.fr

Static ground state deformation from HFB

with  characterizing the axial quadrupole deformation

 =0 spherical          > 0 prolate                                <0 oblate

g.s deformation predicted 
with HFB using the Gogny 
force 

CEA Bruyères-le-Chatel
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“Global Study of quadrupole correlation effects”, M. Bender, G.F. Bertsch and P.-
H. Heenen, Phys. Rev. C73, 034322 (2006) 

The energy gained by static deformation is :

Estat def  = E (=0) - Emin

Static deformation energy from HFB (1/2)

Pr
ot

on
 n

um
b

er
 Z

Neutron number N Neutron number N

Deformation Deformation energy
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Main features:

* above Z=50 three regions of well-deformed prolate nuclei :
   mid shell nuclei

* up to a 15 MeV energy gain 

Static deformation energy from HFB(2/2)
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In many nuclei, the minimum of the energy is found for  ≠ 0.

[ ] 0ˆ,HHF ≠J

The deformed ground state solution violates the rotational invariance

Deformation and breaking of the rotational invariance
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-> the breaking of the symmetry is monitored by the magnitude  (and the phase) 
of an order parameter q.

-> In such a continuous symmetry breaking, the energy is independent of the 
phase (Mexican hat)

Order parameter

For the spherical-deformed phase transition the order parameter q is the 
deformation 
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Typical cases of symmetry violations

Rigid spherical:
So symmetry violation

Soft

Well-deformed

HFB results using the Gogny force  from CEA Bruyères-le-Châtel
http://www-phynu.cea.fr 
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Slide from L. Egido, workshop on shell effects  3-5 May 2010 ESNT Saclay

Evolution of the g.s. deformation along an isotopic chain
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Symmetry restoration
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Need for symmetry restoration

* The HFB state is a wave packet and quantum fluctuations  make such a wave 
packet to relax into the symmetry conserving g.s. 

-> the concept of symmetry breaking is only an intermediate description of 
the system and symmetries must be restored.

* Symmetry breaking wave-functions do not carry good quantum numbers

-> restoring symmetries amounts to using an enriched trial wave function that 
carries good quantum numbers (mandatory to calculate for instance transition 
probabilities …)
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Restoration of the translational symmetry breaking (1/2)
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Restoration of the translational symmetry breaking (2/2)

-> Intrinsic Hamiltonian
2

2
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* If we are in the intrinsic system  we don’t have to worry about 
translational invariance

* Using Hartree-Fock we get a localized potential and a localized wave function.

* We have to subtract from the usual HF Hamiltonian the term 
2)(

2

1
∑

i
ip

Am

-> Warning : this “correction” contains a 2-body interaction which is often 
omitted !!!!!!
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Except for translation, the transformation to the intrinsic system and the 
construction of a collective Hamiltonian are difficult.

Because

A complete separation between collective and intrinsic degrees of freedom can 
not be achieved 

A more general way to treat symmetry violations is to use projection technique
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For dynamically broken symmetry, there must exist a 
massless boson : the Goldstone boson. 

If we put a particle in the Mexican hat potential and 
treat it within the small –vibration approximation one 
obtains a zero-frequency mode that corresponds to 
uniform motion around the hat :the Goldstone boson. 

The Goldstone boson and the Godstone mode 

-> In the deformed nuclei we have an excitation spectrum: ie . a rotational band

The collective motion associated to the Goldstone mode in the breaking of the 
rotational invariance due to deformation is given by the rotations.

The Goldstone mode in an even-even nucleus is the T=0 rotational band 0+, 2+, 4+
…
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A few features associated to symmetry breaking

Name Operator In which 
nuclei ?

Due to Order 
parameter

Goldstone 
mode

Translationa
l symmetry

All Density 
fluctuation

d I=1-
T=0

Rotational 
symmetry

deformed Quadrupole 
vibration I=2+ 
T=0

Quadrupole 
deformation

I=0+,2+,4+ 
…
T=0

Particle 
number

All but 
doubly 
magic

Pair 
vibrations
I=0+ T=1

gap I=0+
T=T0,T0±2
, …

0]ˆ,[ ≠PH HF

0]ˆ,[ 2 ≠JH HF

0]ˆ,[ ≠NH HFBCS

 wavesplane  torelatedk with 
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' ∑∑ ++ −=
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Projection methods (1/2) 

Let’s take a symmetry-violating wave function         for instance HFB wave functionφ

φφ )()( Ω=Ω R

)()( ΩΩΩ=Ψ ∫ φfd

It exists f() which causes        to have the proper symmetry.ψ

Schematic illustration of  the restoration 
of rotational invariance

φAnd apply the elements R(Ω) of the group onto 
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Projection methods (2/2)
Example of particle number projection 

φ∑=Ψ
n

n
nPf 2ˆ

∫
−=

π
ϕ ϕ

π

2
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)ˆ(

2

1
deP ANiA

Of course if we are only interested in         with the proper A,
we have  fn=0 2n≠A  

Ψ

Let’s take a HFB wave function        with  φ AN =

2φ

A N
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State of the art calculations example 1

“Global Study of quadrupole correlation effects”
  M. Bender, G.F. Bertsch and P.-H. Heenen
  Phys. Rev. C73, 034322 (2006) 

Main goal of the study ?

How large are the correlation energies associated with broken symmetries ?

A 4-steps approach :

 1) Constrained HFB calculations
 2) Projection onto good particle numbers
 3) Projection onto good angular momentum
 4) Axial quadrupole configuration mixing
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 Particle number projection

Eigenstates of J2, Jz N and Z

Angular-momentum projection
Huge simplifications in the axial case:
only one Euler angle, and no K mixing

HFB state, 
(deformation q)

qZN
J

MK PPPqZJMKN Φ=
0000

The next step in treating quadrupole correlations is to mix configurations of 
different deformations. (Generator Coordinate Method)

∑=
q

Jk qZJMKNqfkZJMKN 0000 )(
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Configuration mixing : why ?

Why ?

-Take into account more correlations

- give access to ground state and excited 
states
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HFB results projected 
on N and Z

+ projection on J

+ configuration mixing
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HFB results projected 
on N and Z

+ projection on J

+ configuration mixing
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HFB results projected 
on N and Z

+ projection on J

+ configuration mixing
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HFB results projected 
on N and Z

+ projection on J

+ configuration mixing
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HFB results projected 
on N and Z

+ projection on J

+ configuration mixing
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From M. Bender

Orders of magnitude
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A systematic study of low-energy nuclear structure has been carried out 
using the 5DCH (5 dimensional collective Hamiltonian ) formalism  based on
HFB basis states and the D1S interaction

Results for nuclei with Z=10 -110 and N < 200

* Ground state :  rc, S2n, S2p
            -> Ecor, Q20

* Y-rast band 0+1, 2+1, 4+1, 6+1  energy, transition probabilities, 
           quadrupole deformation

* Y-rare states 0+2, 2+2, 2+3

-> Data available CEA website
EPAPS repository

http://www-phynu.cea.fr/HFB-5DCH-table.htm
http://link.aps.org/supplemental/10.1103/PhysRevC.81.014303

State of the art calculations example 2
J.-P. Delaroche et al., PRC 81 014303 (2010)
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Strongly deformed 
actinides

Z = 80 – 82 , N = 104

First 2+ state:
Excitation energy
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Shape coexistence in N ~ 104 Hg and Pb isotopes

See also J.P. Delaroche et al., PRC (1994)
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If the spectrum truly exhibits a -vibrational band, the quadrupole 
transitions between it and the g.s. should be governed by a single 
parameter, the quadrupole operator between the two intrinsic states.

The ratio of these three quantities to their total has been plotted. The 
fraction are given by the distance to a side of the triangle.

Search for -vibrations

222002

2/1

10

7

)2()0020()12()2(

MMM

gEMJJJJgEMJ ggg

==

+= ββ ββ



Héloïse Goutte                                           Ecole Joliot Curie                       2010

 Search for -vibrations

Four regions where the condition 
is well satisfied, including the 
strongly deformed rare earths 
and actinides.

Relative magnitude are shown by 
distances to the sides of the 
triangle

5DCH predicts that the conditions for the existence of the -vibrational 
bands should be quite common.
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 New developments
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3) Derivation of a formal framework for GCM-type calculations to avoid 
surprises from spurious contributions to the energy density functional 
when using clever tricks originally invented for operators
(D. Lacroix, T. Duguet, M. B., PRC 79 (2009) 044318)

1) Full triaxial angular momentum projection (see Bender et al, and Egido et 
al.)

2) Full variation after projection calculations

---------------
4) Particle number and angular momentum projection in odd nuclei

5) Projection during reaction mechanisms. What about projection on particle 
number during fission ??
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Projection after variation Variation after projection

0=∂ φφ H

1) Variation

2) Projection
φP

1) Projection
φP

0=∂ φφ PHP

2) Variation

Advantages: 
       simple …
Drawbacks:   
       violates the variational principle

Advantages:
      * proper variational principle
Drawbacks:
      * more complicated 
(repeat the variation for all I or N)
      * PHP is a multi-body operator …
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240Pu  134Sn + 
106Ru

Nucleon density

N fm-
3

HFB code from J-F. Berger, CEA Bruyères-le-Chatel
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