Development of collective behavior in nuclel

e Results primarily from correlations among valence
nucleons.

 Instead of pure “shell model” configurations, the wave
functions are mixed — linear combinations of many
components.

« Leads to a lowering of the collective states and to
enhanced transition rates as characteristic signatures.
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Coherence and Transition Rates

Consider simple case of N degenerate levels: 2"
™\

— AE=(N-1)V
= VY=ap, +tap:+----agy
> 1
where a = i/
N - .
W l . | :E;Iﬂ = %: 1 |
[=
D+
Consider transition rate from 27 — 0] The more
; configurations
4 i . N2 .
B(E2; 2 -»0; ) = 2J1 | (o7 1E2]2; ) that mix, the
, T o e A stronger the
(0r]E2[2) ) = (0;||[E2| ¥} -aX (0]E2]e; ) B(E2) value and

the lower the
energy of the
collective state.
Fundamental
property of
collective states.



Low Lying —

Quadrupole Vibrations

Angular Momentum

| 2>

E=2Eph

1+ 2-
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Phonon creation and destruction operators

Quadrupole

by, b, (drop “2’)

case

my= | 5= o)
state with
np phonons | pT ’nb}= Jnp =1 ‘nn+1>

b’ b = number operator—counts 7

mb‘nb):bwn—b‘nb_1):m4(nb—1)+1\nb )

bTb\nb):nb‘nb)




Electromagnetic Transitions in the phonon model

g,2'. 4" 2 ph

E2 operator is proportional to the annihilation operator, b, for
a phonon.

<n,-,]b <n,,H;T,. n,.—1>

n (nf‘n,. —-1>
- Eanr'nf—1

EZ2 transition probability

[ ||} 1 <][n

Selectionrule |An=1

B(EZn=2—>n=1) _ 2

c) Branching ratio BEZn=1>n=0) _

d) B(E2;n=2 - 0"g.s.)=0 --- forbidden
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0+

B (E2) VALUES FOR DECAY OF
MULTI-PHONON STATES
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Octupole Vibrations

3
2-phonon 383 =J=024.08

A few examples beginning to be known

0°.2%.4°,6"

96 146
10 5 o 64 Gd

Multi-phonon Octupole — Quadrupole

3 @ 2




Deformed, ellipsoidal, rotational nuclei

Lets look at a typical example and see
the various aspects of structure it
shows

Axially symmetric case
Axial asymmetry
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Axial asymmetry (Triaxiality)

(Specified in terms of the coordinate y (in degrees), either from 0 —> 60 or

from -30 —> +30 degrees — zero degrees is axially symmetric)

vy —rigid v — soft (flat,
unstable)

V(y) axially V(y)
llsymm”

Y Y Y
\

V ~ C,B% + Cycos 3y B3+ C,p*

Note: for axially symm. deformed nuclei, MUST have a large C; term



Axial Asymmetry in Nuclei — two types

E~A(A+3)~J(J+6)

+ * i R LS
K=4
\
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Wilets-Jean, Gamma unstable
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0.8

Use staggering in gamma band energies as
signature for the kind of axial asymmetry
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Now that we know some simple models of
atomic nuclei, how do we know where each of
these structures will appear? How does structure
vary with Z and N? What do we know?

* Near closed shells nuclei are spherical and can be described
in terms of a few shell model configurations.

 As valence nucleons are added, configuration mixing,
collectivity and, eventually, deformation develop. Nuclei
near mid-shell are collective and deformed.

* The driver of this evolution is a competition between the
pairing force and the p-n interaction, both primarily
acting on the valence nucleons.



Estimating the properties of nuclel

We know that 134Te (52, 82) is spherical and non-
collective.

We know that 19Dy (66, 104) is doubly mid-shell and
very collective.

What about:
156Te (52, 104) 156Gd (64, 92) 184pt (78, 106) ??7

All have 24 valence nucleons. What are their relative
structures ?7?77?



Valence Proton-Neutron Interaction

Development of configuration mixing,
collectivity and deformation — competition
with pairing

Changes In single particle energies and
magic numbers

Partial history: Goldhaber and de Shalit (1953); Talmi (1962);
Federman and Pittel ( late 1970’s); Casten et al (1981); Heyde et al
(1980°s); Nazarewicz, Dobacewski et al (1980°s); Otsuka et al( 2000°s);
Cakirli et al (2000’s); and many others.



The idea of “both” types of nucleons — the
p-n interaction
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If p-n interactions drive configuration mixing, collectivity
and deformation, perhaps they can be exploited to
understand the evolution of structure.

Lets assume, just to play with an idea, that all p-n
interactions have the same strength. This is not realistic
since the interaction strength depends on the orbits the
particles occupy, but, maybe, on average, it might be OK.

How many valence p-n interactions are there? N x N/

If all are equal then the integrated p-n strength shouid
scale with N, x N,

The NN, Scheme



Valence Proton-Neutron Interactions

Correlations, collectivity, deformation. Sensitive to magic numbers.

Rd/ 2
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P=NN./(N,+N,)
p-n interactions per
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The N N scheme: Interpolation vs.
Extrapolation
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Predicting new nuclei with the N N, Scheme

126

All the nuclei marked with x’s can be predicted by INTERpolation



Competition between pairing
and the p-n interactions

A simple microscopic guide to the
evolution of structure

(The next slides allow you to estimate the structure of

~nla lavs il nA Aividina fuara nioimhar
ally IIUUICUD ”y lllu.l.llJ|Y|||9 allu U|V|U|||9 LWV IIUIIIIJG

each less than 30)

(or, if you prefer, you can get the same result from 10 hours of
supercomputer time)



Valence p-n interaction: Can we measure it?




Empirical interactions of the last proton with the last neutron

Vo, (Z,N) = -Y{[B(Z,N) - B(Z, N - 2)]
- [B(Z-2,N)=B(Z-2,N-2)}

SVpn(MeV)

5 | n 1 " 1 L [ " L M [ o L N
0 10 20 30 40 60 80 100 120 140 160
Neutron Number




NpN, p—n p-n interactions per

- Ny + N, " pairing pairing interaction

p-n / pairing

Pairing int. ~1 MeV, p-n~ 200 keV

Hence takes ~ 5 p-n int. to.cempete with one pairing int.
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The IBA

The Interacting Boson Approximation Model
A very simple phenomenological model, that can be
extremely parameter-efficient, for collective structure

* Why the IBA

e Basic ideas about the IBA, including a primer on its
Group Theory basis

* The Dynamical Symmetries of the IBA
 Practical calculations with the IBA



IBA — A Review and Practical Tutorial

F. lachello and A. Arima

Drastic simplification of

shell model

e Valence nucleons
e Only certain configurations
e Simple Hamiltonian — interactions

“Boson” model because it treats nucleons in pairs

2 fermions » boson




Why do we
need to
simplify — why
not just
calculate with
the Shell
Model??7??

The Need for Simplification in
Multiparticle Spectra

Example: How many 2+ states?

# nuct.

2
2 ds;,

1

4 dsp & 27 |di,J=2.g7,J=0). |d},J=0g},7=2)

154
52 9Mg,
cl.sh. 50 82
N,=12 N,=10

82 126
$1/2 P2
dz2 p3/2
My J_%/?
d i13/2

5/2 12

g7/2 hoyo

50 82

ki A%

| a2, 4,87, =20=2),
| a2, =283, =4J=2),
| a2, 0 =4.83,J=6J=2),
‘ dsi3 8712 =1.ds)y 873 T =1L T =2 )
| @2, 7 =487, T =47 =2).

12 val. win 50 — 82
10 val. vin 82 - 126

How many 2+ states subject
to Pauli Principle limits?

3x 1014111

154Sm 2+ states within the
valence shell space



Shell Model Configurations

Fermion
configurations

Roughly, gazillions !!
Need to simplify

The IBA

Boson

configurations
(by considering only
configurations of
pairs of fermions
withJ=0o0r2.)



IBM Assume [valence | fermions couple in pairs to
bosons of spins O+ and 2+

o+ s-boson

2+ d-boson

s boson is like a Cooper pair
d boson is like a generalized pair

Trva

mM Y1

I
ience nuc

9]

mao f\lf‘\l\l

7
Ullo Ullly

* 5, d bosons — creation and destruction operators

H=H, + Hy + H

interactions

Number of bosons fixed: N = n, + ng

= 12 # of val. protons + Y2 # val. neutrons




Why S, d 2 VALENCE NUCLEONS
- A 1.69
- 1.56 — 4" 1.58
Y . 1 1.47 —
— T 1.43
pl—————128 ——t——
I 118 /B ———————1.20
a:{ 4% 1.10
i 0.8
— "i'ﬂ+— 0 — ---i:n’f —0 — ot 0
[hs.'z} EL?PWE [EEJ2] 2£Fb1m I:g'.“.'!:'2 121-552
Lowest state of all e-e First excited state in non-magic
s nuclei is 0* d e-e nuclei almost always 2*

o - fct gives 0* ground state o0 - fct gives 2* next above 0*



Why the IBA is the best thing since baseball, a jacket potato,
aceto balsamico, Mt. Blanc, raclette, pfannekuchen, baklava, ....

154Sm wmp Shell model == 3 x 104 2* states

Is it conceivable that
these 26 basis states
are correctly chosen to
account for the
properties of the iow
lying collective states?

Need to truncate

IBA assumptions

1. Only valence nucleons

2. Fermions — bosons ‘-J':I \

J=0 (s bosons) IBA: 26 2* states
J =2 (d bosons)



\A/hvwv +hao IRA
VVIIYy LIIT IDA

Why a model with such a drastic simplification —
Oversimplification ??7?

By far the most successful general nuclear collective
model for nuclei

Extremely parameter-economic




Note key point:

"+ Bosons in IBA are pairs of fermions in valence shell

Number of bosons for a given nucleus is a fixed number

154

628m92 N =6 5 = N : NB

11

Basically the IBA is a Hamiltonian written in terms of s
and d bosons and their interactions. It is written in terms
of boson creation and destruction operators.



Where the IBA fits in the pantheon of nuclear models

Ty
« Shell Model (DDe ) - (Microscopic)

* Geometric — (Macroscopic)

~~
* Third approach — “Algebyaic”
l Dynamical
Symmetries

Group Theoretical
—/

» Phonon-like model with microscopic basis explicit from
the start.

Shell Mod. Geom. Mod.



IBA has a deep relation to Group theory

That relation is based on the operators that create, destroy s and d bosons

sf, S, d’L, d operators
W_J
Ang. Mom. 2

Q d’,, d, u=2,1,0,-1,-2

Hamiltonian is written in terms of s, d operators

Since boson number is conserved for a given nucleus, H can only contain
“bilinear” terms: 36 of them.

Gr. Theor. Group is
classification called

of U (6)

Hamiltonian

s’Ls, s’Ld, d’Ls, d'd —>




@ Brief, simple, trip into the Group
Theory of the IBA

DON’T BE SCARED

You do not need to understand all the
details but try to get the idea of the
relation of groups to degeneracies of
levels and quantum numbers

A more intuitive name for this application of Group Theory is

“Spectrum Generating Algebras”



Review of phonon creation and destruction operators

blny) = Jny [y — 1)
bt|n,) = (ny + 1) |1 + 1)

What is a creation operator? Why useful?
A) Bookkeeping — makes calculations very simple.

B) “Ignorance operator”: We don’t know the structure of a phonon but, for many
predictions, we don’t need to know its microscopic basis.

b*biny) = bty [n, = 1) = /g /(ny = 1) + Ting) = my Iy

bTh is a b-phonon number operator.

For the IBA a boson is the same as a phonon - think of it as a
collective excitation with ang. mom. 0 (s) or 2 (d).



‘ Concepts of group theory

First, some fancy words with simple meanings: Generators, Casimirs,
Representations, conserved quantum numbers, degeneracy splitting

Generators of a group: Set of operators , O, that close on commutation.

[0,,0,1=0,0,- 0,0, =0, ie., their commutator gives back 0 or a member of the set
For IBA, the 36 operators SfS, dTS, Sfd, dfd are generators of the group U(6).
[ds,s"s]jnyn, ) =(d'ss's—s'sd 's) |n n,)
=d'sn, |n,n,) —s'sd's|nyn,)
=(n,—s's)d"s|n;n,) ]
e.: N s_(,p]STg) w1 b ‘@&q)l—sdeJqJ
=/n, +13n, $n ﬂ ‘Pl ]Tn -Srerl '\hj

=/n,+1yn,[n +ln 1> > 0
=d's|n,n,)

or: [d's,sTs]=d s




Sub-groups:

themselves

t\— alll lo
b LI} lll 1 V [

e.g: d'd 25 generators—span U(5)
They conserve n , (# d bosons)

Set of states with same n_ are the representations of the group [ U(5)]



‘ Simple example of dynamical symmetries, group chain,

degeneracies
7 M=42
'
//
V'
S - M=4+1
J=2 - M=0
B M=1+1
J=1 €z e M =0
J=0——— e M-y

0(3) =) 0(2)
Ejym=2aJ(J+1) + 26M?

[H,J2]1=1[H,J,]=0 J, M constants of motion



‘ Let’s illustrate group chains and degeneracy-breaking.

Consider a Hamiltonian that is a function ONLY of: s’'s +d’d

Thatiss H=a(s's+d'd) =a(n, + n;)= aN



H=H =aN

Now, add a term to this Hamiltonian:

Now the energies depend not only on N but also on
ngy

States of a given n, are now degenerate. They are
“representations” of the group U(5). States with
different n, are not degenerate



U(6)

= aN




OK, here’s the key point :



Next time

_0
-soft 98 4 2
O(6) 1,43
v 2*
] 0*
Ryp = 2.5
0" ——
+ k=0
2, —
2 4+' 2+. 0+ /{' Deformed 3-33 - 4+
2 1.43
) —re, 27
T =i
00—t 0* / Ry» = 3.33
Rd."z -2 '
u(s) SU(3)
Vibrator Prolate Rotor

Classifying Structure -- The Symmetry Triangle



