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1 INTRODUCTION

Since the first identification of neutron stars, in pulsars, a decade ago,
theoretical and observational knowledge of these unusual objects has
grown at a rapid rate. In this article we describe developments that
have taken place since our 1975 review article on neutron stars (Baym &
Pethick 1975, referred to hereafter as BP), as well as review several of
their more astrophysical aspects not discussed there.

The most striking observational fact about neutron stars is their
existence: at present 321 pulsars, which are generally accepted to be
rapidly rotating neutron stars, have been observed in our galaxy
(Manchester et al. 1978, Taylor & Manchester 1977, Manchester &
Taylor 1977, Smith 1976). In addition, most of the 16 pulsating compact
X-ray sources so far discovered are likely to be accreting neutron stars
in close binaries (for a review see Lamb 1977). The association of the
Crab and Vela pulsars with supernova remnants provides evidence for
the formation of neutron stars in supernovae, a picture supported to a
limited extent by comparison of pulsar populations and lifetimes with
estimated supernova rates (reviewed in Manchester & Taylor 1977).
Optical and X-ray observations of binary X-ray sources provide the
possibility of determining the masses of the neutron stars in these objects
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(reviewed in Bahcall 1978); the results are consistent with present theories
of neutron star structure and formation in supernovae. Quoted results,
with statistical errors, include, for example, My x1 = 1.33+0.2 Mo
(Middleditch & Nelson 1976) and Myg,x.1 = 1.5+0.2 Mo (van Paradijs
et al. 1976, Rappaport et al. 1976); however as Bahcall (1978) emphasizes,
systematic errors in determination of these masses could lead to signi-
ficantly greater true uncertainties.

Measurements of the surface thermal luminosity of a neutron star (in
the soft X-ray, for expected surface temperatures) can allow one to deduce
its surface temperature, T.. By this method Wolff et al. (1975) have placed
anupper bound, T, < 4.7 x 10® K, for the neutron star in the Crab Nebula.
Additional bounds have been reported by Greenstein et al. (1977).

Surface magnetic fields of neutron stars in active pulsars and binary
X-ray sources are inferred, from models of these systems, to be ~1012G.
The principal observational inputs are, for pulsars, the rates of energy
loss (reviewed in Ruderman 1972), and, for X-ray sources, the structure
of the radiation and spinup rates (Lamb 1977, Ghosh & Lamb 1979).
Trimper et al. (1978) observed a feature in the hard X-ray spectrum of
Her X-1, which if correctly interpreted as electron cyclotron absorption
at ~42keV, would imply a neutron star field of 4 x 102G (or if emission
at 58keV, a field ~6 x 1012G).

Information on moments of inertia of neutron stars may be obtained
from observations of the secular rates of change of their spin periods.
Comparison of the slowdown rate of the Crab pulsar with the luminosity
of the Crab Nebula provides a lower bound on its moment of inertia
(>1.5 x 10** gcm?) (Ruderman 1972) while observed speedups, on time
scales ~102-10° yr, of pulsating X-ray sources, combined with model
descriptions of accretion torques, indicate moments of inertia and radii
consistent with the compact objects being neutron stars (Elsner & Lamb
1976, Rappaport & Joss 1977, Ghosh & Lamb 1979). The wealth of
detailed observations of short term variations of pulse arrival times, for
both pulsars and pulsating X-ray sources, offers the prospect of enabling
one to deduce, within the framework of theoretical models, information
about the internal structure of neutron stars. For descriptions of such
work see, for example, Lamb (1977), Lamb et al. (1978), and Pines et al.
(1974), as well as Section 4.3.

We remind the reader of the general structure of neutron stars. Typical
radii are ~10km, masses ~M o, and central densities exceed that of
nuclear matter, po = 2.8 x 10'*gcm™3. Neutron stars have a solid crust,
~1km thick, beneath which is a liquid interior, likely superfluid in part,
beginning at density ~po. A number of possible phases of matter at
densities p 2 2po have been investigated, but which actually occur remains
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somewhat uncertain. We now review recent developments on the equation
of state. In subsequent sections, we discuss models of neutron stars and
dynamical properties.

2 RECENT DEVELOPMENTS ON THE
EQUATION OF STATE

The structure of neutron star matter is reasonably well understood (see
BP) up to about nuclear matter density po where the crust dissolves. In
the very low density regime principal progress has been a better descrip-
tion of the properties of matter near the surface in strong magnetic fields.
Recent work in the theory of nuclear matter has called into question our
understanding of the properties of the liquid regime in the neighborhood
of po, and brought out the sensitivity of the stellar radius and crust
thickness to microscopic details of the equation of state in this regime.
States of higher density matter that have received considerable recent
attention are pion condensation, quark matter, and “abnormal matter”
in which the nucleons become essentially massless entities. For detailed
reviews of the physics of higher density matter see Baym (1977a,b, 1978).

2.1 The Liquid Regime

As in ordinary nuclear matter theory, calculation of the properties of
neutron rich matter in the liquid regime is presently beset by a number of
uncertainties: the choice of the two-body interaction and how to
calculate with it, the role of the internally excited state of the nucleon—
the isobar A(1236 MeV), or N*—in intermediate states in nucleon-
nucleon scattering, and the proper inclusion of tensor correlation effects.
Until recently, the phenomenological Reid soft-core nucleon-nucleon
potential, fit to phase shifts, was generally felt to be satisfactory for use
in calculation of nuclear and neutron star matter. The calculational
methods used have been Brueckner-Bethe-Goldstone “nuclear matter
theory”, which in lowest order sums contributions from two-body scatter-
ing processes, and variational techniques based on trial wave functions.
See Bethe (1971) and BP for reviews of such calculations.

In the past several years the inadequacies of the conventional calcula-
tions have become apparent (Pandharipande et al. 1975, Negele 1976,
Backman et al. 1972), and more accurate calculational techniques are
currently being developed (see reviews by Clark 1978 and Day 1978).
With these improved calculations, the indications are that when one uses
common phenomenological nucleon-nucleon interactions, such as the
Reid, the calculated binding energy and saturation density (i.e. equilibrium
zero-pressure density) of symmetric nuclear matter (equal number of
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neutrons and protons) are too large ; the conclusion, given the correctness
of these calculations, is that the Reid soft-core potential is too soft.
Whether better two-body interactions, derived theoretically from dis-
persion theory, will give more accurate results for symmetric nuclear
matter than the Reid potential remains to be seen. Present indications
are that for Reid type interaction potentials the Brueckner method is
adequate for neutron matter up to p ~ 2po; however, improved potentials
can be expected to modify previous results, e.g. the Baym-Bethe-Pethick-
Pandharipande and Bethe-Johnson equations of state (surveyed by
Canuto 1974).

A second important question, which has great consequences for the
structure of neutron stars, is the effect of the medium on the interaction
potential itself. The important attractive components of the nucleon-
nucleon interaction are believed to arise from processes (analogous to
the atomic van der Waals interaction) in which the two nucleons scatter,
via pion exchange, to virtual intermediate states in which, for example,
one or both nucleons are excited to a A state. Since such intermediate
states generally have higher energy than the initial states, these processes
produce (through the usual second order perturbation formula) a net
attraction. In the two-nucleon scattering problem the energies of the
intermediate states in these processes have their free-space values, and
any potential that fits nucleon-nucleon phase shifts implicitly takes the
intermediate states to be in free space. However, as Green and
Haapakoski (see Green 1976) pointed out, the nuclear medium will have
two important effects on the intermediate range attraction. First, the
Pauli exclusion principle forbids processes in which one of the inter-
mediate nucleon states is already occupied ; this effect eliminates some of
the attraction. Second, because the particles are not in free space the
intermediate state energy denominators in such processes will also be
modified ; this “dispersion correction” also tends to reduce the attraction.
The net result is a decrease in the intermediate range attraction in the
medium, which becomes more important with increasing density. This
effective repulsion is not taken into account in calculations that use a
phenomenological two-body interaction.

The process most strongly affected is that in which just one of the
nucleons is excited to a A state, a process particularly important in
neutron matter. [ The reason is that two neutrons, or two protons, must
have total isospin T = 1, while a neutron and proton can have total
isospin T=1 or 0. In the isobar process the nucleon plus A in the
intermediate state can only have T =1 or 2 (the isospin of the A is 3)
and thus this process occurs only in T =1 states.] To compute the
effects of the medium one must solve a coupled channel problem, treating
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the A as an elementary particle that can be present in the medium.
Detailed calculations (Holinde & Machleidt 1977, Green 1976, and
references therein) show that with A’s explicitly included, one finds that
at higher densities (above po) the T =1 interactions can change from
attractive to repulsive. The effect in symmetric nuclear matter is to
lower the saturation density (since in the conventional calculations only
interactions in T = O states became repulsive at higher density; the T =1
interactions remained attractive).

In neutron stars, this effect implies a stiffening, for p around p,, of
the equation of state, i.e. an increase of the pressure for given density
(Smith & Pandharipande 1976), and thus it tends to make a neutron
star of a given mass larger in size and lower in density, as well as
making the crust increase in mass and volume (Pandharipande et al.
1976). Effects on models are reviewed in Section 3 below.

Another effect on neutron stars is an increase, compared with the
predictions of the Reid potential, in the proton fraction in the matter
at higher densities. Because in the Reid calculations the T = 0 interactions,
which are effective between protons and neutrons, become repulsive at
high density, while the T =1 do not, it is expensive to have protons
at higher densities. However if the T =1 interactions also become
repulsive, it is then more favorable to have a fraction of the nucleons
be protons.

Calculations for symmetric nuclear matter that include A’s have been
carried out in Brueckner theory and by variational methods only in
low order, and do not produce the correct saturation density and
binding energy. Also, the matrix elements describing the transitions
from the initial neutron-neutron state to the intermediate nucleon-A
state are uncertain, especially at higher momentum transfer. Thus, the
implications for neutron stars should be regarded as tentative. In
particular, tensor correlation effects (see, for example, Friman & Nyman
1978), which tend to soften the matter (as well as lead to pion con-
densation), have not yet been adequately included in either nuclear
matter or neutron star matter calculations. Until one has a satisfactory
theory of symmetric nuclear matter, the equation of state of neutron
star matter must be regarded as uncertain.

The neutron liquid both in the crust and interior as well as the
proton liquid in the interior are believed to be superfluid. Pairing
calculations, reviewed in BP, indicate that at lower densities the
neutrons are paired in 'S, states, as are the protons in the interior,
while at densities =po, the neutrons are instead paired in *P, states.
The calculated energy gaps, a measure of the strength of the superfluid
pairing, depend sensitively, however, on detailed assumptions about the
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interactions between nucleons. Clark et al. (1976) have examined the
sensitivity of the neutron 'S, gaps to interactions between neutrons
induced by particle and spin density fluctuation effects, and conclude
that at low densities ( <0.1 po) such effects reduce the effective interactions
between neutrons that are responsible for pairing by ~ 309, and reduce
the gap and corresponding transition temperature by a factor of ~3.
Further explorations of effects on both neutron and proton gaps of
polarization-induced interactions would be useful. Variations in nucleon
effective masses assumed in the calculation of pairing strengths can also
lead to modifications of the gaps of similar magnitude.

Sauls & Serene (1978) have estimated, via the Ginzburg-Landau
approach, corrections to the weak coupling BCS calculations of *P,
neutron pairing, and conclude that such corrections should not produce
a qualitative change in the properties of the superfluid. Effects of super-
fluidity on cooling and dynamics are discussed in Section 4.

2.2 Pion Condensation

A pion-condensed state of matter is one in which the pi meson field,
which normally fluctuates about nucleons, develops a nonzero expectation
value. In general, pion condensation in matter tends to soften the
equation of state, countering the stiffening effect of A isobars. It is also of
astrophysical interest for its important enhancement of neutrino cooling
of neutron stars (described in Section 4.2). Furthermore, pion con-
densation might lead to possible solidification of high density matter.

Present calculations (reviewed in Brown & Weise 1976, Migdal 1978)
indicate the onset of condensation of the charged-pion field in neutron
matter at a density ~2po. In this charged pion-condensed state the
neutrons become rotated in isospin space into coherent superpositions
of neutrons and protons, with the microscopic pion field carrying a
compensating negative charge density. Methods for describing the
properties of the condensed state based on the chiral symmetry of low
energy pion-nucleon physics, including effects of isobars and nuclear
correlations, have been developed by Campbell, Dashen, and Manassah,
and Baym, Au, and Flowers (see Baym & Campbell 1979 for a detailed
review and list of references to earlier work). Brown & Weise (1976)
have calculated equations of state for spatially uniform charged pion-
condensed neutron matter, and Au (1976) has extended this work to
include effects of beta equilibrium. The calculations of Migdal and
collaborators on the properties of the condensed state are reviewed in
Migdal (1978). Calculations of a spatially uniform neutral n°-condensed
state of neutron matter are given by Dautry & Nyman (1979).

As an example of the effect on the equation of state that can be pro-
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duced by pion condensation we note that Au (1976) finds at 3p, a
reduction ~759% in the pressure from its value in the noncondensed
state. The detailed modification of the equation of state by pion con-
densation is quite sensitive, however, to the magnitude of the effective
nucleon-nucleon interactions (the Landau Fermi-liquid parameter g")
assumed, a quantity somewhat uncertain, both theoretically and experi-
mentally, for high density neutron matter; extrapolation of pion-nucleon
scattering amplitudes to the “off-shell” regime of pion condensation
results in further uncertainties. Thus, present estimates of the modification
of the equation of state by pion condensation should be regarded as
preliminary but illustrative. A full reliable calculation of the equation of
state including the stiffening effects of isobars described in Section 2.1
together with the softening effects of pion condensation has yet to be
carried out.

A question of substantial interest is whether neutron matter in the
deep interior of a neutron star can solidify. Calculations based on
conventional two-body forces acting between neutrons (reviewed in BP)
indicate that solidification of neutron matter would not take place.
However, as Pandharipande & Smith (1975a) described, 7° condensation
offers a possible mechanism for producing a solid state. Takatsuka et al.
(1978) have shown similarly that z° condensation might lead to a one-
dimensional “solidification” of the matter, analogous to a liquid crystal.
The answer to whether such states can actually occur in neutron star
matter must await a fuller understanding of the nuclear matter problem.

2.3 Field Theoretic Models of High Density Matter and the
Abnormal State

At densities much greater than p, the meson clouds surrounding the
nucleons in matter become strongly overlapping, and one does not
expect a description in terms of distinct particles—neutrons, protons,
etc.—interacting via two-body forces to remain valid. One approach
that has been explored is to describe high density matter in terms of
relativistic “bare” nucleons interacting via explicit meson fields. The
basic type of model is that given by Walecka (1974) in which the
nucleons interact attractively via coupling to a scalar meson field o,
and repulsively through coupling to a more massive vector field w.
The meson fields are assumed to be linear, i.e. not coupled to themselves.
Chin & Walecka (1974) fitted the coupling constants and meson masses
in the theory to reproduce, in the mean field approximation, the
properties of symmetric nuclear matter and then derived a neutron
matter equation of state. Similar calculations on this model were
carried out by Bowers et al. (1975), and by Pandharipande & Smith
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(1975b) who include pion exchanges as well. The physics of the model
has been explored in further detail by Chin (1977).

Walecka’s model predicts that at high densities the energy density
e = pc? equals ¥g2/mZ)n?, where n is the baryon density, g,, is the @
meson-nucleon coupling constant, and m,, is the w mass. The behavior
p ~ n? which is also characteristic of calculations of matter interacting
via finite range two-body potentials, predicts a limiting pressure P = pc>.
However, in similar models in which the mass of the w meson is
generated dynamically, p ~ n*? and thus P = $pc? at high densities
(see, for example, Harrington & Yildiz 1974, Krive & Chudnovskii 1976,
Killman 1978). In another variation of the mean field theory model,
Canuto et al. (1978) include attractive nucleon-nucleon interactions via
exchange of massive spin-2 f° mesons (Bodmer 1971, 1973); in this
model, however, matter is unstable under collapse to arbitrarily high
density.

Lee & Wick (1974) have proposed a possible high density “abnormal
state” of matter in which the nucleons become nearly massless. Such a
state can arise in a field-theoretic model of matter as follows. The scalar
field o couples to the nucleons as an addition to the nucleon rest mass,
ie. it appears in the energy in the form [m,+go(x)Jy(x)y(x), where m,
is the usual nucleon mass, g is the coupling constant, and (x) is the
nucleon field. Thus the ¢ field acts as a dynamical modification of the
nucleon mass. The energy also contains a potential energy density
V(o(x)), which is minimum (and =0) when o(x) =0, and guarantees
that in the vacuum the mean value (o) of the ¢ field vanishes and the
effective nucleon mass equals m,. When the density is finite {o) will
be nonzero in the ground state and the effective nucleon mass will be
m* = m,+g<{o).

Now at high densities it becomes favorable for {o) to become
~ —m,/g, and thus m* ~ 0, since then the nucleon rest energy is
lowered by ~mgn, while the cost of having {6) ~ —m,/g is essentially
the field energy V(<o) = —m,/g), a term independent of the density.
Thus, for n = V(—m,/g)/m, one might expect the system to undergo a
transition to an abnormal state in which m* ~ 0. In Walecka’s model
the o field is linear, V(o) = 4m20%c>/h3, where m, is the mass of the
quantum of the ¢ field, and m* decreases smoothly with increasing
density. On the other hand, in more complicated models such as the
g-model (see Baym 1977a, 1978 for a description in this context) in which
V(o) = 3m26?(1 +go/2m,)*c5/h> the abnormal state can appear via a sharp
phase transition.

The possibility of an abnormal state in pure neutron matter was
first considered by Kéllman (1975) and Kallman & Moszkowski (1975).
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They included a mean w field in the o-model, and predicted that pure
neutron matter would have an abnormal state; however, since their
model was not fit to normal symmetric nuclear matter, their prediction
of an abnormal state was inconclusive. Pandharipande & Smith (1975b)
have given a detailed analysis of the problem of fitting the o-model to
the binding energy, saturation density, and symmetry energy of symmetric
nuclear matter, and conclude that if the model is made to fit these
properties it will not have an abnormal state. Moszkowski & Kallman
(1977) have also fit mean field models to symmetric nuclear matter and
the symmetry energy, through inclusion of a mean p field in Walecka’s
model, or through adjustment in the o-model of the terms in V(o) cubic
and quartic in ¢; they no longer find an abnormal state in neutron
star matter.

Given the difficulties of fitting the properties of the normal state
within the o-model, one can adopt the point of view that even though
the details of the normal symmetric nuclear matter state, which, being
on a scale of tens of MeV, are too subtle to be fit by simple models,
such models might still give a reasonable description of the larger
scale energy changes in the abnormal state. In this spirit Nyman & Rho
(1977) have given a phenomenological calculation in the g-model of a
(first order) transition in neutron matter to an abnormal state, but
conclude that while the energy of the abnormal phase lies below that
of the normal phase at sufficiently high density (the abnormal phase is
not self-bound there), the transition to the abnormal phase always occurs
at too high a density for abnormal matter to be present in neutron
stars. See also Migdal (1978).

Model calculations illustrating the relation of pion-condensed and
abnormal states in matter have been given by Chanowitz & Siemens
(1977) and by Akhiezer et al. (1979).

24 Quark Matter

The picture that quarks are the basic constituents of strongly interacting
elementary particles (such as nucleons, A’s, hyperons, and #, p and
mesons) has by now gained wide acceptance, and suggests that a more
fundamental description of matter at very high densities is in terms of
quarks. In particular, one expects that when matter is sufficiently com-
pressed, the nucleons will merge together and undergo a phase transition
to quark matter, a degenerate Fermi liquid, in which the basic con-
stituents are the quarks of which the nucleons were composed. In
addition to its possible occurrence in neutron stars, quark matter is of
interest in the description of the early universe when the baryon density
greatly exceeded that of nuclear matter (Chapline 1976). One can very
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roughly estimate the density at which the transition to quark matter
might occur by noting that nucleons begin to touch at a particle density
~(4nr3/3)7 !, where ry < 1fm = 10713 cm is an effective nucleon radius;
this density is of the order of a few times po.

In the basic quark model, the quarks are spin-} fermions, of baryon
number 4, which come in at least four “flavors,” u, d, s, and ¢ (up,
down, strange and charmed). The electrical charges of these four flavors
are 3, —%, —3, and % respectively; all have strangeness zero, except s
which has strangeness — 1. For each quark q there exists a corresponding
anti-quark ¢ with opposite quantum numbers. Mesons are composed of a
quark and anti-quark, and baryons (of unit baryon number) of three
quarks. For example, a proton is a uud bound state, while a neutron
is udd. In addition quarks have an internal degree of freedom, color,
originally introduced to enable quarks to obey the Pauli principle. In
the fundamental model of quark-quark interactions—quantum chromo-
dynamics (or non-Abelian Yang-Mills SU(3) gauge theory), in which
colored quarks interact via exchange of eight massless vector gluons
(analogues of photons in ordinary electrodynamics)—color functions
effectively as a charge for gluon interactions. Loosely speaking, two
quarks of the same color “repel,” while two quarks of different color
“attract” with half the strength. Thus a combination of three quarks each
of different color (more correctly, a color singlet) acts as a neutral object,
producing no long-range gluon “Coulomb” field.

The u and d quarks are believed to have a fairly small mass, m,,
mq ~ 10MeV ; the strange quark is heavier, with m, perhaps ~ 100-
300 MeV, while the charmed quark is much heavier (m.> 1GeV).
Because of its high mass the charmed quark (as well as newer high
mass quarks) is not expected to be present in quark matter that could
occur in neutron stars.

The quark-gluon theory has the remarkable property that quark
interactions at sufficiently short distances become arbitrarily weak.
Furthermore in quark matter that is in a color singlet (or color neutral)
state, the interactions between quarks at distances large compared to
the interparticle spacing will be screened out, analogous to screening of
long range Coulomb fields in a plasma in equilibrium. Thus, as Collins &
Perry (1975) pointed out, at high densities the net quark interactions
in quark matter in an overall color singlet state should be sufficiently
weak that the matter can to a first approximation be taken as a non-
interacting relativistic Fermi gas. Quark matter formed from com-
pression of pure neutrons will have twice as many down quarks as up
quarks (and will have 12 Fermi seas, two for u and d, times 2 for spin,
times 3 for color). Similarly high density quark matter consisting of u, d,

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979ARA%26A..17..415B&amp;db_key=AST

FTI79ARAGA. 17 T 158

NEUTRON STARS 425

and s quarks in beta equilibrium can be shown to have equal densities
of these three flavors, and no electrons or muons present (Collins &
Perry 1975). In both cases the energy density is ocn*3 at high baryon
density n. Because quark-quark interactions become weak at high
density (equivalently, the effective quark-gluon coupling constant g
decreases with increasing density), one can calculate the high density
equation of state as a perturbation expansion in the effective fine-
structure constant o, = g /4n. Terms up to order o? have been calculated
by Baluni (1978a,b) and Freedman & McLerran (1977, 1978). As the
density decreases the interactions become more and more important,
leading eventually to confinement of the quarksin hadrons, a phenomenon
not described by such a perturbation expansion.

One simple phenomenological picture of quark confinement is the
MIT bag model (Chodos et al. 1974), in which the quarks in a nucleon
are assumed confined to a finite region of space, the “bag” whose
volume is limited by the introduction of a term in the nucleon energy
equal to the volume of the bag times a constant B > 0. With m, = mq = 0,
the parameters B ~ 55MeV fm ™ and a constant o, ~ 2.2 give a reason-
able fit to observed masses of strongly interacting baryons and mesons.
To calculate the energy of quark matter in this model one simply adds
a term B to the free particle plus interaction energies ccn*. The result
for the energy density is qualitatively similar to that found from an
exact perturbation expansion, and both may be used to produce a first
estimate of the transition to quark matter by seeing, at a given baryon
density, which phase, quark or nucleon, has a lower energy density.

Such calculations within the framework of the bag model of the phase
transition from pure neutron matter to quark matter have been given
by Baym & Chin (1976), Chapline & Nauenberg (1976), and Keister &
Kisslinger (1976). The conclusion of these calculations is that, for all
neutron matter equations of state examined, the phase transition to
quark matter takes place at too high a density for quark matter to be
found in neutron stars. For example, with the Reid pure neutron equation
of state, the density jumps from 14-40 x 10> gcm™3 at the transition,
while the maximum central density found in neutron stars described by
the Reid equation of state is 4.1 x 10> gcm™3. On the other hand the
bag model calculations are quite phenomenological and neither they nor
the nuclear matter calculations ought to be regarded as conclusive for
densities well above that within nucleons, ~ 1.4 p,. When one compares
perturbation expansions of the quark matter energy, using a density-
dependent coupling constant, with pure neutron equations of state
(Chapline & Nauenberg 1977a, Baluni 1978a,b, Freedman & McLerran
1978, Kislinger & Morley 1978, Baym 1977b) one finds that, depending

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979ARA%26A..17..415B&amp;db_key=AST

FTI79ARAGA. 17 T 158

426 BAYM & PETHICK

on the assumed coupling strength, the transition to quark matter could
well occur at densities sufficiently low that neutron stars could have
quark matter cores. At present, the strength of quark-gluon interactions
is not well enough established experimentally, nor is the quark confine-
ment problem at low densities adequately understood for one to say more
precisely whether quark matter is present in neutron stars. (Possible
existence of a class of dense “quark stars” is discussed in Section 3.)
The quark matter calculations described here are reviewed in detail in
Baym (1977a, 1978).

2.5 Finite Temperature Equations of State

The equation of state of dense matter at finite temperature is crucial to
understanding formation of neutron stars in supernovae, and also the
early moments of their life. In the final stages of stellar collapse in
supernovae, matter passes through a range of densities from ~10°gem™?
to about several times po; temperatures in the collapse may reach a few
times 10'* K. During the collapse, whose time scale is <1 sec, substantial
electron capture takes place; because of neutral-current weak inter-
actions, the neutrinos produced can be trapped in the matter for time
scales up to ~ seconds, sufficiently long to reach approximate thermal
equilibrium. The primary constituents of the matter undergoing collapse
are nuclei (undergoing various transformations), “free” neutrons and
protons, electrons and neutrinos, both of which behave as free Fermi
gases, and photons. The initial collapse is reversed in a bounce at
densities ( 2 po) at which the adiabatic index of the matter, I’ = dIn P/01nn
(where P is the pressure), rises well above %.

The simplest approximation to the equation of state at subnuclear
densities treats the matter as a mixture of free neutron, proton, electron,
and photon gases (see, for example, Van Riper & Bludman 1977). While
this approach is valid at temperatures high compared with that required
to dissociate nuclei, ~20MeV, it is necessary in collapse to take the
nuclei present into account. In most collapse calculations to date (e.g.
Arnett 1977, Mazurek 1979, see also Nadyozhin 1977) this is done by
use of a semiempirical mass formula extrapolated from laboratory nuclei.
As in the case of zero-temperature matter at subnuclear densities in
neutron stars, a more accurate description requires that one go beyond
the semiempirical mass formula and include the following important
physical effects: (a) the effect of nuclear excited states, (b) interactions
between nucleons outside nuclei, (¢) the reduction of the nuclear surface
energy due to finite temperature, and (d) the Coulomb interaction
between nuclei. Sato (1975) took (a) and (b) into account by employing
the T = 0 result of Baym et al. (1971a), which includes nucleon-nucleon
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interactions, for the bulk energies of matter both inside and outside
nuclei, plus a finite temperature correction calculated assuming that the
kinetic energy of the nucleons is that of a free gas (see also Neatrour
1979). One of the important conclusions of this work was that at high
densities nuclei survive to relatively high temperatures. Mackie (1976)
took (d) into account and used an improved nuclear mass formula
(Mackie & Baym 1977), which allowed for the reduction of the nuclear
surface energy due to the rather large neutron excess in the nuclei.
Mazurek et al. (1979) also estimated the effects of (a), (b), and (d).

Bethe et al. (1979) have recently suggested a possible restriction on the
range of parameters over which one needs to know the equation of
state in collapse. They argue that as the entropy of matter in collapse is
likely small, effects of nuclear excited states cause most nucleons to be
confined to nuclei, with the pressure of matter being provided chiefly by
the degenerate electrons. Consequently, under these circumstances the
adiabatic index, I, of the matter below p < po is close to %, and bounce
will occur at p > p,.

The presently most detailed calculation of the finite-temperature
equation of state at subnuclear densities is that of D. Q. Lamb et al.
(1978), who include effects (a)—(d) through a finite-temperature generali-
zation of the work of Baym et al. (1971a). The bulk free energies of
matter both inside and outside nuclei are those calculated by Lattimer &
Ravenhall (1978) using a Skyrme effective nucleon-nucleon interaction,
which was also used to calculate the surface free energy (Ravenhall &
Lattimer 1979). The internucleus Coulomb energy is taken into account
using the Coulomb liquid calculations of Hansen (1973). An important
conclusion of this work is that I" at subnuclear densities remains close to
% for a wide range of entropies and lepton fractions, implying that bounce
will occur at densities > po over a large range of initial entropies during
the collapse. Calculation of the finite-temperature equation of state in
the neighborhood of nuclear matter density, a quantity needed for under-
standing details of the bounce and subsequent shock formation, contains
at least as many difficulties as the zero-temperature calculations (Section
2.1).

Buchler & Coon (1977) and Buchler & Datta (1979) have calculated
the equation of state of a hot neutron gas from a more microscopic
approach employing various two-body scattering approximations (in the
sense of Brueckner theory) for the free energy. One can conclude from
these papers that neglect of the temperature dependence of the effective
nucleon-nucleon interaction, as when using the Skyrme interaction, is a
reasonable approximation in the temperature—density regimes where
the interactions produce a significant contribution to the free energy.
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Further calculations of hot neutron star matter, using the finite-
temperature Thomas-Fermi method, are given by El Eid & Hilf (1977).

An equation of state of finite-temperature neutron matter has been
computed by Walecka (1975) from his relativistic mean field theory
model (Walecka 1974). (See also Bowers et al. 1977b,c, and Freedman
1977.) While such a calculation omits too much of the physics at low
densities to be relevant to the supernova problem, it is possibly applicable
at densities well above po. The “liquid-gas” phase transition at subnuclear
densities present in this calculation (for which there is no evidence in
potential theory models, expected to be more reliable at such densities)
1s most likely an artifact of the model and the choice of parameters.

An initial calculation of finite-temperature quark matter within the
framework of the MIT bag model has been carried out by Chin (1978),
who concludes that the density of the transition to uniform quark matter
falls with increasing temperature. See also Shuryak (1978).

2.6  Matter in High Magnetic Fields

In the strong magnetic fields expected in neutron stars, the properties
of matter at relatively low densities are very different from those in the
absence of the field. Individual atoms become compressed, and relatively
elongated in the direction of the magnetic field, and can bind together
covalently to form polymerized chains in which the electrons are free to
move along the length of the chain. The chains may then be bound
together by electrostatic forces to form a solid, which at zero pressure
has a density much greater than that of terrestrial solids. During the
past few years there has been a considerable amount of work on the
properties of matter in strong magnetic fields, and while the basic
picture remains the same as that described in BP, a number of the
quantitive results have changed.

An astrophysically important quantity in descriptions of neutron star
surfaces and hence in theories of pulsar emission (Ruderman &
Sutherland 1975) is the cohesive energy, i.e. the energy of the condensed
polymerized matter in a strong field, compared to that of isolated atoms
in the same field. Hillebrandt & Miiller (1976) pointed out an error in
the earlier calculations of Chen et al. (1974) that led to an overestimate
of the cohesive energy. The most reliable calculation to date is that of
Flowers et al. (1977), who used a variational approach including electron
exchange, the importance of which was stressed by Glasser & Kaplan
(1975), and allowed for buildup of the electronic charge in the vicinity of
nuclei. They find cohesive energies ranging from 2.6keV /atom at field
B=10">G to 8.0keV/atom at B=5 x 10'>G, compared with Chen
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et al’s (1974) results of 10keV /atom and 20keV /atom. The zero-pressure
densities are not significantly modified from previous results.

The new calculated cohesive energies are small compared with the
binding energy of an individual iron atom, ~50keV. Given the fact that
the cohesive energy is the difference of two large energies, each calculated
variationally, one cannot conclude with certainty that at zero pressure
the condensed state formed of polymerized chains is energetically
favorable compared with a more ordinary state of elongated atoms with
weaker metallic binding. (Because of the compression of atoms in
strong fields, this latter state would at zero pressure still be at density
much higher than terrestrial solids, but perhaps an order of magnitude
below that of the magnetically polymerized solid.) To improve upon the
estimates of Flowers et al. will be difficult, and the extent to which models
of pulsar radio emission will be affected by a reduced cohesive energy is
an open question.

The spectra of atoms in strong fields have been reviewed by Garstang
(1977), with particular emphasis on H and He. Also, Sarazin & Bahcall
(1977) have calculated Zeeman splitting of X-ray emission lines from
Fe XXV and XXVI and other ions, and suggest that observations of
these line profiles may enable one to determine both the direction and
magnitude of neutron star fields.

3 NEUTRON STAR MODELS

Construction of neutron star models is of interest not only for learning
their physical properties—radius, moment of inertia, density profile—
for a given mass (and equation of state), but also for determining the
allowed range of neutron star masses. In particular, knowledge of the
maximum allowable neutron star mass 1s an important ingredient in
attempts to identify black holes from measurement of masses of compact
objects.

Neutron star models are constructed from a given equation of state
P(p) by integration of the equation of hydrostatic balance, which for
general relativity is the Tolman-Oppenheimer-Volkoff equation. See
Baym et al. (1971b) for a discussion of numerical integration methods,
and Arnett & Bowers (1977) for an extensive comparison of models.

Figure 1 shows (for general relativistic stars) the resultant gravitational
masses M as a function of the central mass density p. for a representative
sample of equations of state: MF is the Pandharipande-Smith (1975b)
mean field theory calculation, similar to that of Chin & Walecka (1974);
TI 1s the Pandharipande-Smith (1975a) tensor-interaction model, which
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incorporates approximately stiffening effects on the equation of state due
to isobars (Section 2.1); BJ is for the Bethe-Johnson (1974) equation of
state I, which includes small effects of hyperons (see also Malone et al.
1975); R is for the pure neutron equation of state with the Reid potential
(Pandharipande 1971); = is for the Reid equation of state as modified by
charged-pion condensation of a strength that may reasonably be
expected, while 7' shows the results of somewhat stronger pion con-
densation, in which there is a large first order phase transition at the
onset of condensation (Maxwell & Weise 1976). The estimates of Hartle
et al. (1975) on effects of pion condensation (their case n’) are quite
similar to the case n'. The maximum possible neutron star mass, given
by the maximum of M(p.), is fairly sensitive to the equation of state,
tending to increase as the equation of state becomes stiffer, but remaining,
as we see, <3 M o, and above the masses ~1.4 M o observed in Her X-1
and Vela X-1. The central density for a given mass decreases as the
equation of state becomes stiffer.

The corresponding radii of the stars, shown in Figure 2, are also
sensitive to the stiffness of the equation of state, and in particular to
the detailed behavior in the neighborhood of nuclear matter density.
(The moments of inertia of these models are discussed in the respective
references.) One sees from the TI curve how inclusion of explicit effects

3.0 T T T T rTTd l L T T L B S B |
MF
-
20 -
M
Mo I 7
1.0 -
1 1 1 a1l 1 1 1 1§ a1
lOl4 lOIS IOIG
pc(g/cmz’)

Figure 1 Gravitational mass (in solar units) versus central density for a variety of equations
of state. The rising portions of the curves represent stable neutron stars. See text for
identification of curves.
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of isobars can increase the radius of a neutron star of a given mass.
Stars with stiffer equations of state will also have thicker crusts since,
for a given mass liquid core, the stiffer the equation of state is around
po, the weaker is gravity at the core-crust interface. For example the
crust of a 1.33 My TI star reaches from a radius of 11.3 to 16.1 km,
while in the same mass R star the crust exists between 9.1 and 9.9 km.
(See Pandharipande et al. 1976 for more detailed discussions.) On the
other hand, as we described earlier, pion condensation can significantly
soften the equation of state, an effect not included in the stiffer MF or
TI models; it tends to contract neutron stars of a given mass, as well as
decrease M ... Because there do not yet exist equations of state reliably
including effects of both isobars and pion condensation, one must regard
the models shown in Figures 1 and 2 as illustrating the range of
possibilities.

A further interesting possibility could occur were neutron star matter
to develop a self-bound state, due, for example, to pion condensation or
an abnormal state. Then, as illustrated by Hartle et al’s (1975) case C/,
stable neutron stars could exist with arbitrarily small mass and radius
(“golf balls™), and surface density equalling that of the self-bound state.

As discussed in Section 2.4, the transition to uniform quark matter
may occur at densities above the maximum central density pPmax In
neutron stars. An interesting question then is whether there perhaps

30 T T T
20+
M
M_e L
1.0+
0 | 1 1
5 10 15 20
R (km)

Figure 2 Gravitational mass (in solar units) versus radius for the same equations of state
described in Figure 1.
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exists a third stable branch of cold stars (after white dwarfs and
neutron stars), “quark stars,” whose central densities lie beyond pmax,
and which are supported against gravitational collapse primarily by the
degeneracy pressure of unconfined quarks (Itoh 1970). The general
relativistic stability condition for a star of mass M and radius R—that
the mean adiabatic index I exceed %(1 +KR,/R), where R, = 2MG/c? is
the Schwarzschild radius and K is of order unity—places a strong
constraint on those equations of state of quark matter that can yield a
stable third branch (see Gerlach 1968). The stability requirement on I'
tends to grow with increasing p., and is ~2 at M, for neutron stars.
Since in the limit of large density, P oc n*® in quark matter, and thus
I' oc %, such a condition is unlikely to be fulfilled for a significant range
of densities of quark matter (see Bowers et al. 1977a). We note though
that, by appropriate choice of parameters, one can construct model
equations of state of quark matter that yield a stable quark star branch
(Chapline & Nauenberg 1977b, Fechner & Joss 1978).

Substantial effort has been devoted to determination of exact bounds
on masses and moments of inertia of neutron stars. Since this subject is
lucidly reviewed by Hartle (1978, see also Sabbadini & Hartle 1977), we
quote only a few major results. If the equation of state is regarded as
known below a fiducial density p¢, assumed to be not far above po (so
that P/pc® is small at py), then the bound on the maximum mass is
given to a good approximation by

Mbound/M o= 6'75(p0/pf)1/29 (1)

assuming only that the equation of state above p; obeys p >0 and
0P/0p > 0. If one furthermore imposes the “causality condition”
0P/dp < c?, then the bound is sharpened to

Mbound/MG = 4-0(P0/pf)1/2- (2)

It should be noted that these bounds lie, for p¢ = po, significantly above
the various M .« that one finds from equations of state derived from
microscopic theory.

The above bounds were derived assuming the validity of general
relativity. Other theories of gravity, however, such as the Rosen-Rosen
bimetric theory and some versions of Ni’s theory, permit significantly
greater maximum neutron star masses than does general relativity (see
Hartle 1978).

4 NONEQUILIBRIUM PROCESSES

In this section we review aspects of the physics underlying non-
equilibrium processes in neutron stars that determine their evolution and
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dynamical behavior, concentrating in particular on transport and hydro-
dynamic properties, cooling processes, and nonequilibrium effects of
superfluidity.

4.1 Transport Properties and Hydrodynamics

Transport properties of dense matter have an important influence on
neutron star magnetic fields and cooling, as well as on other features
of their behavior. Detailed calculation of the electrical and thermal
conductivities of matter at densities <po have been given by Flowers &
Itoh (1976), who have also discussed transport properties of the liquid
regime, assuming it to be a mixture of normal (i.e. nonsuperconducting
and nonsuperfluid) Fermi liquids (Flowers & Itoh, 1979). Ewart et al.
(1975) have discussed the electrical conductivity of the crust, and conclude
that decay of large-scale magnetic fields in the crust during a characteristic
pulsar lifetime will be small unless either the temperature is higher than
estimated, or the crust is very impure or composed of microcrystallites.

The high magnetic fields expected in neutron stars can have a drastic
effect on transport properties, since electrons can move more easily along
field lines than perpendicular to them. Consequently, when w. > 1,
where w, is the cyclotron frequency and t is the relevant transport
relaxation time, the electrical and thermal conductivities, and the
viscosity, are much larger along the field than perpendicular to it. At
densities such that the electron Larmor radius is large compared with the
electron spacing [p > 2 x 10%(B/10'%)*?gcm™?] the structure of the
matter, and consequently the scattering rates, are little affected by the
magnetic field, and transport properties in the presence of the field may
be calculated straightforwardly in terms of zero-field quantities (see, for
example, Flowers & Itoh 1976, Easson & Pethick 1979). At lower
densities, which are of particular interest for determining the properties
of neutron star surfaces, the problem of calculating transport coefficients
is much more difficult. Itoh (1975) has discussed the electrical
conductivity due to electron-phonon scattering, and has also discussed
the refractive index. See also the review by Canuto & Ventura (1977).
The reflection of X rays by a neutron star surface assumed to be
composed of the magnetically condensed matter discussed in Section 2.6
has been considered by Lenzen & Trimper (1978); their results are
applicable only if the neutron star surface may be treated as smooth
on the scale of ~10keV X-ray wavelengths and scattering outside the
surface may be neglected.

Sources of photon opacity, especially in the relatively low densities in
the outer parts of a neutron star, have an important effect on neutron
star surface temperatures. These processes have been studied extensively

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979ARA%26A..17..415B&amp;db_key=AST

FTI79ARAGA. 17 T 158

434 BAYM & PETHICK

for zero magnetic field (see, for example, Carson 1976). Lodenquai et al.
(1974) have studied free-free, bound-free, and Thomson scattering in the
presence of a field; they find that for photons of frequency w having
an electric field vector perpendicular to the magnetic field the opacity is
reduced, for o < w., by a factor ~(w/w.)>.

The rather unusual conditions in neutron star interiors lead to
magnetohydrodynamic behavior different from that in more common
situations. Hide (1971) has pointed out that, for rapid stellar rotation,
the elementary magnetohydrodynamic modes will have frequency spectra
modified from the soundlike dispersion relations in the absence of
rotation. For a review see Acheson & Hide (1973). Time scales to
establish beta equilibrium, allowing for magnetohydrodynamic flows,
have been calculated by Baym et al. (1979); they conclude that the
possible force-free configuration of a magnetic field in a neutron star in
magnetohydrostatic and beta equilibrium suggested by Easson (1976)
can never be realized in practice. The basis of the magnetohydrodynamic
equations has been examined by Easson & Pethick (1979), who also
point out that when the neutrons are superfluid, the strong interactions
will couple the motion of the charged particles to that of the neutrons,
even though collisional effects are unimportant. Jones (1975) pointed out
that proton superconductivity could drastically influence the magnetic
contribution to the stress tensor, which is of importance for the static
deformation of neutron stars, and for the dynamics. Detailed calculations
of the effect were carried out by Easson & Pethick (1977), who showed
that the components of the stress tensor are ~BH_;/4n (where H.; 1s
the lower critical field), a result typically a few orders of magnitude
greater than the normal result B2/8x.

4.2 Cooling of Neutron Stars

Measurement of surface temperatures of neutron stars, through observa-
tion of thermal black body emission, can in principle yield substantial
information about the interior structure of the stars. One may ask, for
example, what are the internal states of matter and processes that could
have enabled the Crab pulsar, made in 1054 A.D. with an interior
temperature ~ 101 K, to cool to its present state with a surface tempera-
ture <4.7 x 106K (Wolff et al. 1975). Knowledge of the temporal
evolution of the internal temperatures of neutron stars is also important
for estimating temperature-dependent properties such as transport co-
efficients, transitions to superfluid states, and solidification of the crust.
After formation the predominant cooling mechanism is neutrino
emission. Photon emission begins to play a role only when the internal
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temperature falls a thousandfold to ~ 10® K, with a corresponding surface
temperature about two orders of magnitude smaller.
In degenerate matter in neutron star cores cooling by the URCA process

n->p+e +v, € +p—on+v, (3)

becomes ineffective unless momentum can be transferred, in the reactions,
to the rest of the system. We can see this by considering the neutron
beta decay. In beta equilibrium, u, = p,+ . to within terms of order
(xT)*/u, where p,, u, and u. are the neutron, proton, and electron
chemical potentials. The neutrons capable of decaying lie within ~«T of
the neutron Fermi surface, and thus the final proton and electron must
lie within kT of their Fermi surfaces; the neutrino energy is also ~«T.
Because the electron and proton Fermi momenta are small compared
with the neutron Fermi momentum p,, the final proton, electron, and
neutrino, as well, must have small momenta. But the initial neutron
must have momentum ~p,, and thus the decay cannot conserve
momentum if it conserves energy. In order for the process to work, a
bystander particle must absorb momentum, as in the “modified URCA
process” (Chiu & Salpeter 1964), n+n—->n+p+e~ +v,, n+p+e —
n+n+ v.. The neutrino luminosity due to this process has been calculated
by Bahcall & Wolf (1965), Itoh & Tsuneto (1972), and most recently by
Friman & Maxwell (1979), who use more realistic expressions for the
nucleon-nucleon interactions, and find a stellar luminosity

L, ~ (6 x 10°°erg/s)(M/M o)(po/p)"*T$ 4

(where T, is the interior temperature in units of 10°K) an order of
magnitude larger than that calculated by Bahcall & Wolf. Due to the
available phase space for the bystander neutron this rate is down by a
factor ~(xT/u,)* from the rate for (3), were that process allowed by
energy and momentum conservation. The calculated rate (4) is sensitive
to the effective masses assumed for the nucleons.

The experimental discovery of weak neutral currents in 1974 suggested
further cooling processes. The most important in the interior of neutron
stars are the nucleon pair bremsstrahlung processes n+n—>n+n+v+v
and n+p —»n+p+v+v, first considered by Flowers et al. (1975), and
re-examined by Friman & Maxwell (1979). The luminosity from these
processes also varies as T?, but is less than 4y the magnitude of that
from the modified URCA process (Friman & Maxwell 1979).

All the above calculations assumed the nucleons to be normal. If
instead they are superfluid, the rates are reduced by factors
~ exp(—A,,p/kT) due to reduction of the number of thermal excitations
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(Wolf 1966, Itoh & Tsuneto 1972). (Here A, , are the neutron and
proton superfluid gaps.) Under these circumstances the neutrino pair
bremsstrahlung process,

e +(ZA) e +(ZA)+v+V (5)

from nuclei in the crust, can be important. Initially estimated by Festa &
Ruderman (1969), who considered only the weak charged-current contri-
bution, it has more recently been discussed by Flowers (1973, 1974), who
also allowed for the finite nuclear size, and by Dicus (1972), Dicus et al.
(1976), and Soyeur & Brown (1979), who calculated neutral-current
contributions. The luminosity from this process varies as T°, and there-
fore decreases less rapidly than the modified URCA process with
decreasing temperature. Maxwell (1979) estimates the total luminosity
due to this process as

L,~ (5 x 10%°erg/s)(M /M o)TS, (6)

where M., is the mass of the crust. In the inner crust, where free
neutrons coexist with nuclei, neutrino pairs can also be produced by
bremsstrahlung in the scattering of neutrons from nuclei (Flowers &
Sutherland 1977); the rate of this process is of order #(e;/30 MeV)>*/?
(A/200)1/3(30/Z)* times that for electron bremsstrahlung, where n ~ -3,
and ¢ is the neutron Fermi energy ; this factor is generally < 1.

Flowers et al. (1976) have pointed out that if neutrons are superfluid,
two neutron-like excitations can annihilate to produce neutrino pairs.
This process is most important just below the transition temperature,
and it can dominate the pair bremsstrahlung process under some
circumstances.

Pion condensation can significantly enhance the cooling rate of
neutron stars in their hot early period, since it permits the analogue of
(3) to occur conserving energy and momentum. (The condensed pion
field itself does not beta decay.) Essentially the excess momentum in (3)
is absorbed by an Umklapp process involving the condensed pion field.
In a weak condensate one can think of the neutron decay process as
occurring by first n»p+e~ +v,, with the proton after the beta decay
existing only in a virtual intermediate state before scattering from the
condensed pion field, changing into a neutron and absorbing energy
Ur = pn— i, and momentum k, the wave vector of the condensed pion
field. Thus as long as the initial and final neutron states are separated
by ~k across the Fermi surface, the process is allowed by energy and
momentum conservation. More precisely, because the nucleon eigen-
states are linear combinations of neutrons and protons, nucleons in
these states (call them f) can beta decay into themselves: f —f+e™ + v,
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f+e” - f+v. In the first process, for example, the neutron component
of the initial f decays to a proton state, which has nonzero overlap with
the final f. In the beta decay the particle f moves a momentum ~k
across the f Fermi surface. The net result is a luminosity (Maxwell et al.
1977)

LT~ (15 x 10% erg/s)6*(M/M o) (po/p) TS, (7)

where 6 ~ 0.3 is an angle measuring the degree of pion condensation.
This rate is ~2.5 x 10%(po/p)*30?/T3 larger than the modified URCA
rate (4), and will, if there is pion condensation, dominate at all tempera-
tures of interest. [ The result (7) is quite close to the estimate of Bahcall &
Wolf (1965) for cooling via decay of free pions, were they to exist, in the
medium. |

The cooling time of a neutron star may be estimated using the fact
that the thermal energy U, which resides almost exclusively in the de-
generate neutrons, is U =~ (10*7 erg)(M/Mo)(p/po)~%*T3. Equating
dU/dt to the neutrino luminosity, one finds that the star cools from
an initial temperature T(i) to a final temperature T(f) in a time

At =~ (02 yr)(p/po) ™ [ To(f)~° — To(i) ] ®)
for the modified URCA process (4), and
At ~ (3 sec)0 ™ 2(p/po) *[ To(D)™*— To(i)~*] 9)

for the pion condensation process (7).

The temperature that determines the thermal emission from a neutron
star is that at the surface T, rather than the interior temperature T.
Neutron star interiors are to a good approximation isothermal, but near
the surface the temperature drops rapidly, and T./T ~ 1072-10"3.
Detailed calculations of T./T have been made by Tsuruta (1974) and
by Malone (1974).

The relative importance of various cooling processes on the interior
temperature of a neutron star of mass ~Mg, as a function of time,
may be assessed from the schematic Figure 3; each line in this figure
shows T(t), assuming only a single process, that labelling the line, to be
operant. Results are shown for the modified URCA process (4), for pion
condensation cooling (7), for cooling from crust bremsstrahlung (6), and
for emission of photons from the surface, assuming T.= (107)%3, an
approximate fit to Tsuruta’s (1979) calculations. The formulae were
evaluated for p = po and 0% = 0.1. At any given time the most effective
process will be the one with the lowest T(t), and the temperature of
the star will be roughly that T.

The curves were plotted assuming the neutrons and protons to be
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Figure 3 Schematic neutron star cooling curves of interior temperature versus time for
various processes, were they to operate alone.

normal. Superfluidity has two effects; first it modifies the specific heat,
which at the transition temperature jumps discontinuously to a value
greater than that in the normal state, and then falls off exponentially at
lower temperatures. This tends to decrease the cooling rate immediately
below T., and to increase it at lower temperatures. A second effect is to
suppress neutrino processes in the interior, and thereby decrease the
cooling rate. Which of these two effects dominates depends on how
important a role the neutrino processes in the interior play in the cooling.

While magnetic fields do not affect the neutrino processes, they can, as
discussed in Section 4.1, reduce the opacity of the surface of a neutron
star appreciably, and thus, for a given internal temperature, increase the
surface temperature, and hence increase the photon luminosity (Tsuruta
et al. 1972).

Detailed studies of neutron star cooling have been made by Tsuruta
(1975) and Malone (1974) and reviewed by Tsuruta (1979). See also Brown
(1977). More recently Maxwell (1979) has calculated the cooling curve
for some simplified models, and concludes that the present upper bound
on the Crab pulsar temperature is compatible with any cooling scenario
involving neutrinos; however, a bound as low as 2 x 10° K would be
more difficult to understand without pion condensation.

The neutrino emissivity from a neutron star immediately after its
formation may be detectable on earth. At formation the neutrinos in the
star are degenerate and the neutrino mean free paths are short, due to
scattering via neutral current interaction with nucleons, as well as absorp-
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tion of neutrinos by neutrons (Sawyer & Soni 1979). As Sawyer & Soni
(1977) pointed out, even when the neutrinos are no longer degenerate,
but the neutron star is still very hot, neutrino mean free paths are small
compared with the stellar radius, and neutrino luminosities and stellar
cooling rates will be reduced from those given above. These effects will
not significantly affect the temperature of neutron stars more than a few
hours old. Considerable work is in progress on neutrino processes in
very young neutron stars, and more detailed calculations of the early
life of a neutron star should be available in the near future.

4.3 Dynamical Effects of Superfluidity

The irregular fluctuations in neutron star rotational periods observed in
both pulsars and pulsating X-ray sources, as well as the behavior of pulsars
after sudden speedup (Manchester & Taylor 1977, Lamb 1977), may be
governed in part by superfluidity of the internal regions of the stars. The
rotational dynamics of the two-component model of a neutron star with
a superfluid interior weakly coupled to a normal crust, introduced by
Baym et al. (1969), provides a plausible explanation of the long relaxation
times associated with speedups of the Crab and Vela pulsars (see Pines
et al. 1974); however, relation of the observed relaxation times to possible
microscopic coupling processes requires detailed study. Aspects of the
dynamics were discussed by Ruderman & Sutherland (1974), and by
Greenstein (1975, 1976, 1977), who pointed out possible internal heating
of neutron stars due to the superfluid-crust coupling ; Harding et al. (1978)
have recently calculated relaxation processes between superfluid neutron
vortex lines and the crust. Effects of pinning of the vortices to nuclei in
the crust were considered by Anderson & Itoh (1975), by Ruderman
(1976), who suggested possible breaking of the crust due to pinning forces,
by Alpar (1977), and by Shaham (1977).

An interesting exploration of possible relations to relaxation after a
sudden pulsar speedup has been the experimental simulation of such
behavior by Tsakadze & Tsakadze (1975), using rotating superfluid
helium. Theoretical interpretation of these experiments for neutron stars
has been given by Anderson et al. (1978) and Alpar (1978).

5 CONCLUSION

As can be judged from this review, knowledge of the properties of neutron
stars has advanced remarkably over the past decade. One is now much
more aware of the gaps and uncertainties in the picture, and the important
problems for further research. Particularly crucial is an improved descrip-
tion of nuclear matter and forces, from which we will gain a better under-
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standing of the equation of state, of the effects of pion condensation and
superfluidity, and of neutron star models. A second outstanding problem,
which we have only touched on peripherally, is the formation of neutron
stars in supernovae, a problem on which the discovery of weak neutral
currents has had a strong recent impact. For an overview of problems
in this area see, for example, Arnett (1977) and Freedman et al. (1977).

Much work has been done on many areas of neutron star behavior
that we unfortunately have not had adequate space to discuss. Among
these are: internal dynamical processes, including models of short term
variability of neutron star rotation periods and neutron star wobble
(Lamb 1975, 1977, F. K. Lamb et al. 1978); processes outside neutron
stars, including pulsar emission mechanisms (Manchester & Taylor 1977),
accretion and X-ray emission (Sunyayev 1978, Lightman et al. 1978), surface
nuclear burning (Woosley & Taam 1976, Joss 1978, Lamb & Lamb 1978,
Taam & Picklum 1978), and neutron star models of X-ray (Lamb et al.
1977) and y-ray burst sources (Lamb et al. 1973, Ruderman 1975); inter-
actions of neutron stars with other stars, including binary pulsars
(Manchester & Taylor 1977), interactions with black holes (Lattimer &
Schramm 1976, Lattimer et al. 1977), and neutron stars as cores of red
giants and supergiants (Thorne & Zytkow 1977).

We are grateful to our colleagues in Urbana for numerous helpful

discussions during the preparation of this review.
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