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Overview of the second

lecture
• 1. Mean-field based models for the ground state. From HF to HFB (pairing included)

• 2. Mean-field based models to describe excited states. RPA derived as small
amplitude approximation from time-dependent HF equations. Pairing -> QRPA

• 3. The interaction (and then the functional) in the pairing channel

• 4. Isospin effects. Exotic nuclei. New phenomena… stronger and/or different
correlations?

• 5. Correlations. Going beyond mean field

• 6. Nuclear matter and its properties. The EoS (case of Skyrme)

• 7. Asymmetric matter, neutron matter. Isospin effects

• 8. Spin instabilities of nuclear matter and the Skyrme interaction



1. Mean-field based models
for the ground state

- From HF to HFB (pairing
included)



• In HF mean field the ground state is a
Slater determinant (completely
uncorrelated single-particle wave
functions)

• Pairing correlations may be included at
the mean field level by introducing the
concept of quasiparticles (the number of
particles is not conserved: symmetry
breaking)



Ground state. Individual degrees of
freedom. Uncorrelated state.

Mean field HF (EDF)

Ground state. Individual degrees
of freedom. Uncorrelated state,
but correlations explicitely in the

functional Kohn-Sham (DFT)

Mean field level but with
quasiparticles. Pairing
correlations are added.

HFB ot HF +BCS

in progress

Dynamical properties.

TDHF

Dynamical properties.

TDDFT

Small amplitude limit.

(Q)RPA (collective
states)

Dynamical properties.

TDHFB

Beyond mean field. More general
ground state (not a simple Slater
determinant) GCM         multiparticle-multihole      ext. RPA

Beyond mean field. Coupling single-
particle and collective coordinates

Particle-vibration
coupling

Second RPA

(also from small

amplitude limit of TDDM)

 



No isotopes (Z=102)

Duguet et al. arXiv:nucl-th/0005040v1

Sn = E (Z,N)-E(Z,N-1)

Odd-even effect



The Hartree-Fock-Bogoliubov (HFB) or
Bogoliubov-de Gennes equations

   We can derive them in a very elegant way
in the simple case of:

   - spherical system
   - two spin states ! and "
   - zero-range interaction acting only

between states with opposite spin

P. de Gennes, Superconductivity of metals and alloys



The Hamiltonian is composed by a 1-
body term and a 2-body term (zero-range

interaction of intensity V)

The mean field approximation leads to a 1-body
effective term that approximates H2



Since Heff is a quadratic form in # and #+, it can be diagonalized by
unitary transformations like the Bogoliubov transformations

The Bogoliubov transformations diagonalize Heff. It means:

One calculates:



To derive the expressions for the mean field W and the pairing field $,
we impose that the free energy F is stationary

where the mean value of H is defined as:

Temperature
dependence

Using the Bogoliubov transformations one gets the HFB equations.
The solutions are the two-component wave functions (u,v) and the
associated quasiparticle energies %:



It can be shown that F is stationary if:

Density

Pairing
density

The temperature dependence is
contained in a Fermi factor



2. Mean-field based models
to describe excited states.

RPA derived as small
amplitude approximation
from time-dependent HF

equations. Pairing -> QRPA



Ground state. Individual degrees of
freedom. Uncorrelated state.

Mean field HF (EDF)
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Mean field level but with
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Dynamical properties.
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Two-neutron 0+ addition mode

QRPA in particle-particle
channel
Response function for 124Sn

Khan, Grasso, and Margueron

Excitation modes (small amplitudes)
Quadrupole mode QRPA in

particle-hole channel
Response function for 22O

Khan, Sandulescu, Grasso,
and Van Giai, PRC 66, 024309
(2002)

Pair transfer
mode

Khan, Grasso, Margueron, submitted PRC



The RPA equations can be
introduced in different ways

• 1) equations of motion method (Rowe. 1968) (starting from
the stationary Schroedinger equation)

• 2) Green’s function techniques

• 3) From the small amplitude limit of time-dependent
Hartree-Fock (TDHF) equations

• Both 2) and 3) are based on the linear response theory



Linear Response Theory

• Action of a  time-dependent external

field:  response of the system

• Limit of a weak perturbing field: linear

response



RPA from TDHF equations

External perturbation:

We impose that &(t) corresponds to a Slater determinant. It

means: &2=&. The density satisfies the following equations of

motion:

We introduce a variation of the density (linear with the external

perturbation)



Inserting                                in the equations of

 motion and keeping only linear terms one finds the
RPA equations (solving for f(t)=0). The matrices A

and B are written as:

One recognizes the residual interaction (different from V if
V is density dependent      rearrangement term):

E is the energy
density functional



Pairing included: linear
approximation from TDHFB



Khan et al. PRC 66, 024309 (2002)

From time-depedent Hartree-Fock-Bogoliubov



Variations

Variation of the
particle density

Variation of the
pairing tensor



After manipulations the Bethe-Salpeter equation
can be found



3. The interaction (and then
the functional) in the pairing

channel



In mean field calculations with
Gogny

(Almost) the same interaction as in
the particle-hole (mean field) channel



Pairing in Skyrme-HFB mean
field framework

• Non empirical pairing energy density functional derived at lowest order in
the  two-nucleon vacuum interaction including Coulomb (many-body
perturbation theory) (Lesinski, et al., arXiv:0809.2895 [nucl-th]

• Derived from a microscopic nucleon-nucleon interaction. If LDA is valid: fit
to reproduce the gap in symmetric and neutron matter  (Margueron, et al.
Phys. Rev. C 77, 054309 (2008))

• Also dependence on the isovector density (Margueron)

• Empirical pairing energy density functional with constraints from nuclei:
odd-even mass staggering, separation energies

• Also dependence on the isovector density (Yamagami, et al.,
arXiv:0812.3197 [nucl-th])

• In the context of empirical pairing functional: New constraints? Pairing
vibrations?

      Matsuo, Proceedings of COMEX3, to be published
      Grasso, et al. Proceedings of NSD09, to be published
      Khan et al., 2009



Model: Skyrme-HFB with zero-range pairing
interaction

and dependence on the isoscalar density

( )
( )

( )
21

0

021
1 rr

r
xVrrV

rrrr
!

"
"

#

$

%
%

&

'

((
)

*
++
,

-
!=! .

/

/
0

!
0
 is currently chosen equal to the saturation density 0.16 fm-3



Ultraviolet divergence. Renormalization of
the HFB equations



Thomas-Fermi approximation for the
calculation of the regular part of the

Green’s function

Increasing
energy
cutoff

50 (MeV)

45

35

30

20

Bulgac and Yu,
2002



4. Isospin effects. Exotic
nuclei. New phenomena…
stronger and /or different

correlations?



Coulomb
cross section

Deduced photo-
neutron
cross section Adrich et al., PRL 95, 132501 (2005)

Coulomb excitation, GSI

PYGMY DIPOLE
RESONANCE

Evolution of excitation modes
in exotic nuclei. One example.



Change of magic numbers. Importance of a
better treatment of single-particle states



Bastin, et al. 2002

Low energy.
Collapse of
the N=28 shell
closure at
Z=14



Tensor force
• Shell model : T. Otsuka, et al., PRL 95, 232502

(2005)

• Relativistic HFB (one needs exchange
contribution so that the pion can be active) :
W. Long, et al., PLB 640, 150 (2006)

• Non relativistic mean field:
• Skyrme : G. Colò, et al., PLB 646, 227 (2007)

• Fit: Lesinski, et al., PRC 76, 014312 (2007)
• Gogny : T. Otsuka, et al., PRL 97, 162501

(2006) aggiornare riferimenti

Not beyond mean field, but towards a more complete formalism



Variation of the energy density (contributions
depending on J)
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J -> spin-orbit density

Spin–orbit potential is modified by these contributions



Effect due to the  tensor

contribution with SLy5. Energy difference

between proton states 2s1/2 and 1d3/2 in Ca isotopes



5. Correlations.
Going beyond mean field



Ground state. Individual degrees of
freedom. Uncorrelated state.

Mean field HF (EDF)

Ground state. Individual degrees
of freedom. Uncorrelated state,
but correlations explicitely in the

functional Kohn-Sham (DFT)

Mean field level but with
quasiparticles. Pairing
correlations are added.
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in progress

Dynamical properties.
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TDDFT
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(Q)RPA (collective
states)
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Beyond mean field. More general
ground state (not a simple Slater
determinant) GCM         multiparticle-multihole      ext. RPA

Beyond mean field. Coupling single-
particle and collective coordinates

Particle-vibration
coupling

Second RPA

(also from small

amplitude limit of TDDM)

 



Beyond mean field. Adding correlations by
using more general wave functions than Slater

determinants

Generator Coordinate Method (GCM)

For the formalism: Bonche, et al., Nucl. Phys. A 510 (1990), 466

-Put together collective and single-particle degrees of
freedom in a single quantum formulation (collective
phenomena, dynamics of large amplitude deformations)

-Variational method that extends configuration mixing to
the case of a continuous collective variable

-Projection methods (used to restore broken symmetries)
are special forms of GCM (where the wave functions are
known a priori)



• Given a family of N-body wave functions
|'(q)( depending on a collective variable
q the GCM determines approximate
states of the Hamiltonian of the form:

• The coefficients fk are found by imposing
that

   is stationary with respect to variations )fk



Some technical problems are known and studied: existence
of jumps and divergences (related to the functionals)

Solutions proposed in Bender et al., PRC 79 (2009), Duguet
et al., PRC 79 (2009), Lacroix et al., PRC 79 (2009)

From D. Lacroix



Ground state. Individual degrees of
freedom. Uncorrelated state.

Mean field HF (EDF)
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Correlations. Multiparticle-
multihole configurations. The

ground state is a superposition of Slater determinants

• Higher Tamm Dancoff approximation

• More refined method:



Ground state. Individual degrees of
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Mean field HF (EDF)
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Beyond mean field. Particle-vibration coupling:
coupling between single-particle and collective

degrees of freedom

These correlations modify the single particle spectrum (occupation numbers
different from 1 and 0 -> we can evaluate the spectroscopic factors; the single-

particle energies are shifted) and the low-lying excited states

In RPA framework (taking into
account ph excitations) the HF
mass operator is modified by:

with:

Polarization
diagram

Correlation
diagram

These diagrams have to be subtracted
to reduce the double counting related
to the use of RPA in the description of
particle-vibration coupling



These correlations also affect the excited states …

Effects of particle-
vibration coupling on
the single-particle
spectrum

Neutron states in 208Pb

Bernard, Van Giai, Nucl. Phys. A 348
(1980), 75



Ground state. Individual degrees of
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Extensions of RPA. Problem of the
Quasiboson Approximation (violation of the

Pauli principle)

Gambacurta, et al. PRC 80, 014303 (2009) and references therein



Ground state. Individual degrees of
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Second RPA

Excitation
operator:

1p1h +

2p2h

It can be derived by a linearization of Time Dependent
Density Matrix (TDDM)

Tohyama and Gong, Z. Phys. A - Atomic Nuclei 332, 269 (1989)

Lacroix, Ayik, Chomaz, Prog. Part. Nucl. Phys. 52, 497 (2004)



where:

Matrix elements
Aphp’p’’h’h’’ couple
1p1h with 2p2h

(particle-phonon
coupling is thus
included in a
complete way)

Diagonalization of:



6. Nuclear matter and its
properties. The EoS (case of

Skyrme)



Symmetric
From symmetric to neutron matter. Yp=Z/A

                                                                             Isospin effects

Differences between symmetric nuclear matter EoSs and neutron-rich
matter EoSs (density dependence of symmetry energy)

With an EDF model (for instance from the
Skyrme density functional) we can calculate the

Equation of State (EoS) of nuclear matter



Equation of State

Symmetric nuclear matter Pure neutron matter

From Sagawa, Nuclear Bulk Properties, MSU 2008



Saturation density

Compressibility

Symmetry energy

WITH
SOME
SKYRME
FORCES



How these quantities are known?

• Saturation point. Extracted from electron
scattering experiments: the central density of
heavy nuclei is always the same, independently
of the nucleus.

    Empirical values

• From the EoS with Skyrme (eliminating surface
and spin-orbit and with &n = &p = &/2) the volume
energy is:



• Incompressibility (curvature at saturation point).
From studies on  monopole giant resonance
(theory and experiment)

    Accepted value (systematic of Blaizot (RPA))

 From the Skyrme EoS



• Isoscalar effective mass (very important
for level densities around Fermi energy). It
can be related to the energy of the
isoscalar quadrupole giant resonance

    Empirical value:

From Skyrme EoS:



7. Asymmetric matter,
neutron matter. Isospin

effects



The EoS (Yp=Z/A, I=(N-Z)/A))



Isospin effects. Importance of
symmetry energy.

• Empirical value (from masses using models).

    Accepted value

• From the equation of state:



From Skyrme EoS



About the symmetry energy. Dependence
on &

• We have mentioned the correlations between
some quantities characterizing the EoS. A study
of the correlations {K,&0, aI} would allow a better
control on some terms of the interaction (or the
energy density functional). Density-dependent
term?

• Heavy ion collisions, fragmentation: one of the
objectives is to get a better knowledge of the
density dependence of the symmetry energy.
This scenario is richer if  exotic ions are
considered (dependence on neutron/proton
asymmetry). Marie-France Rivet Lecture



• Collective modes in asymmetric nuclei?

• Neutron star masses and radii. URCA process and
cooling (role of the symmetry energy)



8. Spin instabilities of
nuclear matter and the

Skyrme interaction



Landau-Migdal parameters

In Landau theory of Fermi liquids nuclear matter properties can be
written in terms of matrix elements of the interaction at Fermi surface

The coefficients F, F’, G, G’ are functions of the angle
between k1 and k2. A multipole expansion provides the
Landau-Migdal parameters Fl, F’l, Gl, G’l (only l=0 and 1 for
a zero-range interaction like Skyrme).

The stability of HF solutions constrains the values of
these parameters (sum rules)



A detailed analysis in:



Ferromagnetic phase diagram

Spin asymmetry density :

Susceptibility :

Instability for      if :

Asymmetric nuclear matter :

Symmetric nuclear matter :
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Microscopic calculations of the
ferromagnetic instabilty

Results:
No ferromagnetic 
instability

On the other hand, Skyrme functional is unstable at high density or large
asymmetries

Magnetic
susceptibility

S. Fantoni, et al., PRL 87, 018110 (2001)!

I. Vidana et al., PRC 65, 035804 (2002), 66, 045801 (2002)!

I. Bombaci et al., PLB 632, 638 (2006), ...



J. Meyer 2003

Margueron 2002



      Proposed in Margueron and Sagawa, to be published in J. Phys. G
(work on nuclear matter). New terms:

       where the spin and spin-isospin densities are:

      Applied to ground state of nuclei in:

      To be published J. Phys. G

How to cure? An extended Skyrme interaction



Conclusions: necessity of
improving predicting power

(exotic nuclei)

• Fitting criteria ? Changing observables ?

• Functional and/or interaction ?

• Models ?


