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Relativistic Mean-Field Theory: An Introduction
Basics in Physics and Mathematics
Pauli-Schrödinger Formalismm

A Few Remarks about the Mean-Field Concept

• A mean-field interaction can be seen as an algorithm probing the
two-body interactions through the generalized weighted average V̂

V̂(x̂) = 1
N−1

∑(N−1)
j=1

∫
dxjψ

∗(xj) V̂(x̂, x̂j)ψ(xj)

• Obseve that the summation implies
the averaging over the (N-1)-particles

• Notice also that the mean-potential
V̂ = V̂(x̂) is a one-body operator only

• Relativistic theory illustrated in the
following provides a similar concept
but using a quantum field theory basis

An N−Body System

Schematic: Probing 2-body
interactions with an ‘external’

test-particle
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Quark confinement allows to use
the independent nucleon approximation
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Confinement & Low Energy Sub-Atomic Phenomena

• In analogy to quantum electrodynamics whose Lagrangian-density∗

LQED = LDirac + LMaxwell + LEM
int

or more explicitly

LQED = ψ̄(iγµpµ −m)ψ − 1
4
[Fµν]2 + e(ψ̄γµψ)Aµ

• ... we may introduce the so-called Yukawa interaction density:

LYukawa = LDirac + LKlein−Gordon + Lstrong
int

• In subatomic physics this theory leads to coupled systems of the
relativistic equations ignoring the existence of quarks. Their form:

[Dirac Equations for Nucleons ] = [Nucleons Coupled with Mesons]

[Klein− Gordon Eqs for Mesons] = [Mesons Coupled with Nucleons]

)
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Confinement & Low Energy Sub-Atomic Phenomena

• In such theories we obtain Dirac-type relativistic wave-equations
for the nuclens moving in the average fields of all other particles ...

•We obtain relativistic Klein-Gordon-type wave equations for mesons
moving in average fields of all other particles; both sets are coupled

• Those coupled equations are iterated to obtain a self-consistent
final solution for the wave-functions: ψ (nucleons) and φ (mezons)

• They turn out to be very successful in calculations which can be
compared with numerous types of experimental data - e.g. masses

• Observe that neither quarks nor gluons will ever appear explicitly

• In what follows we will illustrate the functionning of such a theory
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Free Dirac Equation - A Short Reminder

• The so-called covariant form of the free Dirac equation reads∗

(γµp̂µ −m c) ψ = 0; {p̂µ} ≡
{

i
(~

c

)
∂
∂t
, i~∇̂

}

• Schrödinger-like form of the free Dirac equation - (just insert p̂µ)

i~ ∂ψ
∂t

= −i~c
(
α̂ · ∇̂

)
ψ + β

(
mc2

)
ψ; ψ ∼ ϕ e±i E t

~

• An equivalent, stationary form of the free Dirac equation is now:

[
− i~c

(
α̂ · ∇̂

)
+ β (mc2 )

]
ϕ = E ϕ,

where α̂ ≡ {α1, α2, α3} and β are the standard 4×4 Dirac matrices

∗We use occasionally Einstein’s summation convention: Repeated indices as e.g γµp̂µ ⇔
P4
µ=0 γ

µp̂µ
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Mesons Mediating Nucleon-Nucleon Interactions

• In principle the nucleons interact through exchange of q-q̄ pairs:

π+, π0, π− − isovector, pseudoscalar;

η − isoscalar, pseudoscalar;

ρ+, ρ0, ρ− − isovector, vector;

ω − isoscalar, vector;

γ − massless, vector;

• Using relativistic quantum field theory we may derive the Dirac
equation for the nucleons in the presence of the exchange of mesons

{c ~α · p̂ + V̂(~r ) 1I4 + β [m0c2 + Ŝ(~r )]}ψn = Enψn,

Above: V̂ and Ŝ are known functions originating from vector and
scalar meson exchange, respectively (pseudo-scalars treated approx.)
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Dirac Equation for Nucleons (with Interactions)

1. The bound nucleons satisfy the ”Dirac equation with interaction”

{c~α · p̂ + V̂ (~r ) 1I4 + β [m0c2 + Ŝ(~r )]}ψn = Enψn

2. Vector- and scalar-meson potentials V̂ (~r) and Ŝ(~r), respectively

Ŝ(~r ) = gσ σ(~r ) + g3 σ
3(~r )

and

V̂ (~r ) = gωω0(~r ) + gρτ̂3ρ(~r ) + 1
2(1I + τ̂3)geA0(~r )

are obtained from the K-G solutions for the mesons and photons
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A Mathematical Simplification:
Pauli-Schrödinger Formalism
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Standard Pauli-Schrödinger Reduction

• Representing nucleon’s ψ in terms of ‘big’ and ‘small’ components:

ψ ≡
(
ξ

η

)
; ξ ≡

(
ψ1

ψ2

)
; η ≡

(
ψ3

ψ4

)
; ~α =

(
0 ~σ
~σ 0

)
we may write two Schrödinger-like equations for spinors ξ and η

Ĥξ ξn = En ξn and Ĥη ηn = En ηn

• These Schrödinger-type Hamiltonians are non-linear in energy:

Ĥξ ≡
`
c ~σ · p̂

´ 1

[E + m0c2−(V̂ − Ŝ)]

`
c ~σ · p̂

´
+
ˆ
m0c2+(V̂ + Ŝ)

˜

Ĥη ≡
`
c ~σ · p̂

´ 1

[E − m0c2−(V̂ + Ŝ)]

`
c ~σ · p̂

´
−
ˆ
m0c2−(V̂ − Ŝ)

˜

Jerzy DUDEK, University of Strasbourg, France Nuclear Relativistic Mean Field: Underlying Symmetries



Relativistic Mean-Field Theory: An Introduction
Basics in Physics and Mathematics
Pauli-Schrödinger Formalismm

Standard Pauli-Schrödinger Reduction

• Representing nucleon’s ψ in terms of ‘big’ and ‘small’ components:

ψ ≡
(
ξ

η

)
; ξ ≡

(
ψ1

ψ2

)
; η ≡

(
ψ3

ψ4

)
; ~α =

(
0 ~σ
~σ 0

)
we may write two Schrödinger-like equations for spinors ξ and η
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Standard Pauli-Schrödinger Reduction - Properties

• Eigen-energies En are common for both equations; they can be
obtained by solving only one of them, usually for big component ξn

Ĥξ ξn = En ξn or Ĥη ηn = En ηn

• The two Schrödinger-type equations are strictly equivalent to the
original Dirac equation - there are no approximations here

• The potentials depend only (!) on ~r : V̂ = V̂(~r ) and Ŝ = Ŝ(~r )

• The eigen-energies appear non-linearly → Bad News!

• Equations depend only on the sum and on the difference of the
two original potentials - not on the individual ones → Interesting!

Very Interesting!
• Calculations show that inside the nucleus

〈Ŝ〉 ≈ −400 MeV and 〈V̂〉 ≈ +350 MeV
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Position-Dependent Effective Mass: Definition

• Let us recall the definition of the Pauli-Schrödinger Hamiltonian:

Ĥξ ≡
(
c ~σ·p̂

) 1

{E + m0c2 − [ V̂ − Ŝ ]}
(
c ~σ·p̂

)
+
[
m0c2+[ V̂ + Ŝ ]

]
• By replacing E with m0c2 + ε, we may introduce the position-
dependent effective mass m∗(~r )

m∗(~r ) ≡
{

m0c2 − 1
2

[V̂ (~r )− Ŝ(~r ) ]
}

and rewrite the denominator in the form:

ε + 2m0c2 − [V̂(~r )− Ŝ(~r )] ≡ ε + 2m∗(~r )

• Since m0c2 ≈ 1000 MeV and since inside the nucleus we have
〈 1

2
[V̂ (~r )− Ŝ(~r )]

}
〉 ≈ 375 MeV we find that 〈2m∗(~r )〉 ≈ 750 MeV
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Position-Dependent Effective Mass: Estimates

• Using the estimates 〈Ŝ〉 ≈ −400 MeV and 〈V̂〉 ≈ +350 we find

1

2m0c2 + ε− (V̂ − Ŝ)
=

1

ε + 2m∗
'

1

2m∗

(
1−

ε

2m∗

)
'

1

2m∗

• In the above relations 2m∗ ≈ 1300 MeV. For the levels close to
the Fermi energy we have | ε | ∼ (0 to 10) MeV → ε/2m∗ ∼ 0.01
Thus Hamiltonians discussed are energy independent to 1% error
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Linearized Pauli-Schrödinger Equation

• The approximately linearised Pauli-Schrödinger equation then is:{
(~σ · p̂ )

1

2m∗(~r )
(~σ · p̂ ) +

[
Ŝ(~r ) + V̂(~r )

]︸ ︷︷ ︸
∼ −60 MeV

}
ξn = εn ξn

with the position-dependent effective mass:

m∗(~r ) =
{

m0c2 − 1
2

[
V̂(~r )− Ŝ(~r )

]︸ ︷︷ ︸
∼ +750 MeV

}

• The potential that binds the nucleons in the nucleus is the sum
of the scalar- and vector-meson exchange contributions:

W(~r )
df
= Ŝ(~r ) + V̂(~r ) ≈ −60 MeV
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Ŝ(~r ) + V̂(~r )

]︸ ︷︷ ︸
∼ −60 MeV

}
ξn = εn ξn

with the position-dependent effective mass:

m∗(~r ) =
{

m0c2 − 1
2

[
V̂(~r )− Ŝ(~r )
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Form of the Generalized Kinetic Energy Operator

• The operator quadratic in linear momenta can be transformed:

(~σ · p̂ )
1

2m∗(~r )
(~σ · p̂ ) =

1

2m∗(~r )
p̂ 2 + V̂~p (~r, p̂ ) + V̂so(~r, p̂, ŝ )

• We recognise two new operators called ‘potentials’ despite the
fact that they originate from the kinetic energy operator:

V̂so(~r, p̂, ŝ ) ≡
2

[2m∗(~r )]2
{[~∇ (V̂(~r )− Ŝ(~r ))︸ ︷︷ ︸

∼ 750 MeV

] ∧ p̂ } · ŝ

V̂p̂(~r, p̂ ) ≡
−i~

[2m∗(~r )]2
[~∇ (V̂(~r )− Ŝ(~r ))︸ ︷︷ ︸
∼ 750 MeV

] · p̂

• In the following we find the interpretation of the above operators
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• We recognise two new operators called ‘potentials’ despite the
fact that they originate from the kinetic energy operator:

V̂so(~r, p̂, ŝ ) ≡
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Physical Interpretation
The Two ‘Kinetic Potentials’
Collecting Conclusions

Prediction of the Spin-Orbit Splitting Mechanism

• The Simplest Case: Spherical Symmetry

U(~r ) ≡ U(r) ≡ V̂−Ŝ → [∇U∧p̂ ]·̂s =
1

r

dU

dr

ˆ̀︷ ︸︸ ︷
(~r ∧ p̂ ) ·̂s =

1

r

dU

dr
ˆ̀·̂s

↑ (`, s) ↑ : 〈 ˆ̀ · ŝ〉 = + 1
2
`

↑ (`, s) ↓ : 〈 ˆ̀ · ŝ〉 = − 1
2

(` + 1)

Notice the correct sign of ∆E`s

U = V − S > 0 → dU
dr
< 0

} ∆E
ls

l=l
max

max

max
l=l    − 4

l=l    − 2

/U = 0 U = 0

l

S
in

g
le

−
N

u
cl

eo
n

 E
n
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Collecting Conclusions

Potentials Vso and Vp - An Illustration

• Potential V̂p is responsible for ’de-acceleration’ proportional to p̂

• Both potentials stop acting at the limit ~v ∼ ~p/m0 → 0 (’kinetic’)

Vp ∼
dU

dr

(
~r

r

)
· p̂ Vso ∼

1

r

dU

dr
ˆ̀· ŝ

p
p

Potential Vp: It is transparent to the circular motion, and it is independent of spin

Potential Vso: It is indifferent to the radial motion while its action depends on spin
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Orders of Magnitude: Realistic V̂ and Ŝ Potentials

• Observe a paradox: a very strong attractive potential Ŝ and a
very strong repulsive potential V̂, sum up to only very weak total

nucleonic binding: V̂+Ŝ

Observe that the very strong and
positive [V̂-Ŝ] term contributes:

a. Only through the gradient in
the spin-orbit as well as in linear
momentum potentials;

b. Preceded by the ’minus’ sign in
the definition of the effective mass

S V
^ ^

V+S^ ^ ^

+750MeV

+350MeV
Strongly

Strongly

^V−S

repulsive

attractive

Weak
binding

r

r

r

r

−50MeV

−400MeV

.

� Do you know WHY is the V+S potential so shallow?
No? - Then please listen ...
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• Observe a paradox: a very strong attractive potential Ŝ and a
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positive [V̂-Ŝ] term contributes:

a. Only through the gradient in
the spin-orbit as well as in linear
momentum potentials;

b. Preceded by the ’minus’ sign in
the definition of the effective mass

S V
^ ^

V+S^ ^ ^

+750MeV

+350MeV
Strongly

Strongly

^V−S

repulsive

attractive

Weak
binding

r

r

r

r

−50MeV

−400MeV

.

� Do you know WHY is the V+S potential so shallow?

No? - Then please listen ...

Jerzy DUDEK, University of Strasbourg, France Nuclear Relativistic Mean Field: Underlying Symmetries



Physical Interpretation
The Two ‘Kinetic Potentials’
Collecting Conclusions

Orders of Magnitude: Realistic V̂ and Ŝ Potentials
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very strong repulsive potential V̂, sum up to only very weak total

nucleonic binding: V̂+Ŝ
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Collecting Conclusions

Interpretation: Remarks about Nuclear Structure

• The nuclear interactions originate from the exchange of mesons

• The scalar mesons contribute to a strong attraction (∼400 MeV)

• The vector mesons contribute to a strong repulsion (∼350 MeV)

• The nucleons in nuclei are very weakly bound (∼ -10 to 0 MeV)

• From experiment: p-p and n-n are not bound, p-n: just one state

• A paradox: Strong Interactions cannot bind even two neutrons!

Many important, not-intuitive observations
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Physical Interpretation
The Two ‘Kinetic Potentials’
Collecting Conclusions

What Did We Learn About Nuclear Structure?

• There exist Momentum and Spin-Orbit ’potentials’. Their origin:

Kinetic Energy Operator: t̂ ≡ (~σ · p̂ )
1

2m∗(~r )
(~σ · p̂ )

• Tangential orbits couple with the spin: bouncing-ball ones do not!

• Parallel ~̀ and ~s coupling is privileged anti-parallel is ’discouraged’

• The nucleonic effective mass m∗ is necessarily position dependent
giving rise to two ‘potentials’: spin-orbit and linear-momentum ones

Remarks:

The spin-orbit potential is in fact the spin-orbit kinetic-energy - and
moreover, there must exist also a linear momentum potential whose
presence is seldom discussed in the published works. It must be there
because of the hermiticity of the Hamiltonian.
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Physical Interpretation
The Two ‘Kinetic Potentials’
Collecting Conclusions

The Kinetic Energy Operator of the Dirac Form

• And more precisely: Explicit form of the generalised kinetic energy:

(~σ·p̂ )
1

2m∗(~r )
(~σ·p̂ ) =

1

2m∗(~r )
p̂ 2+ V̂p̂ (~r , p̂ )︸ ︷︷ ︸

(r,p)-dependent

+ V̂so(~r , p̂, ŝ )︸ ︷︷ ︸
(r,p,s)-dependent

• Above, the two ”potentials” are calculated to be

V̂so(~r , p̂, ŝ ) ≡ 2

[2m∗(~r )]2
{[~∇ (V̂ (~r )− Ŝ(~r ))︸ ︷︷ ︸

∼ 750 MeV

]∧ p̂ } · ŝ ∼ 1

r

dU

dr
(ˆ̀· ŝ)

∣∣∣
sphere

and

V̂~p(~r , p̂ ) ≡ −i~
[2m∗(~r )]2

[~∇ (V̂ (~r )− Ŝ(~r ))︸ ︷︷ ︸
∼ 750 MeV

] · p̂ ∼ 1

r

dU

dr
· p̂r

∣∣∣
sphere

∼ ”new”
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∼ 750 MeV

]∧ p̂ } · ŝ ∼ 1
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Link with Experiment

Part III

Mean-Field Theory: Link with Experiment
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Link with Experiment
Elementary Quantum Mechanics
Shells, Gaps and Stability

Quantum Mechanics: Memory Refreshing Facts

• In the harmonic-oscillator case there exists a special symmetry
that makes L-shells degenerate; for realistic nuclear potentials this
symmetry does not hold anymore. Observe: N-shells and L-shells:

L=0

L=1

L=1
L=3

L=0
L=2

L=4
L=3
L=2

L=0

L=1

L=0,2

L=1,3

L=0,2,4

Realistic Potential

(N−shells) (L−shells)

Harmonic Oscillator

L−shells are degenerate
L−shells are

non−degenerate

• Levels ELM are M-degenerate, ELM = ELM′ (−L ≤ M,M′ ≤ +L).
This ‘magnetic’ degeneracy results from the spherical symmetry
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Link with Experiment
Elementary Quantum Mechanics
Shells, Gaps and Stability

Quantum Mechanics: Memory Refreshing Facts (II)

• It is well known from elementary quantum mechanics that for
hamiltonians with spherical symmetry:

[Ĥ, ̂2] = 0, [Ĥ, ̂z] = 0, [Ĥ, ˆ̀2] = 0, [Ĥ, ŝ] = 0, ĵ ≡ l̂ + ŝ

• The solutions are simultaneous eigenstates of Ĥ, ̂2, ̂z and ˆ̀2

Ĥψn;j`m = En;j`mψn;j`m

• This allows to introduce the spectroscopic notation based on:

` = 0 1 2 3 4 5 6 . . .

s p d f g h i . . .
:

}
nr`j

for instance 1s1/2, 2d5/2, 3p1/2, 1i13/2 etc.
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Link with Experiment
Elementary Quantum Mechanics
Shells, Gaps and Stability

Spin-Orbit Splitting and Nobel Prize

• Left: results with no-spin-orbit
potential; Right: with the spin-
orbit potential

• Vertical arrows denote the so-
called spin-orbit splitting

• In atomic nuclei this splitting is
very large, ejecting the lowest en-
ergy, the highest-J orbital, to the
(N-1st)-shell below

• The ejected orbitals are called
‘intruders’; for their discovery
M. Göppert-Mayer and J. Jensen
received the Nobel Prize in 1963

L=1

J=7/2

J=5/2

J=3/2
J=1/2

L=2

J=9/2

J=7/2

J=5/2

J=3/2

L=3

L=4

L=0 J=1/2

Z−proton
Gap

(Z+10)−Gap

Interaction

Spin−Orbit

Interaction

N=3 shell

N=4 shell

No Spin−Orbit

Spin−Orbit Splitting Mechanism
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Link with Experiment
Elementary Quantum Mechanics
Shells, Gaps and Stability

Spin-Orbit Splitting and Nobel Prize

• At the discovery time, the mechanism
of spin-orbit splitting was not trivial at all:
observe the differences between nuclear
and atomic cases

• The 1963 Nobel Prize for explanation of
the nuclear Göppert-Mayer and Johannes
Jensen [together with Eugene Wigner]

• Today we know that the spin-orbit
potential describing the magic numbers is
in fact spin-orbit kinetic energy

• Gaps in the spectra are measurable
quantities; measurements fully confirm
the discussed mechanism
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Link with Experiment
Elementary Quantum Mechanics
Shells, Gaps and Stability

Energy Gaps and Experimental Confirmation

• Correlation: Maxima in ionization energy and the big gaps
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Mean-Field Geometry - Field-Control Parameters

Part IV

Characteristic Functional Dependencies - or:
Who Is Who?
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

• We will follow literally the least action procedure now

• Instead of solving the RMF equations self-consistently,
we will parametrize them using realistic Woods-Saxon
form-factors for S(~r ) and V(~r ) - with great advantages:

• Mathematical simplicity when examining qualitatively
the parametric dependencies - and the symmetry issues
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

Remarks about Some Functional Dependencies

r

r

U=sum of two

Woods−Saxon 

profiles

S

V

U

W

S

V

Woods−Saxon profiles

W=difference of two

Ĥint = Ŝ + V̂︸ ︷︷ ︸
Ŵ∼−50 MeV

+ V̂so + V̂p︸ ︷︷ ︸
surface peaked

Conclusion: In the simplest picture the gradient contributions from
the Vso and Vp potentials have not a single Woods-Saxon but a
double Woods-Saxon profile → Importance of knowing who-is-who.
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

Geometry of the Deformed Woods-Saxon Potential

• Nuclear surface Σ is parametrized in terms of spherical harmonics:

R(ϑ, ϕ) = c({αλµ}) [ro ∗ A1/3] {1 +
∑∑

αλµ Yλ,µ(ϑ, ϕ)}

• Geometrical interpretation of
the distance function and related
deformed Woods-Saxon potential:

VWS(~r; ro, a,Vo) =

=
Vo

1 + exp[ distΣ(ro)(~r)/a ]

y

z

x

!dist   ( r )
Tangent  plane

r

Nuc
lea

r
!

su
rfa

ce
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

Central-Potential Depth-Parameter

• Nuclear Dirac Woods-Saxon potentials have a very important ge-
ometrical feature - each parameter dominates a certain mechanism
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2s1/2

1f7/2
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2p3/2
2p1/2
1g9/2

1g7/2
2d5/2
3s1/2
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1h11/2
3s1/2

1h9/2

2f7/2
1i13/2
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3p3/2
3p1/2

1i11/2
2g9/2

1j15/2

2g7/2
3d5/2

Mechanism No. 1: The potential depth parameter is primarily responsible for the
nucleonic binding energies. Observe nearly ideal description of the experimental
levels: here in 208Pb - as well as nearly linear dependence of the energies on Vo .
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

Central-Potential Radius-Parameter

• The nucleonic binding energies vary nearly linearly in function of
the central radius (although some levels may cross
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Mechanism No. 2: The central-radius parameter is primarily responsible for the
nucleonic binding energies but also for the calculated values of the r.m.s. radii.
Here: 208Pb.
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

Central-Potential Diffuseness-Parameter

• The central diffuseness parameter is the only one that can clearly
distinguish among the eigen-energies of various quantum numbers
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Mechanism No. 3: Observe the existence of families of nearly parallel lines which
are characterized by common ` quantum number

: These are spin-orbit partners.
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Mechanism No. 3: Observe the existence of families of nearly parallel lines which
are characterized by common ` quantum number: These are spin-orbit partners.
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
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Mean-Field Geometry: Spin-Orbit Potential

The spherically-symmetric W-S spin-orbit form-factor has the form:

Vso
ws(r;λ, rso, aso)

df
=

λ

r

d

dr
·
{

1

1 + exp [(r − Rso)/aso]

}
=

λ

2aso

1

r

{
1

1 + cosh[(r − Rso)/aso]

}

λ - spin-orbit strength parameter

rso - spin-orbit radius parameter

aso - spin-orbit diffuseness parameter
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Mean-Field Geometry - Field-Control Parameters
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Geometry: Radial Structure - Spin Orbit Potential

• The central diffuseness parameter is the only one that can clearly
distinguish among the eigen-energies of various quantum numbers

• The matrix elements of the spin-orbit potential are calculated
through the integration of the functions of general structure„

~r

r

«
df(r)

dr
~̀ ·~s × r2 where f(r) =

1

1 + exp[(r − r`s)/a`s| {z }
x

]

and the derivatives

˛̨̨
df(x)

dx

˛̨̨
= 1

4

h
e−x/2

cosh( x
2

)

i
×
»

1 + tanh

„
x
2

«–

• Conclusion: The function of interest (spin-orbit potential) has
always one extremum close to x ∼ 0 or, in other words, when r ∼ r`s
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
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Consequences of Single Maximum Mechanism

• Consider fixed central potential and let vary only one spin-orbit
parameter viz. r`s so that r`s < r ′`s , next r ′`s < r ′′`s , etc. We have:

Position of the S.O. Potential Maximum

&
Wave−function

Central Potential

r r rso so so"’
r

r

V
SO

CENTV Ψ

The radial wave function of a state is bound by the central potential whose geometry is considered fixed. Shifting
the position of the maximum of the spin-orbit potential will first cause increasing of the integral (and thus the
matrix elements), then a decrease.
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Central-Potential Geometry
Spin-Orbit Potential Geometry

Geometrical Consequences: Two Physical Solutions

• Observe an increase of the spin-orbit splitting first, then a decrease
and a characteristic ’bubble’ structures in all the ` 6= 0 solutions
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Mechanism No. 4: A structure with two solutions: The ‘standard’ one (with the
s.o. radius parameter r o

s.o. ∼ 1.25 Fm) - and the ‘compact’ one r o
s.o. ∼ 0.75 Fm
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Central-Potential Geometry
Spin-Orbit Potential Geometry

Nuclear Mean-Field Geometry: Spin-Orbit Strength

Single nucleon levels in function of s-o strength parameter
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Mechanism No. 5: Observe a clear straight-line pattern (linear λ-dependence) of
energies and the opening-angles increasing with ` of the corresponding orbitals
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Mean-Field Geometry - Field-Control Parameters
Central-Potential Geometry
Spin-Orbit Potential Geometry

Nuclear Mean-Field Geometry: Spin-Orbit Diffuseness

Single nucleon levels in function of s-o diffuseness parameter
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Mechanism No. 6: Observe a regular increase of the spin-orbit splitting with aso
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The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Part V

Nuclear Relativistic Mean Field Theory:
Role of the SU(2) Symmetries
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The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Helicity and Pseudo-Spin Operator
Approximate Pseudo-Spin Symmetry

Spin, Pseudo-Spin and Dirac Hamiltonian

• Let us introduce the helicity ĥ as the spin-projection on the ~p-axis

ĥ
df
= ~σ · p̂; p̂ ≡ ~p/||~p||

• Define pseudo-spin operator, s̃:

s̃i ≡ (~σ · p̂ ) si (~σ · p̂ ) and Ŝi ≡
(

s̃i 0
0 si

)

• Recall Dirac equation for nucleons with meson-transmitted V̂ and Ŝ

ĤD = c~α ·~p + V̂(~r ) 1I4 + β [m0c2 + Ŝ(~r )]
Explicitly:

ĤD =

(
+[m0c2 + (Ŝ + V̂)]1I2 , c (~σ ·~p )

c (~σ ·~p ) , −[m0c2 + (Ŝ− V̂)]1I2

)
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Explicitly:
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The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Helicity and Pseudo-Spin Operator
Approximate Pseudo-Spin Symmetry

A New Nuclear Symmetry: Pseudo-Spin Symmetry

• Calculating the commutator shows that it ‘almost’ vanishes:

[ĤD , Ŝi ] =

[(
Ĥ11

D , Ĥ12
D

Ĥ21
D , Ĥ22

D

)
,

(
Ŝ11

i , Ŝ12
i

Ŝ21
i , Ŝ22

i

)]
=

(
X̂ 6= 0 , 0

0 , 0

)
where

X̂ ∼ [Ŝ + V̂ , (~σ · ~p ) sj (~σ · ~p )] 6= 0̂ unless Ŝ + V̂ = 0

• Discovering a New Symmetry (or ‘approximately’ discovering?)

• Exact symmetry limit requires that

Ŝ + V̂ = 0

but then our Universe disappears!
S+V̂^

Ŝ

V̂

Space

Po
te
nt
ia
ls
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Ŝ11

i , Ŝ12
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Ŝ

V̂

Space

Po
te
nt
ia
ls

Jerzy DUDEK, University of Strasbourg, France Nuclear Relativistic Mean Field: Underlying Symmetries



The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Helicity and Pseudo-Spin Operator
Approximate Pseudo-Spin Symmetry

We Begin to Learn Something Important...

• There exist an operator Ŝ depending on spin and on pseudospin.
It (almost) commutes with the Hamiltonian of a deformed nucleus.

• The non-zero term vanishes only when nucleon binding vanishes,
or else, alternatively, when the nuclear potential is getting constant

• But in fact the nuclear potentials are constant inside of nuclei (!!!)

• The heavier the nucleus the better the symmetry (flatter S + V )

• The symmetry gets exact when Surf./Vol. → 0 ⇒ Heavy Nuclei

• For unfortunate historical reasons we call it Pseudo-Spin Symmetry
- there is nothing ‘less valuable’ in the ‘p s e u d o - SU2’ symmetry
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The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Helicity and Pseudo-Spin Operator
Approximate Pseudo-Spin Symmetry

Nuclear Mean Field and SU2×SU2 Symmetry

• We defined pseudospin using spin projection s̃i ≡ (~σ · p̂ ) si (~σ · p̂ )

• We have formally introduced helicity with its algebraic properties

ĥ ≡ ~σ · p̂ → ĥ† = ĥ; ĥ = ĥ−1; ĥ† = ĥ−1

• From definition s̃j = ĥ sj ĥ−1 and from unitarity of ĥ it follows that

[sj , sk ] = i εjk` s` → [s̃j , s̃k ] = i εjk` s̃` → [Ŝj , Ŝk ] = i εjk` Ŝ`

• Therefore: Operators {sj}, {s̃j} and {Ŝj} are generators of an SU2

• It follows that at the exact symmetry limit the Hamiltonian is
invariant with respect to SU2 ⊗ SU2. Nature playing hide-and-seek?

[This happens if and only if there is no nuclear binding: (S+V)→0 ]
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[sj , sk ] = i εjk` s` → [s̃j , s̃k ] = i εjk` s̃` → [Ŝj , Ŝk ] = i εjk` Ŝ`
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The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Helicity and Pseudo-Spin Operator
Approximate Pseudo-Spin Symmetry

Dirac Equation - Exact Symmetry Limit: Ŝ+V̂→0

• The original Dirac equation is equivalent to two following ones:

8<: Ĥ
ξ ξ = E ξ; Here : V̂ + Ŝ→ 0

Ĥξ ≡ (c ~σ ·~p )
1

[E + m0c2 + (Ŝ− V̂)]
(c ~σ ·~p ) + [m0c2 + (Ŝ + V̂)]

8<: Ĥ
η η = E η; Here : V̂ + Ŝ→ 0

Ĥη ≡ (c ~σ ·~p )
1

[E − m0c2 − (Ŝ + V̂)]
(c ~σ ·~p )− [m0c2 + (Ŝ− V̂)]

• Case η: Since (~σ · p̂) 2 = p̂ 2 → [Ĥη, sj] = 0→ η = ηn,s,sz

• Case ξ: One shows exactly that: [Ĥξ, s̃j] = 0 → ξ = ξn,̃s,̃sz
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8<: Ĥ
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The Nuclear SU2 and Pseudo-SU2 Symmetries
Spin-Orbit and Pseudo-Spin-Orbit Splittings

Vanishing Pseudo-Spin-Orbit Splitting
Comparison with Experiment

Spin and Pseudospin - In Coexistence ???

• Nuclear Spin-Orbit splitting is huge; How is it possible that pseudo-
spin and pseudo-orbit splitting can be negligible at the same time?
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� We begin with the numerical exercise: we set spin orbit to zero (left). Then we
increase the coupling constant until the experimental conditions are met (right).

The spin-orbit splitting increases dramatically - while the pseudo-spin pseudo-
orbit splitting goes to zero! And YES: all that functions indeed in coexistence!!!
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Spin and Pseudospin vs. Experiment [1]

• The splitting of the orbitals (or: symmetry breaking) should be
compared to numbers of the order of 〈Ŝ + V̂ 〉 ∼ (-60 to -50) MeV
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� In the exact SU2 ⊗ SU2 symmetry limit the orbitals marked with symbol ’tilde’
should be exactly degenerate. [Here: The lighter bound (N>126 particle) states]
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Spin and Pseudospin vs. Experiment [2]
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should be exactly degenerate. [Here: The lighter bound (N<126 ‘hole’) states]
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Spin and Pseudospin vs. Experiment [3]: 132Sn Case

• The splitting of the orbitals (symmetry breaking) is stronger here
compared to 208Pb. Recall: symmetry gets exact if Surf./Vol. → 0

!

Pseudo-SU(2) Doublets
Sn

0

-3

5/2

1/2
9/2

Je
rz

y 
D

ud
ek

, U
LP

 a
nd

 IR
eS

, S
tra

sb
ou

rg

3/2

7/2

d~

g

(n ,l,j=l+1/2)! "

132

2f

3p
1h

9/2,7/2

5/2,3/2

(n -1,l+2,j=l+3/2)

SU(2)-singlet
intruder

~

2f

3p

1i13/2

N
=8

2-
12

6
Ex

pe
rim

en
ta

l
re

su
lts

N
eu

tro
n 

Le
ve

ls 
[M

eV
]

rr

� In the exact SU2 ⊗ SU2 symmetry limit the orbitals marked with symbol ’tilde’
should be exactly degenerate. [Here: ’ν-particles’ in N=(82-125)-shell in 132Sn]
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Spin and Pseudospin vs. Experiment [4]

• The splitting of the orbitals (symmetry breaking) for protons in
208Pb is comparable to that of the neutrons (‘isospin-independence’)
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� In the exact SU2 ⊗ SU2 symmetry limit the orbitals marked with symbol ’tilde’
should be exactly degenerate. [Here: proton ’particle’ states, Z=(82-126) shell]
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Vanishing Pseudo-Spin-Orbit Splitting
Comparison with Experiment

Summarising: The Nuclear SU2 ⊗ SU2 Symmetry

• Nuclear mean field obeys approximately an SU2 ⊗ SU2 symmetry.

• Symmetry operator Ŝj ≡
[

s̃i , 0
0 , si

]
contains spin and pseudospin.

• Spin commutes with Dirac Hamiltonian for the ’small’ component.

η → ηn,s,sz

• Similarly, pseudo-spin commutes with Dirac Hamiltonian for the
’grand’ component:

ξ → ξn,̃s,̃sz

• Consequently: spin decouples from the orbital motion for η →
... and pseudo-spin decouples from the orbital motion for ξ (!!!)

• Strong spin-orbit splitting (Goeppert-Mayer, Jenssen) receives a
new partner: A Parallel - weak - pseudo-spin pseudo-orbit coupling!
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