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I. INTRODUCTION

A. Generalities

In spite of over fifty years of theoretical and experimental studies, low-energy nuclear physics remains an
open and difficult problem. While extensive progress has been made, an accurate and universal description
from first principles is still beyond reach.

The first difficulty resides in the inter-particle interaction at play. Strong inter-nucleon interactions relevant
to describing low-energy phenomena must be modeled within the non-perturbative regime of the gauge theory
of interacting quarks and gluons, i.e. quantum chromodynamics (QCD). Within such a frame, nucleons are
assigned to spin and isospin SU(2) doublets such that they are 4-component fermions interacting in various
configurations stemming from invariances of the problem, e.g. they interact through central, spin-orbit, ten-
sor, quadratic spin-orbit... couplings. As an example, Fig. 1 displays coordinate-space matrix elements the
state-of-the-art local two-nucleon (NN) Argonne V18 [1] potential in the four two-body spin/isospin chan-
nels. In addition to its complex operator structure, the NN force produces a weakly-bound neutron-proton
state (i.e. the deuteron) in the coupled3S1-3D1 channels and a virtual di-neutron state in the1S0 channel. As-
sociated large scattering lengths, together with the short-range repulsion between nucleons make the nuclear
many-body problem highly non-perturbative. In addition tosuch difficulties, the treatment of three-body (3N)
interactions in a theory of point-like nucleons is unavoidable. This has become clear over the last fifteen years
as one was aiming at a consistent understanding of (i) differential nucleon-deuteron cross-sections [2–4], (ii)
the under-estimation of triton and light-nuclei binding energies [5], (iii) the Tjon line [6], (iv) the violation
of the Koltun sum rule [7], (v) the saturation of symmetric nuclear matter [8–13] and (vi) the Coester line
problem [14–16].

FIG. 1: (Color online) Coordinate-space matrix elements of Argonne V18 NN force in the four different
spin/isospin channels, i.e. contributions that are proportional to 1,τ1 · τ2, σ1 ·σ2 and(τ1 · τ2)(σ1 ·σ2), where
σi (τi ) denotes the one-body spin (isospin) Pauli matrix acting onnucleon numberi. Each channel separates

into various contributions : central 1, tensorS12 and spin-orbit(~L ·~S). Centrifugal~L 2 and quadratic
spin-orbit(~L ·~S)2 components are not shown. The various mesons (ρ ,ω ,σ . . .) that are thought to propagate

the inter-nucleon interaction at various distances are also schematically represented.

The second difficulty stems from the nature of the system of interest. Most nuclei (i.e. those with masses
typically between 40 and 350) are by essence intermediates between few- and many-body systems, as sche-
matically pictured in Fig. 2. As a result (a) most nuclei are beyond theoretical and computational limits of
ab-initio techniques that describe the interacting systemfrom basic NN and 3N vacuum forces, while (b)
finite-size effects play a significant role, which prevents statistical treatments. Furthermore, a unified view
of low-energy nuclear physics implies a coherent description of (i) small- and large-amplitude collective
motions, (ii) closed and open systems, e.g. the structure-reaction interface that is mandatory to understand
spontaneous and induced fission, fusion, nucleon emission at the drip-line..., as well as (iii) the structure of
exotic systems.

The treatment of the nuclear many-body problem aims at computing ground- (masses, radii, deformation
and multipolar moments...) and excited- (single-particle, vibrational, shape and spin isomers, high-spin and
super-deformed rotational bands...) states properties over the nuclear chart, not only for the nearly 3100 ob-
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FIG. 2: (Color online) Pictorial view of a nucleus, as an intermediate between pure few-body and extended
many-body systems.

served nuclei [17] but also for the thousands that are still to be discovered. In that respect, a cross-fertilization
between theoretical and experimental studies is topical, with the apparition of (i) new-generation radioactive-
ion-beam (RIB) facilities producing very short-lived systems with larger yields, and (ii) high-precision de-
tectors allowing precise measurements with low statisticsand high noise-to-signal ratios. Upcoming facilities
based on in-flight fragmentation, stopped and reaccelerated beams or a combination of both are going to fur-
ther explore the nuclear chart towards the limits of stability against nucleon emission, the so-called nucleon
drip-lines. The study of the terra incognita in the neutron-rich region will help understand the astrophysical
nucleosynthesis of about half of the nuclei heavier than iron through the conjectured r-process that was re-
cently ranked among the "Eleven science questions for the next century" by the American National Research
Council [18]. The large neutron-over-proton ratio accessible through neutron-rich nuclei leads to the modi-
fication of certain cornerstones of nuclear structure, e.g.some of the "standard" magic numbers are strongly
weakened while others (may) appear [19]. When adding even more neutrons, the proximity of the Fermi
energy to the particle continuum gives rise to new phenomena, such as the formation of light nuclear halos,
e.g.11Be [20, 21] or11Li [22, 23], with anomalously large extensions [24, 25] or the existence of di-proton
emitters [26]. In addition to reaching out to the most exoticnuclei, experiments closer to the valley of stability
still provide critical information. For instance, precisemass measurements using Penning traps [27, 28] or
Schottky spectrometry [29] refine and extend mass difference formulæ, e.g. leading to a better understanding
of pairing correlations. Also, the study of Wigner energy [30] associated with the over stability ofN = Z
elements might provide leads regarding the existence of static T = 0 proton-neutron pairing, while the study
of the first 2+ state in even-even nuclei together with itsB(E2) transition to the ground state provides key
information about closing and opening of magic numbers. Of course, experiments dedicated to the study of
rotational or vibrational bands [31], shape coexistence [32, 33], fission properties of actinides [34], collec-
tive modes [35] are all of primer interest. Finally, other limits of existence are of fundamental importance,
e.g. the quest for superheavy elements and for the conjectured island of stability beyond theZ = 82 magic
number [36].

The challenge of contemporary nuclear structure theory is thus to describe this entire range of nuclei and
properties as well as neutron stars and supernovae in a controlled and unified way. While bulk properties of
nuclei can be roughly explained using macroscopic approaches such as the liquid drop model (LDM) [38, 39],
microscopic techniques are the tool of choice for a coherentdescription of all static and dynamical nuclear
properties. This leads to defining the class of so-calledab-initio methods that consists of solving the nuclear
many-body problem, as exactly as possible, in terms of vacuum NN, 3N, 4N. . . interactions. For three- and
four-nucleon systems, essentially exact solutions of the Faddeev or Yakubowski equations can be obtained
using realistic vacuum forces [40–42]. Likewise, Green function Monte-Carlo (GFMC) calculations [43–
45] provide a numerically exact description of nuclei up to carbon starting from local NN and 3N vacuum
forces, although such a method already faces huge numericalchallenges for12C. Complementary ab-initio
methods allow the treatment of nuclei up toA≈ 16, e.g. (i) the stochastic variational method (SVM) that
expands the many-body wave function over gaussian wave packets [46–48], (ii) the no-core shell model
(NSCM) [49–52] that projects the interacting problem on a given model space defined within a harmonic
oscillator basis. Coupled-cluster (CC) theory [53–58], which constructs the correlated ground-state from a
product state using an exponentiated cluster expansion, truncated toB-body operators (typ.B∼ 1−3), renders
possible calculations in the immediate vicinity of doubly-magic nuclei up toA≈ 50. In the same regime, the
self-consistent Green’s function (SCGF) approach offers an interesting alternative to CC [59–61] through
the approximate computation of the dressed one-body Green’s function that describes the propagation of a
nucleon in the correlated medium and from which one and two-body observable can be extracted.

To go to heavier systems, an approximate treatment of both the interacting problem is needed. Part of the
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FIG. 3: (Color online) Schematic illustration of Faddeev-Yakubowski, Green-Function Monte-Carlo,
No-Core Shell Model and Coupled-Cluster methods (from top to bottom). In each case, the basic equation
used, a logo summarizing the method, the computational costin terms of system and configuration space

sizes as well as the actual (or estimated for the CC case) range of application are shown. Taken from
Ref. [37].

physics that is not treated explicitly is often accounted for through the formulation and use of so-calledin-
medium interactions. For instance, the configuration interaction (CI) model [62, 63], or shell model (SM),
constructs a model space within which valence nucleons interact through an effective interaction that com-
pensates for high-lying excitation outside that model space as well as for excitations of the core that are not
treated explictly. Even though such an effective interaction can be constructed starting explicitly from vacuum
interactions, e.g. as a microscopicG-matrix complemented with perturbative core-polarization diagrams [64],
certain combinations of two-body matrix elements1 need to be slightly refitted on experimental data within
the chosen model space (sd, pf...) to correct for the so-called monopole part of the interaction. Conjectures
that wrong monopoles originate from the omission of the 3N force in the starting vacuum Hamiltonian are
currently being explored [66, 67]. Eventually, unknown spectroscopic properties are described with a very
high accuracy with such refitted effective interactions [62, 65]. Still, improved accuracy is needed in the shell
model in order to use nuclei as laboratories for fundamentalsymmetries, e.g. to provide isospin-symmetry-
breaking corrections to superallowed decays, study neutrinoless double-beta decay or octuple enhancement
factors of electric dipole moments. Finally, the theoretical tool of choice for the microscopic and systematic
description of medium- and heavy-mass nuclei is the energy density functional (EDF) method [68], often
referred to as "self-consistent mean-field method"2. Based on a relativistic or a non-relativistic framework,
such a method provides a unified description of nuclei over the whole nuclear chart thanks to its favorable
numerical scaling with increasing A. However, state-of-the-art calculations are based on empirical energy
functionals (Skyrme, Gogny. . . ) that are adjusted on experimental data, which raises questions regarding (i)
the connection with underlying vacuum NN and 3N forces, and (ii) the predictive power of extrapolated EDF
results into the terra incognita, as is illustrated in Fig. 4for a particular observable of interest related to the
prediction of halo structures and the location of the neutron drip-line in medium-mass nuclei.

Consequently, the connection between currently used effective interactions or energy functionals for the
approximate calculations of medium-heavy nuclei and vacuum forces is neither explicit nor qualitatively
transparent. Discussing how to go beyond the present statuswithin the frame of EDF methods is the central
objective of the present lectures. However, the technical capability of doing so depends on the characteristics
of the initial Hamiltonian that need now to be discussed.

1 In the sd shell for example, it is necessary to (slightly) refit about 30 combinations of two-body matrix elements in orderto reach
about 140 keV root mean square error on nearly 600 pieces of spectroscopic data [65].

2 We refer to M. Grasso’s lectures in the present volume [69] aswell as to Sec. II for details.



6

FIG. 4: (Color online) Left : halo parameterδRhalo [70] extracted for nearly five hundreds (predicted)
spherical nuclei using SLy4 [71] Skyrme parametrization. Right : halo parameterδRhalo computed for

drip-line chromium isotopes using different Skyrme parameterizations of the nuclear EDF ; i.e. SLy4 [71],
m∗1 [72], ρ i

sat with i = 1,2,3 [72], T6 [73], SKa [74], T21 [75], T26 [75] and SIII [76]. Large discrepancies
in the prediction of the drip-line position and in the extracted halo parameter are obtained from the various

parameterizations. Taken from Ref. [72].

B. Nuclear hamiltonian and renormalization group methods

Establishing an interparticle Hamiltonian, which is the most basic precursor to many-body calculations,
is a challenge for low-energy nuclear physics. The two-bodysector has been intensively investigated such
that various interactions exist that reproduce phase shifts with χ2/Ndof≈ 1 in the elastic regime (up to about
300–350 MeV energy in the laboratory frame). The unsettled frontier is three- and higher-body forces.

As for the NN part, so-calledhigh-precision conventional modelshave been available since the 1990s. Ba-
sed on an operator expansion [1], a meson-exchange model [77, 78], or a simple parametrization [79], such
NN models constitute phenomenological anzätze whose parameters (typically 40) are adjusted to reproduce
high-precision nucleon-nucleon scattering data with an almost perfect precision. Figure 1 displays the four
two-body spin/isospin channels of Argonne V18 [1] potential in coordinate space. The longest-range feature
is the one-pion exchange and is common to most conventional potentials. The mid-range part, which provides
a net attraction, has usually been associated with two-pionexchange and/or the exchange of a phenomenolo-
gicalσ "meson". The short-range part of the potential can be attributed to the exchange of heavier mesons (ρ ,
ω) or simply empirically parameterized. In Fig. 1, one sees that the short-distance presents a repulsive core
(often called a “hard core”). The fact that Argonne V18 potential is local leads to such a strong short-range
repulsion in the S-waves when fitting elastic scattering phase-shifts. However, locality of the potential bet-
ween composite particles is a feature that is only expected at long distances. As a matter of fact, the potential
at short range is not an observable such that locality is onlyimposed for convenience, not because of physical
necessity. There exists an infinite number of equally valid potentials related to each other through unitary
transformations, and once one allows for non-locality, a repulsive core is no longer inevitable.

Recently, the development of chiral effective field theory3 (χ-EFT) has made possible the connection
between low-energy inter-nucleon forces and QCD, whose relevant high-energy effects are renormalized
through fitted low-energy contact terms [81–84]. Typically, the same precision (χ2/Ndof≈ 1) as for conven-
tional NN potentials is obtained at next-to-next-to-next-to-leading-order (N3LO) using about 26 parameters.
Eventually, lattice QCD calculations are expected to help constraining low-energy coupling constants that
are not determined precisely enough through data fitting [85, 86]. The main benefits ofχ-EFT are (i) to
formulate the problem at hand in terms of relevant low-energy degrees of freedom (pions and nucleons)
while retaining the (chiral) symmetry (breaking) of the underlying theory (QCD) and (ii) to naturally explain
the phenomenologically-observed hierarchy that makes two-nucleon interactions more important than three-
nucleons interactions, which are themselves dominant compared to four-nucleon forces etc. Such a hierarchy
relates to the existence of apower countingthat organizes the infinite number of diagrams in theχ-EFT

3 We refer to E. Epelbaum’s lectures in the present volume for details [80].
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FIG. 5: (Color online) Matrix elements of the Argonne V18 NN potential in the1S0 partial-wave. Matrix
elements are given as a function of the incoming/outgoing relative momentum (k/k′) of the two interacting
nucleons. Matrix elements are measured in fm, i.e. one usesh̄ = c = m= 1, wherem is the nucleon mass.

Taken from Ref. [90].

Lagrangian [80].
Conventional orχ-EFT Hamiltonians display several sources of nonperturbative behavior that complicate

nuclear structure calculations. First are the virtual excitations of nucleons to high relative momenta (energy).
This is made apparent by computing the matrix element of the NN potential in (relative) momentum space,
as shown in Fig. 5 for the1S0 partial wave of Argonne V18, where the strong low- to high-momentum
coupling driven by the short-range repulsion is manifestedby the large regions of repulsive off-diagonal
matrix elements. While such virtual excitations are due to the strongly model-dependent short-range central
and tensor forces in conventional potentials, they remain significant in χ-EFT potentials that better separate
the high-energy, model-dependent, physics from the low-energy sector of interest. The second source of non-
perturbative behavior is due to the presence of low-energy bound and nearly-bound states in the3S1 and1S0
of the NN interaction, respectively. Such states correspond to poles in the scatteringT matrix that render the
perturbative Born series divergent at low energy.

Progress toward controlled nuclear calculations has long been hindered by the difficulty to solve the nuclear
many-body problem expressed in terms of nuclear potentialsthat couple low- and high-momentum modes.
This has historically been accepted as an unavoidable reality. Recently, EFT and RG methods [87–90] have
promoted a completely different view point based on the factthat the Hamiltonian (potential) is not an obser-
vable to be fixed from experiment (there is no “true potential”), but rather that there exists an infinite number
of Hamiltonians (potentials) capable of accurately describing low-energy physics [91]. In order to be predic-
tive and systematic, an organization (“power counting”) must be present to permit a truncation of possible
terms in the Hamiltonian (potential). As briefly explained above,χ-EFT potentials indeed build on such consi-
derations. They are based on a power counting that organizesterms in the Hamiltonian in powers ofQ/ΛEFT,
whereΛEFT∼ 500−600 MeV embodies the separation of scale between the high-energy/short-distance sec-
tor that is not modeled explicitly (e.g., heavy mesons,∆ resonances. . . ) and the low-energy/long-range sector
associated with explicitly treated degrees of freedom (pions and point-like nucleons) and characterized by ty-
pical momentaQ∼mπ ,kF . As long as a complete Hamiltonian to some order is used (including many-body
forces), all observable should be equivalent up to truncation errors, independently of the details used to model
the short-distance (high-energy) physics. In that respect, χ-EFT potentials provide a modern starting point to
attack the nuclear many-body problem.

Renormalization group (RG) methods exploit EFT ideas even further. Starting from aχ-EFT Hamiltonian,
one can proceed to a (unitary) transformation todecouplelow-momentum modes from high-momentum ones
that are still present at the separation scaleΛEFT used to build theχ-EFT Hamiltonian to some order in the
power counting. The RG transformation "changes the resolution scaleΛ" (< ΛEFT) of the Hamiltonian, while
preserving the original truncation error, such that it becomessofterthanks to the elimination of the original
non-perturbative coupling between low- and high-momentummodes. In such a context, NN, 3N, 4N. . . forces
between nucleons depend onΛ [92–94]. Tracking the change of many-body observable with the resolution
scaleΛ of the input Hamiltonian can be used as a powerful tool to study the underlying physics scales and to
evaluate the incompleteness of approximate calculations or of dropping multi-body forces in the Hamiltonian.
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FIG. 6: (Color online) Schematic illustration of two types of RGevolution for NN potentials in momentum
space : (a)Vlowk running inΛ, and (b) SRG running inλ . At eachΛi or λi, the matrix elements outside of
the corresponding lines are zero, so that high- and low-momentum states are eventually decoupled. Taken

from Ref. [90].

Eventually, the source of nonperturbative behavior associated with weakly and nearly bound states, which
remains independent of the cutoff in the two-body sector, isalso tamed down as the density of the medium
increases [95]. Using such class oflow-momentumHamiltonians leads to interesting consequences ; i.e. the
nuclear many-body becomes much more perturbative than withconventional orχ-EFT Hamiltonians [87].

While soft potentials derived from RG methods constitute a new development in nuclear physics [93, 96],
attempts to use soft potentials to compute the equation of state of infinite nuclear matter were made in the mid
sixties and early seventies [97, 98]. It had long been observed that a strongly repulsive core is not resolved un-
til eight times nuclear saturation density [99] such that saturation is not driven by it. However, soft potentials
were abandoned because they seemed incapable of quantitatively reproducing nuclear matter properties, and
in particular its saturation. From the EFT perspective, a failure to reproduce nuclear matter observable should
not be interpreted as showing that the low-energy potentialis wrong, but that it is incomplete. This miscon-
ception still persists and has led to the conclusion that low-momentum NN interactions are ”wrong” because
they do not give saturation in nuclear matter and finite nuclei are overbound for lower cutoffs. The missing
physics that invalidates such a conclusion is many-body forces. In a low-energy effective theory, many-body
forces are inevitable ; the relevant question is how large they are ? As already mentioned, it has been esta-
blished beyond doubt that 3N forces are required to provide aconsistent description of various low-energy
nuclear phenomena. When evolving the NN part through RG methods, three-body (and higher-body) inter-
actions evolve naturally with the resolution scale. As willbe seen, 3N forces offer a natural and quantitative
tool to generate saturation in conjunction with soft NN interactions.

There exists in fact two major classes of RG transformationsused to construct low-momentum interactions,
which are schematically illustrated in Fig. 6. In theVlowk approach, decoupling is achieved by lowering a
momentum cutoffΛ above which matrix elements go to zero. In the SRG unitary approach, decoupling is
achieved by lowering a momentum cutoffλ using flow equations that drive the potential toward a band
diagonal form in momentum space. The effects can be readily seen in the series of contour plots in Figs. 7(a)
and 7(b). With either approach, lowering the cutoff leaves low-energy observable unchanged by construction,
but shifts contributions between the NN, 3N, 4N. . . interaction strengths and the sums over intermediate states
in loop integrals.

We note that the RG is an integral part of any EFT. Matching of the EFT at a given truncation level (to data
or to an underlying theory) but at different regulator cutoffs establishes the RG evolution (or “running”) of
the EFT couplings. This includes the shift of strength between loop integrals and couplings and between two
and many-body interactions. However, because the EFT basisis truncated, the error at the initial cutoff is not
preserved with the running, in contrast to the momentum-space RG evolution usingVlowk or SRG techniques,
which keep all orders.
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(a)

(b)

FIG. 7: (Color online) Two types of RG evolution applied to one ofthe chiral N3LO NN potentials
(550/600MeV) of Ref. [100] in the3S1 channel : (a)Vlowk running inΛ, and (b) SRG running inλ . Taken

from Ref. [90].

C. A path towards non-empirical energy density functionals

Impressive progress has been made in extending the limits ofab-initio methods beyond the lightest nu-
clei [60, 61, 101–103]. Still, the nuclear EDF approach remains the only computationally-feasible method
to provide a comprehensive description of medium- and heavy-mass nuclei [68]. Indeed, EDF calculations
present a computational scaling that makes them amenable tosystematic studies of systems with large num-
bers of nucleons, independently of their expected shell structure. This makes also possible to study the idea-
lized system ofinfinite nuclear matterthat is relevant to the description of compact astrophysical objects
such as neutron stars. The nuclear EDF method presents formal similarities with density functional theory
(DFT) [104–110] that provides a framework to compute the exact ground-state energy and one-body density
of electronic many-body systems in condensed-matter physics and quantum chemistry [111]. However, and
even if it is often referred to asnuclear DFT[112–117], the nuclear EDF method as it has been done so far has
deeply rooted conceptual differences with standard DFT that relate to symmetries ; e.g. see Refs. [118–123].
We briefly come back to this point below.

Questions in astrophysics and the advent of new experimental facilities to study nuclei at the limits of
existence are driving multi-pronged efforts to calculate nuclear structure and reaction properties across the
full table of nuclides in a reliable manner. In that respect,modern parameterizations of the nuclear EDF, i.e.
Skyrme, Gogny, or relativistic energy functionals, provide a good description of bulk properties and, to a
lesser extent, of spectroscopic features of known nuclei [68]. However, such parameterizations are pheno-
menological as they rely on empirically-postulated functional forms whose free couplings are to be adjusted
on finite-nuclei data through a chosen fitting protocol. Their lack of microscopic foundation often leads to
parametrization-dependent predictions away from known data and makes it difficult to design systematic im-
provements. As a matter of fact, limitations of existing EDFs have been identified [75, 124–126] over the
last decade and relate to (i) their (too) simple analytical representations, (ii) the biases in their adjustment
procedure and (iii) the lack of a solid microscopic foundation. Fueled by interests in controlled extrapolations
of nuclear properties in isospin, density, and temperature, efforts are currently being made to develop energy
functionals with substantially reduced errors and improved predictive power. One possible path forward fo-
cuses on empirically improving the analytical form and the fitting procedure of existing phenomenological
functionals [75, 124, 127–131].

A second path that complements the development of empiricalEDFs based on trial-and-error consists
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of connecting energy functionals to ab-initio nuclear structure calculations. Such a connection is meant to
lead to so-callednon-empiricalenergy functionals possessing a link to the microscopic nuclear Hamiltonian
describing few-body scattering and bound-state observable. Given the limited reach of ab-initio schemes,
such a strategy aims at benefiting from the best of both worlds, i.e. combining the predictive character of an
ab-initio reference method with the gentle numerical scaling of the EDF method that can be applied to any
nucleus, independently of its doubly-magic, singly-magicor doubly-open-shell character.

In practical terms, there exists multiple paths to non-empirical energy functionals and the optimal choice is
not obvious at this point in time. First, various ab-initio methods can be used as starting points, the idea being
to set up the connection in nuclear systems (e.g. infinite nuclear matter, doubly-magic nuclei...) accessible
to that ab-initio method prior to extending the use of the microscopically-constrained energy functional to
more complicated systems. Second, such a connection can be implemented at various levels of sophistication.
Lastly, such a connection to ab-initio methods necessitates, in order to be rigorously formulated, to distinguish
between approaches based on the standard nuclear EDF methodas it has empirically been used so far and
approaches that try to base the energy functional approach to nuclei on DFT.

1. Connecting the nuclear EDF method to ab-initio approaches

A rather indirect procedure consists of benchmarking EDF results obtained for a set of systems and ob-
servable from an empirically-postulated form with those produced through the ab-initio method of reference.
Unknown couplings of the empirical EDF parametrization canbe "microscopically" constrained in this way.
However, the reliability of the postulated functional formcan only be assessed indirectly through such a
strategy. Still, constraining the employed parametrization to reproduce a large set of (independent) obser-
vable can allow one to discriminate between different functional forms [75, 124, 126]. The benefit of such
an indirect approach is that any ab-initio method that can provide precise enough benchmarks for the sys-
tems/observables of interest can be used. But again, no direct/explicit connection with vacuum interactions is
realized in this case such that no specific insight about theform of new functional terms that can capture the
missing physics is easily gained in this way.

An approach that we aim at promoting in the present lecture consists of connecting more explicitly the
functionalform and thevalueof its couplings to vacuum nuclear interactions. The objective is not to replace
but rather complement approaches based on empirical EDF’s that already achieve an accuracy for known
observable, e.g. nuclear masses, which will be difficult if not impossible to reach with purely non-empirical
functionals. One is essentially looking formicroscopically-educated guessesof new functional terms and the
value of their couplings. Eventually, a fine-tuning of the couplings, within the intrinsic error bars with which
they will have been produced, can be envisioned. In practice, microscopically-educated functional terms are
to be complemented with yet empirical ones until the former account for enough in-medium correlations. Of
course, one must prevent the added empirical terms from double counting the physics that is already included
through microscopically-derived ones.

Within such a scheme, microscopically-educated functional terms are to be derived through analytical ap-
proximations of the ground-state energy computed from the ab-initio method of reference. It is a challenging
task whose complexity depends on the particular many-body method and nuclear Hamiltonian one starts from.
Indeed, not all ab-initio methods offer a natural matching,even through a set of controlled approximations,
to energy density functionals that are close to the form of standard quasi-local (Skyrme, relativistic point
coupling. . . ) or non-local (Gogny, effective meson-exchange Lagrangian. . . ) variants. As a matter of fact,
ab-initio methods that are amenable to such a mapping must share certain key features with EDF methods,
the most important of which being the concept of spontaneoussymmetry breaking (and further restoration).
Let us take the part of the EDF that drives superfluidity as an example, i.e. the part that is a functional of
the anomalous pairing tensor{κi j}. Such a dependence exists in the EDF only because pairing correlations
are grasped through the breaking of good particle-number associated withU(1) gauge symmetry. Deriving
microscopically-educated terms that are explicit functional of {κi j} can only be achieved using an ab-initio
method that also incorporates pairing correlations through the breaking (and restoration) of U(1) gauge sym-
metry4. Similarly, static quadrupole correlations contained in the energy functional can be more directly
benchmarked using an ab-initio method that allows the breaking (and restoration) of angular momentum

4 Of course, the corresponding ab-initio calculations must be doable in systems where such terms are indeed switched on, i.e. all but
doubly-magic nuclei in the present example.
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associated with SO(3) rotational symmetry.

2. Connecting the nuclear DFT method to ab-initio approaches

It has become customary in nuclear physics to assimilate theSR-EDF method, eventually including correc-
tionsa la Lipkin or Kamlah, with DFT, i.e. to state that the Hohenberg-Kohn (HK) theorem underlays nuclear
SR-EDF calculations. This is a misconception as distinct strategies actually support both methods. Whereas
the SR-EDF method minimizes the energy with respect to a symmetry-breaking trial density, DFT relies on
an energy functional whose minimum must be reached for a one-body local density5 that possessesall sym-
metries of the actual ground-state density, i.e. that displays fingerprints of the symmetry quantum-numbers
that characterize the exact ground-state [132]. As a matterof fact, generating a symmetry-breaking solution
is known to be problematic in DFT, as it lies outside the frameof the HK theorem, and is usually referred to
as thesymmetry dilemma. To by-pass the symmetry dilemma and grasp kinematical correlations associated
with symmetries, several reformulations of DFT have been proposed over the years, e.g. see Refs. [133, 134],
some of which are actually close in spirit to the nuclear MR-EDF method [133].

Recent efforts within the nuclear community have been devoted to formulating a HK-like theorem in terms
of the internal density, i.e. the matter distribution relative to the center of mass of the self-bound system [118,
119]. Together with an appropriate Kohn-Sham scheme [119],it allows one to reinterpret the SR-EDF method
as a functional of the internal density rather than as a functional of a translational-symmetry-breaking density.
This constitutes an interesting route whose ultimate consequence would be to remove entirely the notion of
breaking and restoration of symmetries from the energy functional approach and make the SR formulation a
complete many-body method, at least in principle. To reach such a point though, the work of Refs. [118, 119]
must be extended, at least, to rotational and particle-number symmetries, knowing that translational symmetry
was somewhat the easy case to deal with given the explicit decoupling of internal and center of mass motions.

Within the (hopefully extended) scheme of Ref. [119], one can envision to design a so-calledab-initio
nuclear DFTapproach [135]. Although some of the techniques used to do somight be the same as for
designing non-empirical nuclear EDF, we differentiate both attempts as they build on different theoretical
grounds that influence strongly the way symmetries are handled and the need for a multi-reference extension.
Given that the present lectures are dedicated to describingthe path towards non-empirical EDFs only, we
refer the reader to Ref. [135] for a discussion regarding current efforts made to design an ab-initio nuclear
DFT.

For illustration purposes, we can briefly mention one way to proceed that is specific to the nuclear DFT and
that does not apply to the nuclear EDF. The idea is (i) to compute through an ab-initio method of reference
the (a set of) ground-state density(ies) and energy for a setof nuclei embedded in a tunable (set of) external
potential(s), (ii) find for various choices of the external potential(s) the associated one-body local Kohn-Sham
potential(s) from which a non-interacting system can be extracted that reproduce the correlated density(ies),
(iii) use a model energy functional parametrization whose functional derivative(s) with respect to the (set
of) local density(ies) map the one-body local Kohn-Sham potential(s) extracted from the previous step. The
difficulties of such a scheme in the nuclear case rely in the fact that (i) the tunable external potential(s) are A-
body operators rather than one-body ones as in electronic system DFT [119] and that (ii) it is not guaranteed
that there exists a Kohn-Sham non-interacting system that can reproduce several correlated local densities
at the same time ; i.e. this has to do with the so-called non-interacting v-representability of such a set of
local densities. Such an approach is currently being developed based on CC calculations of doubly-magic
nuclei [136].

D. Outline of the lectures

Following the preceding discussion, the present set of lectures discusses the route towards an explicit and
quantitative connection between high-precision NN and 3N models and energy density functionals used to
describe heavy nuclei, as is schematically illustrated in Fig. 8. To do so, the nuclear energy density functional
method is briefly reviewed in Sec. II. The basics of the formalism are discussed and the limitations of EDFs

5 The scheme can be extended to a set of several local densitiesor even to the full density matrix.
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calculations employing currently available empirical parameterizations are exemplified through a limited
number of cases.

The design of non-empirical energy functionals nowadays can be envisioned thanks to the new paradigm set
by low-momentum vacuum interactions. Indeed, suchsoftnuclear interactions allow a quantitative treatment
of infinite nuclear matter [87–89] and doubly closed-shell nuclei [137, 138] within the frame of many-body
perturbation theory (MBPT) [139, 140], e.g. Hartree-Fock becomes a reasonable (if not fully quantitative)
starting point. Consequently, Sec. III is dedicated to reviewing low-momentum interactions generated through
renormalization group techniques.

In this context, MBPT calculations constitute our most basic ab-initio method of reference. To suit our
purpose, we consider Goldstone (time-ordered) MBPT based on an unperturbed vacuum that possibly breaks
particle number and rotation invariances. Works followingsuch a strategy have been initiated recently [135,
141, 142]. Section IV B is thus dedicated to summarizing the basics of Goldstone MBPT, where the explicit
breaking of particle number is however omitted for simplicity.

Although MBPT constitutes the simplest, yet quantitative,ab-initio reference method to be contemplated,
systematic MBPT calculations of self-bound superfluid heavy nuclei in terms of realistic nuclear interactions,
even restricted to second order, still constitute a numerical challenge as of today. Indeed, perturbative contri-
butions to the energy involve density matrices and propagators folded with finite-range interaction vertices,
and are therefore highly non-local in both space and time. Itis why controlled approximations are manda-
tory to map such calculations onto a numerically tractable EDF that allows for non-empirical calculations of
heavy open-shell nuclei. At lowest order in MBPT (i.e., Hartree-Fock), the density matrix expansion (DME)
of Negele and Vautherin [143] can be unambiguously applied to approximate the spatially non-local energy
expression as a generalized Skyrme functional with density-dependent couplings calculated explicitly from
vacuum interactions. Section IV E is thus dedicated to discussing the basics of the DME following recent
works that have revived and improved such a method [144–154]. The non-trivial density dependence of the
DME couplings is a consequence of the finite-range of the underlying NN interactions, and is controlled by
the longest-ranged components of the NN interaction. Consequently, the DME offers a path to incorporate
physics associated with long-range one- and two-pion exchange interactions into existing Skyrme functionals.
Given the rich spin and isospin structure of such interactions, it is hoped that their inclusion will improve pre-
dictive power away from known data and provide microscopic constraints on the isovector structure of nuclear
EDFs. Still, and as briefly illustrated in Sec. IV D 2, the DME in its standard formulation is not amenable to
approximating perturbative contributions beyond HF such that one is awaiting as of today for a generalization
of such an expansion technique. This is part of the perspectives of the building and the use of non-empirical
nuclear energy functionals whose first attempts are discussed in Sec. IV E 4.

FIG. 8: (Color online) Schematic representation of the design of non-empirical energy density functional
rooted into Chiral NN and 3N interactions, further softenedthrough renormalization group methods.
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II. BASICS OF ENERGY DENSITY FUNCTIONAL METHODS

A. Generalities

The nuclear EDF method [68] is a two-step approachempirically adaptedfrom specific variational wave-
function-based approaches. The first step is denoted as the single-reference EDF (SR-EDF) implementation
and has originally been adapted from the symmetry-unrestricted Hartree-Fock-Bogoliubov (HFB) method
using adensity-dependenteffective Hamilton "operator" [155]. Later on, the approximate energy was for-
mulated directly as a possibly richer functional of one-body density matrices computed from a symmetry-
breaking product-state of reference. The second step, carried out through the multi-reference (MR) extension
of the SR-EDF approach has been adapted from the projected Hartree-Fock-Bogoliubov and generator coor-
dinate methods. The nuclear EDF method strongly relies on the concept of spontaneous symmetry breaking
and associated restoration. The MR step necessitates a prescription to extend the SR energy functional6 asso-
ciated to a single auxiliary state of reference, i.e. a diagonal energy kernel, to the non-diagonal energy kernel
associated with a pair of reference states. This leads to difficulties [120, 121, 156–159] that will not been
discussed in the present lectures.

Unlike the wave-function-based approaches it has been adapted from, the nuclear EDF method isnotbased
on an attempt to approximate the correlated many-body wave-function. Rather, part of the correlations are
directly built into the energy functional kernel under the form of a functional of one-body density matrices.
The main advantages of the method are that (i) it uses the fullspace of single-particle states, (ii) although it is
fully quantal, the use of densities and currents as basic variables combined with the spontaneous breaking of
symmetries provides a natural description of collective behaviors, (iii) the energy functional is universal in the
sense that it is meant to be applied to all nuclei (but the lightest) and that (iv) correlations varying smoothly
with the filling of nuclear shells, i.e. with the number of particles are rather easily mocked up into the energy
functional kernel itself. On the other hand, the main difficulties are that (a) although the EDF method is
applicable to any nucleus, there exists no unique parametrization at this point in time that works satisfactorily
for all nuclei and all observable, (b) the empirical character of existing parameterizations of the EDF strongly
limits its predictive power, (c) certain categories of correlations that vary rapidly with the number of particles
can hardly been parameterized into the EDF itself or graspedthrough the breaking of symmetries such that
non-trivial extensions of the basic SR-EDF method, i.e. MR-EDF schemes, are often unavoidable to reach
the necessary accuracy, and finally that (d) a quantitative account of spectroscopic properties also necessitates
MR-EDF extensions.

In the present section, the basic SR-EDF is briefly describedwhile Fig. 14 summarizes its key features.
The MR extension is however only sketched through Fig. 15. Also, time-dependent variants of the SR- and
MR-EDF methods are not discussed in the present document [160, 161].

B. Single-reference EDF method

1. Elements of formalism

The binding energyE [ρ ,κ∗,κ ] of the many-body system is postulated to be a functional, in the mathe-
matical sense, of the one-body density matrix and pairing tensor defined, respectively, in an arbitrary single-
particle basis{bi} as

ρ ji ≡ 〈Φ|b†
i b j |Φ〉 ; κ ji ≡ 〈Φ|bi b j |Φ〉 , (1)

where|Φ〉 denotes a symmetry-breaking state of reference. The latteris anauxiliary state in the sense that it is
not meant to provide a realistic approximation of the correlated many-body wave-function but a reference to
compute the density matricesρ andκ . The form of|Φ〉 is the result of a compromise between simplicity and
the need to incorporate enough physics, e.g. providing a non-zero value ofκ requires a many-body state that
spans Hilbert spaces associated with different number of particles. In practice, the SR-EDF implementation

6 I.e., the density-dependence of the effective Hamilton operator in more standard formulations.
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relies on using a product state of the Bogoliubov type

|Φ〉 ≡∏
i

βi |0〉 ; βi ≡∑
i

U∗ji b j +V∗ji b+
j , (2)

which is a vacuum of the fermionic quasi-particle operators{βi} defined through the latter Bogoliubov trans-
formation, i.e.βi |Φ〉 = 0 for all i. The information contained in the product state|Φ〉 is encoded into the
so-called generalized density matrix

R ≡

(

ρ κ

−κ∗ 1−ρ∗

)

,

which is idempotent, i.e.R2 = R. The dependence of the EDF onκ allows the treatment of static pairing
correlations between nucleons. Such correlations are responsible for the superfluid nature of a majority of
nuclei and impacts essentially all low-energy properties of nuclei as well as certain static and dynamical
features of neutron stars. Microscopically speaking, like-particle pairing in nuclei (mostly) reflects the strong
attraction of the NN interaction in the1S0 partial-wave [141, 142, 162–165].

The optimization of the vacuum state|Φ〉, i.e. the determination of the amplitudes(U,V) of the uni-
tary Bogoliubov transformation, is performed through the minimization of the energyE [ρ ,κ∗,κ ] under the
constraints that (i) the average number of particles in|Φ〉 remains fixed to a chosen value and (ii) the auxi-
liary state remains a quasi-particle vacuum, i.e. its generalized densityR remains idempotent. Given thatρ
is hermitian andκ is antisymmetric, the irreducible set of independent variables selected for the variation is
{ρi j ,ρ∗i j ,κi j ,κ∗i j for j < i andρii for all i}. Using a Lagrange method, the constrained minimization reads

δ
(

E [ρ ,κ ,κ∗]−
1
2

λ (Tr{ρ}+Tr{ρ∗})−Tr{Λ(R2−R)}
)

= 0 , (3)

where the Lagrange parameters{λ ,Λi j} are adjusted to satisfy the conditions

Tr{ρ}= Tr{ρ∗}= 〈N̂〉= N ; R
2−R = 0 . (4)

The minimization leads to solving Hartree-Fock-Bogoliubov-like equations expressed in the single-particle
basis{bi} as

H

(

U
V

)

µ
≡

(

h−λ ∆
−∆∗ −h∗+ λ

)(

U
V

)

µ
= Eµ

(

U
V

)

µ
, (5)

from which the quasi-particle wave-functions(U,V)µ and energiesEµ are extracted. The Bogoliubov matrix
H is expressed in terms of effective fields(h,∆) and effective vertices(vph,vpp) defined through

hi j ≡
δE

δρ ji
≡ ti j +∑

kl

vph
ik jl ρlk ; ∆i j ≡

δE

δκ∗i j
≡

1
2 ∑

kl

vpp
i jkl κkl . (6)

Given that the effective fields depend on the quasi-particleamplitudes(U,V) throughρ = V∗VT andκ =
V∗UT , equation of motion 5 is to be solved iteratively and self-consistently.

2. Spontaneous symmetry breaking

TAB . I: Categories of nuclei that tend to spontaneously break translational, rotational and particle number
invariances at the SR level. Connection is also provided between the spontaneous breaking of those

symmetries and excitation modes observed in nuclei.
Nuclei Excitation pattern

Translation in coordinate spaceAll Surface vibrations
Rotation in gauge space All but doubly-magic Energy gap
Rotation in coordinate space All but singly-magic Rotational bands
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FIG. 9: (Color online) Schematic view of the SR energy as a function of the phase and magnitude of the
order parameterq of a spontaneously broken symmetry.

The nuclear EDF method strongly relies on the concept of symmetry breaking, i.e. the auxiliary state|Φ〉
does not necessarily reflects the symmetries of the underlying Hamiltonian. In other words,|Φ〉 is allowed to
span several irreducible representations of the symmetry groupG of the nuclear HamiltonianH when mini-
mizing the energy functional. In the nuclear case, the symmetry groupG is characterized by the simultaneous
commutation ofH with neutron numberN, proton number,Z, center of mass momentum~P, total angular
momentumJ2 in the center of mass and its projection on a chosen axisJz, parity Π and time reversalT 2

operators.
Given that|Φ〉 is allowed to span several irreducible representations of the symmetry group, the density

matricesρ andκ approximate those of a wave packet rather than those of an eigenstate ofH. As a result,
the spontaneous breaking of the symmetries carries information about the favored modes of excitation of the
system, as exemplified in Tab. I.

The breaking of each symmetry is monitored by the magnitude and the phase of an order parameterq,
such that the (approximate) SR energyE [ρ ,κ∗,κ ; |q|] only depends on the magnitude ofq and not on its
phase, as schematically shown in Fig. 9. This corresponds tothe fact that a spontaneous symmetry breaking
is accompanied by the presence of a zero-energy Goldstone mode. The energy as a function of|q| provides
a potential energy curve/surfacethat characterizes the restoring force of the system against the variation of
|q| ; i.e. the "polarizability" of the system with respect to "deforming" it along the collective variable|q|. In
practical terms, the potential energy curve can be accessedthrough repeated SR-EDF calculationsconstrained
to various values of|q| = 〈Φ|Q|Φ〉 whereQ is most often taken as a one-body operator, i.e. by adding the
Lagrange term−λ|q| (Tr{ρ Q}− |q|) to Eq. 3.

The (breaking of) symmetries translates into the (reduced)symmetries of the fieldsh and∆, which even-
tually translates into the (absence of) symmetry quantum numbers carried by the solutions of Eq. 5 and by
the (reduced) degeneracy of the corresponding eigen spectrum. Of course, that a certain symmetry does break
spontaneously usually depends on the number of elementary constituents of the system under consideration.
For example, while translational symmetry (strongly) breaks in all nuclei, particle-number symmetry tends
to (weakly) break in all but doubly-magic nuclei whereas rotational symmetry remains unbroken if either the
neutron number or the proton number is "magic"7 as is recalled in Tab. I.

As explained in Sec. II F, the breaking of symmetries is an efficient and inescapable way of grasping
essential correlations into a simple SR description of nuclear systems. The drawback is that the connection
between certain computed quantities and experimental observable is not direct, until one eventually restores
the broken symmetries. As a matter of fact, the breaking of symmetries can only provide an intermediate
description of a finite system such that good symmetries musteventually be restored to describe properties of
actual eigenstates. Doing so is one of the objective of the MRextension of the nuclear EDF method.

7 The fact that the neutron or proton number is magic is not known a priori but is based on a posteriori observations and experimental
facts. In particular, the fact that traditional magic numbers, i.e.N,Z = 2,8,20,28,50,82,126, remain as one goes to very isospin-
asymmetric nuclei is the subject of intense on-going experimental and theoretical investigations [19].



16

3. Single-particle field

The role played by the single-particle fieldh is most easily understood in the limit where the auxiliary
state|Φ〉 is taken as a Slater determinant, i.e. when particle-numbersymmetry is enforced such that pairing
correlations are not explicitly incorporated through dependencies onκ . In such a case, the equations of motion
(Eq. 5) reduce to the eigen-value problem

[hϕi ](~r) ≡ εi ϕi(~r) , (7)

whose eigen-spectrum{εi}, as schematically shown in Fig. 10, provides an approximation to the nuclear
"shell structure", i.e. to one-nucleon separation energies between the ground state of the N-body system and
eigen-states of the (N−1)- and (N+1)-body systems. As the EDF incorporates a large fraction ofcorrelations,
in particular through the breaking of symmetries, the fieldh must be seen as effectively reflecting acorrelated
single-particle motion.

FIG. 10: (Color online) Schematic representation of the single-particle ”shell structure” obtained by solving
Eq. 7.

Although the SR-EDF method isnota Hartree-Fock approximation, a Koopmans-like theorem holds such
that the single-particle energyεi of an occupied (unoccupied) level provides a fair approximation of the
computed one-nucleon separation energies. Of course, suchan internal consistency of the SR method does
not guarantee that such a separation energy is itself a good approximation of the experimental observable
and even that it can be straightforwardly related to it. First, the inclusion of pairing correlations will modify
such a separation energy in singly- or doubly-open shell nuclei that are statically paired. Second, the loss
of good angular momentum associated with the breaking of rotational invariance makes the connection to
experimental states indirect in doubly-open shell nuclei.Third, and most importantly, the effect of collective
fluctuations that significantly renormalize the position ofthe quasi-particle peak and the spreading of the
single-particle strength that is not pronounced enough (although not zero as is often believed) at the SR level.

Finally, and although such a quantity is even more likely to be renormalized by collective fluctuations,
energy differencesεp−εh involving an occupied (h) and an empty(p) single-particle state close to the Fermi
energy provides a first approximation of low-lying individual excitations of theN-body system.

4. Pairing field

As explained above, static pairing correlations are grasped within the SR-EDF through the breaking of
particle number, i.e. through the use of an auxiliary state of the Bogoliubov form (Eq. 2) that is a linear
superposition of Slater determinants with various numbersof particles. As is schematically shown in Fig. 11,
the effective vertexvpp (Eq. 6) drives the scattering of nucleonic pairs on top of thesingle-particle shell
structure provided byh. Such a process correlates nucleons in time-reversed states and eventually results in
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a non-zero pairing field∆ whenever the pairing energy gained in this way overcomes thecost of scattering
pairs to higher-energy states.

FIG. 11: (Color online) Schematic representation of the pair scattering mechanism driving by the effective
vertexvpp (Eq. 6) and of its resulting impact on the average occupationof canonical single-particle states

(Eq. 8).

For all but magic numbers (±1 particle), i.e. systems (±1 particle) with a large gap at the Fermi energy in
the{εi} spectrum, the minimization of the energy does usually lead to a solution with a non-zero pairing field
∆. At convergence, this yields smoothed-out single-particle occupations as schematically shown in Fig. 11.
This can be best seen in the so-calledcanonicalsingle-particle basis{aν} that provides the one-body density
matrix and the pairing tensor under the particular form

ρµν ≡ v2
µ δµν =

1
2



1−
hµµ −λ

√

(hµµ −λ )2+ ∆2
µµ̄



 δµν , (8)

κµν̄ ≡ uµ vµ δµν =
∆µµ̄

2
√

(hµµ −λ )2+ ∆2
µµ̄

δµν , (9)

as well as the auxiliary state under a BCS-like form

|Φ〉= ∏
µ>0

(

uµ +vµ a+
µ a+

µ̄

)

|0〉 , (10)

in which single-particle states(µ , µ̄) are two-by-two conjugated.

5. Eigen spectrum

The HFB eigen-spectrum of Eq. 5 is separated into two groups with opposite eigenvalues{Ei : (U,V)i} and
{−Ei : (V∗,U∗)i}. If the chemical potentialλ is positive, the quasi-particle spectrum is entirely continuous.
If λ < 0, the system is bound [166] such that the quasi-particle spectrum is partly continuous (|Ei|>−λ ) and
partly discrete (|Ei| < −λ ). Such a property is illustrated in Fig. 13. One observes in particular that quasi-
particles associated with deep single-particle states couple to the continuum through the residual pairing
interaction and acquire a width, i.e. they describe unstable elementary excitations of the systems. When the
Fermi level tends to zero, the quasi-particle spectrum becomes more and more continuous as a result of the
increased coupling induced by pair scattering between bound and unbound single-particle states. To build
the auxiliary product state|Φ〉 and the density matrices associated to it, one must select only half of the
solutions such that only one of the conjugated solutions (i.e.Ei and−Ei) is picked. The lowest energy state
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FIG. 12: (Color online) Schematic representation of the interplay between the single-particle fieldh and the
pairing field∆ in the HFB matrix (see text).

is obtained from selecting all quasi-particle with positive energies. Doing so, localized one-body and pairing
densities are obtained as long asλ < 0, in spite of the fact that most of selected quasi-particlesbelong to the
continuum [166].

Within the HFB self-consistent scheme, modified single-particle occupations associated with the non-zero
field ∆ feedback onto the single-particle fieldh through its dependence onρ , which then feedbacks onto the
pair scattering, etc, as is schematically depicted in Fig. 12. Such a feature modifies the structure of the ground
state and the nature of elementary excitations. Given that the eigen-spectrum approximately reads8

Ei ≈
√

(εi −λ )2+ ∆2
i ī

, (11)

elementary excitations described by auxiliary states of the form|Φi j 〉= β †
i β †

j |Φ〉 are such that

E
〈N〉
i j −E

〈N〉
0 ≈ Ei +E j ≥ 2∆F , (12)

where∆F denotes the matrix element of the pairing field associated with the canonical pair(µF, µ̄F) the
closest to the Fermi level. Consequently, a gap opens up in the excitation spectrum of open-shell nuclei that
would be absent in the limit of zero pairing as

E
〈N〉
i j −E

〈N〉
0

∆=0
−→ |εp−λ |+ |εh−λ |= εp− εh (13)

and given that the spacing at the Fermi between single-particle states is essentially zero in open-shell nuclei.
Such features can also be read off Fig. 13 that displays the modification of the quasi-particle excitation
spectrum brought about by the inclusion of pairing correlations.

C. Empirical energy functionals

The SR-EDF method outlined above can be applied as soon as a parametrization of the nuclear EDF is
available. As of today, existing parameterizations have been built empirically through trial and error, i.e. using
symmetry requirements to constraint the functional form and fitting to data to fix the free coupling constants.
In the following, we briefly review how the formal building ofthe Skyrme-type local parametrization is
achieved in the limit where time-reversal symmetry is enforced.

8 Such an expression is strictly valid in the canonical basis only but, except for low-lyingl = 0 quasi-particle states in drip-line nuclei,
the actual HFB spectrum is close to the canonical one.
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FIG. 13: (Color online) Excitation spectrum built from the eigen-spectrum ofh. a) Single-particle spectrum
εi : discrete bound states in black and continuum in red. Single-particle resonances are represented with their
width on top of the continuum background. b) Associated quasi-particle energy spectrum, i.e.Ei = |εi−λ |.

c) Quasi-particle spectrumEi after switching on pairing correlations. Resonances coming from
deeply-bound single-particle states acquire a finite widthas a result of their coupling to the single-particle
continuum through pair scattering. In b) and c), only the positive part{Ei} of the quasi-particle spectrum is

shown, i.e. the mirror negative part at{−Ei} is omitted for simplicity.

FIG. 14: Schematic representation of the single-reference implementation of the nuclear EDF method
(embedded in the more general multi-reference implementation). The various ingredients of the method, e.g.

the auxiliary states|Φ〉 from which the density matrices are computed, the importance of spontaneous
symmetry breaking and the associated loss of selection rules, as well as the type of correlations that are

accounted for, are indicated. Observable that are reasonably described at the SR level are also listed.
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1. Density matrices and local densities

Starting from the density matrices expressed in the|~r〉⊗ |σ〉⊗ |q〉 single-particle basis

ρ~rσq~r ′σ ′q ≡ 〈Φ|c†(~r ′σ ′q)c(~rσq) |Φ〉 ; κ~rσq~r ′σ ′q≡ 〈Φ|c(~r ′σ ′q)c(~rσq) |Φ〉 , (14)

one first extracts all time-even local densities that can be built up to second order in derivatives9

ρq(~r) ≡ ∑
σ

ρ~rσq~rσq , (15)

τq(~r) ≡ ∑
σ

∇ ·∇′ρ~rσq~r ′σq

∣

∣

~r=~r ′ , (16)

Jq,µν(~r) ≡
i
2 ∑

σσ ′

(

∇′−∇
)

µ ρ~rσq~r ′σ ′q σσ ′σ
ν

∣

∣

∣

~r=~r ′
, (17)

Jq,κ(~r) ≡
z

∑
µ,ν=x

εκµν Jq,µν(~r) , (18)

ρ̃q(~r) ≡ ∑
σ

κ~rσq~rσ̄q σ σ̄ σ̄
z , (19)

whereσσ ′σ
ν andεκµν denote the matrix element of the two-by-two cartesian Paulimatrix µ = x,y,z and the

Levi-Civita symbol, respectively. In Eqs. 15-19, the so-called matter, kinetic, spin-current tensor, spin-orbit
and pairing densities have been defined, respectively. Additional local densities must be considered, i.e. are
different from zero, when an auxiliary state breaking time-reversal symmetry is in use [168]. For a general
discussion on the properties of non-local and local densities under various set of self-consistent symmetries,
we refer the reader to Ref. [169]. Local densities as defined in Eqs. 15-19 are the physical degrees of freedom
at play in the SR-EDF method. While their quantal nature ensures their sensitivity to nucleonic degrees of
freedom, the use of densities and currents as basic variables, combined with the spontaneous breaking of
symmetries, provides a natural description of collective behaviors in heavy nuclei.

2. Energy

The procedure consists of building the many-body energy as alocal functional of the above set of local
densities, i.e. as one triple integral of a local energy-density whose various terms may contain up to two Pauli
matricesσν and spatial derivatives∇ throughρq, τq, Jq,µν andρ̃q. In doing so, specific constraints must be
enforced for the resulting functional to be a scalar under all transformations of the symmetry groupG ; i.e.
under transforming|Φ〉 and the densitiesρ , κ , κ∗ constructed from it. For a local functional of the Skyrme
type, we refer the reader to Refs. [167, 170] for the formulation of such constraints.

Focusing on a system that preserves time-reversal symmetry, e.g. the ground-state of an even-even nucleus,

9 For the anomalous part, we restrict the discussion to terms with no derivative. In addition, no isospin mixing is presently considered.
See Ref. [167] for a more general and detailed presentation.
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one finally obtains the functional form, hereafter referredto as the Skyrme functional

E [ρ ,κ ,κ∗] =
∫

d~r ∑
q

h̄2

2m
τq(~r)

+∑
qq′

∫

d~r

[

Cρρ
qq′ ρq(~r)ρq′(~r)+Cρ∆ρ

qq′ ρq(~r)∆ρq′(~r)+Cρτ
qq′ ρq(~r)τq′(~r)

+Cρ∇J
qq′ ρq(~r)~∇ · ~Jq′(~r)+CJJc

qq′

z

∑
µ,ν=x

Jq,µν(~r)Jq′,µν (~r)

+CJJt
qq′

z

∑
µ,ν=x

[

Jq,µµ(~r)Jq′,νν (~r)+Jq,µν(~r)Jq′,νµ(~r)
]

]

+∑
q

∫

d~rCρ̃ ρ̃
qq |ρ̃q(~r)|

2 , (20)

where all couplingsC f f ′

qq′ may further depend on~r, e.g. through a dependence onρq(~r). The first line of Eq. 20
denotes the uncorrelated kinetic energy. Given such a functional form, the set of free parameters entering the
couplings are typically fitted, depending on the protocol ofchoice, to infinite nuclear matter properties (e.g.,
saturation point, compressibility, effective masses, asymmetry energy) and a selection of finite-nuclei data
(e.g., masses, charge radii, spin-orbit splittings) [71, 75, 128, 171]. Unfortunately, and as will be elaborated
on below, although such a functional form can be applied to all (A & 16) nuclei, there does not exist as of
today a parametrization that satisfactorily describes nuclei and observable in a universal manner. We refer the
reader to Ref. [168] for examples of modern parameterizations.

3. Single-particle field

Starting from the Skyrme functional given in Eq. 20, the single-particle fieldh defined through Eq. 6 reads

hq
i j ≡

∫

d~r ϕ†
i (~r)hq(~r)ϕ j(~r) , (21)

where

hq(~r) = −∇ ·Bq(~r)∇+Uq(~r)−
i
2

z

∑
µ,ν=x

[

Wq,µν(~r)∇µ + ∇µ Wq,µν(~r)
]

σν . (22)

The local multiplicative potentials appearing in Eq. 22 aredefined as

Uq(~r)≡
δE

δρq(~r)
; Bq(~r)≡

δE

δτq(~r)
; Wq,µν(~r)≡

δE

δJq,µν(~r)
, (23)

such that their expression can be obtained from Eq. 20 by performing a functional derivative. The potential
Bq(~r) provides a position-dependent effective mass whereasWq,µν(~r) denotes the spin-orbit potential.

4. Pairing field

Similarly to what was done forhq, the pairing field∆q obtained from Eq. 20 reads

∆q
i j ≡

∫

d~r
[

ϕ†
i (~rq)∆q(~r)ϕ∗j (~rq)−ϕ†

j (~rq)∆q(~r)ϕ∗i (~rq)
]

, (24)

where

∆q(~r) = −Ũq(~r) i σy . (25)

The local multiplicative potential appearing in Eq. 25 is defined as

Ũq(~r) ≡
δE

δ ρ̃∗q(~r)
, (26)
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such that its expression can be obtained from Eq. 20 by performing a functional derivative. The use of a
local pairing EDF leads to an ultraviolet divergence that needs to be regularized [166, 172, 173] or renorma-
lized [174–178]. We choose not to elaborate on this point here.

D. Pseudo potential and effective interaction

Historically, the Skyrme EDF (Eq. 20) has been introduced asthe expectation value, in the auxiliary state
|Φ〉, of an effective density-dependent Skyrme "interaction" complemented by a density-dependent delta
"interaction" (DDDI) to generate the pairing part ofE [ρ ,κ ,κ∗]. Such effective vertices should not be seen as
genuine in-medium effective interactions but rather as convenient auxiliary operators, orpseudo potentials,
from which a local functional can be derived. Indeed, any realistic in-medium effective interaction would
necessarily be both finite-range and non-local, if not energy dependent (see Eq. 64 in Sec. IV D 2). The
schematic (i.e. quasi zero-range) form of the auxiliary vertices, together with the mixed account they provide
of both in-medium correlations and the effect of many-forces, make their connection to actual NN and 3N
interactions extremely indirect at best.

The Skyrme pseudo-potential providing the part of the EDF that depends solely on the normal density
matrix takes the typical form

vcent = t0 (1+x0Pσ )δ (~r)+
1
2

t1 (1+x1Pσ )
[

δ (~r) ,
−→
k 2 +

←−
k 2 δ (~r)

]

+ t2(1+x2Pσ )
←−
k · δ (~r)

−→
k (27)

vρ
cent =

1
6

t3 (1+x3Pσ )ρα
0 (~r)δ (~r) , (28)

vls = iW0 (~σ1 + ~σ2)
←−
k ∧ δ (~r)

−→
k , (29)

vtens =
te
2

{

[

3(~σ1 ·
←−
k )(~σ2 ·

←−
k )− (~σ1 ·~σ2)

←−
k 2 ] δ (~r)+ δ (~r)

[

3(~σ1 ·
−→
k )(~σ2 ·

−→
k )− (~σ1 ·~σ2)

−→
k 2
]}

+ to
{

3(~σ1 ·
←−
k )δ (~r)(~σ2 ·

−→
k )− (~σ1 ·~σ2)

←−
k · δ (~r)

−→
k
}

, (30)

where the various terms denote central, spin-orbit and tensor components, respectively. In the above expres-
sion,

−→
k =−i(∇1−∇2)/2 defines the relative momentum operator of the incoming nucleonic pair and

←−
k its

complex conjugate associated with the outgoing nucleonic pair acting on the wave-functions located to its
left. The operatorPσ = (1+~σ1 ·~σ2)/2 is the spin-exchange operator that controls the relative strength of the
S= 0 andS= 1 two-body spin channels for a given term in the two-body effective vertex.

Computing the expectation value of the Skyrme "interaction" in the state|Φ〉, a functional of the same
form as the one given in the first three lines of Eq. 20 is obtained. Such an apparent similarity between the
EDF approach introduced in the previous section and the historical Skyrme "interaction" approach hides two
important differences. In the latter case, and although it is not an intrinsic limitation of the "interaction"
approach as it can be made more general than in Eqs. 27-30, only Cρρ

qq′ do further depend onρq(~r). Such
a restricted dependence of the couplings on the matter density was considered at the time as the minimal
extension beyond a strictly density-independentSkyrme vertex that could reasonably account for nuclear
saturation and single-particle properties at the same time. Most importantly, the couplings of terms depending
on time-odd densities (not shown in Eq. 20) are entirely fixedby those associated with terms depending
on time-even densities (shown in Eq. 20) when the EDF is derived from the Skyrme "interaction". In the
more general EDF approach, about half of such relationshipscan be relaxed while the other half remains
as the result of symmetry constraints. Historically, the density-dependent term (Eq. 28) was introduced with
α = 1 such that it was equivalent, in time-reversal invariant systems, to a three-body contact pseudo-potential.
Eventually,α was taken smaller than one to account for a realistic incompressibility of symmetric nuclear
matterK∞ and to provide reasonably good single-particle energies{εi} at the same time.

As for theT = 1 pairing part of the EDF, it is traditionally derived as the average value of a DDDI made
of the following two terms

ṽcent = t̃0 (1−Pσ)δ (~r) , (31)

ṽρ
cent = t̃3 (1−Pσ)ργ

0(~r)δ (~r) , (32)

that are purely central and of S-wave character. Doing so provides a functional form similar to the last line
of Eq. 20. For̃t3 = 0, one refers to avolume-type pairing given thatCρ̃ ρ̃

qq is independent of the density. For
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t̃3 = −t̃0/ρsat, whereρsat is the saturation density of nuclear matter, one refers to asurface-type pairing as
Cρ̃ ρ̃

qq is larger at the surface of the nucleus than in its volume. In between, one refers to amixed-type pairing.
As will be discussed in Sec. IV, the connection between a local EDF of the Skyrme type and underlying NN

and 3N interactions can be performed at the level of the EDF itself, not at the level of the Skyrme "interaction"
that has in fact no physical meaning whatsoever. At the priceof dealing with a very non-local energy functio-
nal, it becomes possible to consider an intermediate finite-range, non-local, energy- and density-dependent
effective vertex that possesses the physical meaning of an in-medium interaction [179].

E. Multi-reference extension

An exhaustive discussion as to why and how the SR-EDF method is extended to a multi-reference for-
malism (see Fig. 15) is beyond the scope of the present lectures. Historically, the MR-EDF implementation
has been adapted from the projected Hartree-Fock-Bogoliubov and generator coordinate methods. In generic
terms, the aim is to allow for (collective) fluctuations of the phase and magnitude of the order parameters
associated with the symmetries broken at the SR level. Doingso, correlations associated with large am-
plitude collective motions complement static correlations incorporated at the SR level. Beyond including
further ground-state correlations, excitations of the system corresponding to treated fluctuations are accessed
and selection rules are recovered, which allows the computation of transition probabilities on a safe ground.
Consequently, the MR extension is not only meant to refine thedescription of observable reasonably accoun-
ted for by SR calculations but also to extend the reach of the method as to which observable and nucleus
can be safely compared to experiment (see Fig. 15). Many variants or approximations of it are also being
implemented and extensively used, e.g. the quasi-particlerandom phase approximation or the Bohr Hamilto-
nian method [68]. The energy functional at play in full MR-EDF calculations depends on so-calledtransition
density matrices constructed from all possible pairs of auxiliary product-states entering the MR set. For each
such pair, the SR (diagonal) energy functional kernel must be extended to a non-diagonal energy kernel. This
leads in general to non-trivial difficulties and to the necessity to use functionals containing integer powers of
the density matrices only [120, 121, 156–159].

F. Correlations

Given that the nuclear EDF method is empirical, the most delicate point consists of assessing with a certain
rigor what correlations are actually accounted for, especially given that the method comes into two consecu-
tive steps that must be implemented consistently. First, itis essential to understand that the SR-EDF approach
doesnot reduce to a Hartree-Fock (HF) approximation when formulating the many-body problem in terms
of vacuum NN plus 3N interactions. Otherwise, SR-EDF calculations could not even qualitatively, if not
quantitatively, account for the equation of state of infinite nuclear matter [87, 88] or for doubly-magic nu-
clei [137, 138], as they do by construction. From the outset,correlations beyond HF are effectively built into
E [ρ ,κ ,κ∗] thanks to its flexible functional form and the fitting of its parameters to data. Such a fact makes
improper to refer to SR-EDF calculations as representing "mean-field" or "Hartree-Fock" calculations as is
often done.

Second, it is first essential to realize that the appropriateform of the functional must be discussed within
the frame of spontaneous broken symmetries. The latter provide the most efficient way of grasping static col-
lective correlations. Figure 16 displays the correlation energy incorporated in240Pu and120Sn ground-states
energy through the spontaneous breaking of rotational and particle-number symmetries, respectively. Such
symmetry breakings may account for up to 20 MeV correlation energy out of about 2 GeV binding energy,
i.e. for about 2%, which is much larger than the targeted accuracy on nuclear masses. Such correlations could
hardly be re-summed into a symmetry-conserving energy kernel, i.e. there would be little chance to des-
cribe at the same time doubly-magic, singly-magic and doubly open-shell nuclei using an energy functional
that enforces particle-number and rotational symmetries.Indeed, static pairing and quadrupolar correlations
increase and decrease significantly across a major shell, which makes difficult to mock them up through
(conventional) functional terms that do not break symmetries.

Third, and as already mentioned, it is mandatory to treat thefluctuations of the order parameter of the
broken symmetries when describing a finite quantum system. As shown in Fig. 16, doing so for angular
momentum and particle number adds a few MeV binding to the ground-state energy of heavy nuclei. This
is significant in view of the few hundreds keV targeted accuracy on nuclear masses and tend to improve on
wrong patterns that exist at the SR-EDF level [180]. As discussed in Sec. II E, the incorporation of such
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FIG. 15: (Color online) Schematic representation of the multi-reference implementation of the nuclear EDF
method (encompassing the more limited single-reference implementation). The various ingredients of the
method, e.g. the set of auxiliary states{|ΦA〉} from which the transition density matrices are computed,

treated collective fluctuations, the restoration of symmetries and the associated recovering of selection rules,
as well as the type of correlations that are accounted for, are indicated. Observable that are accessible at the

MR level are also listed.

correlations within the MR-EDF implementation is characterized by the extension of the diagonal energy
kernelE [ρ ,κ ,κ∗] into a more general non-diagonal energy kernel that dependson transition density matrices.
Still, one may ask whether or not such correlations that varyquickly with the filling of nuclear shells may
be re-summed directly into the diagonal (symmetry-breaking) energy kernelE [ρ ,κ ,κ∗] by simply using a
more elaborated functional form. As a matter of fact, methods approximating correlations from symmetry
restorations in this way, e.g. Lipkin [181, 182] or Kamlah [183, 184] methods, do exist. While it is likely
that the strongly broken translational symmetry can be safely treated through such approximate projection
methods10, whether the same is true for weakly broken symmetries, e.g.particle number symmetry in all but
doubly-magic nuclei or rotational symmetry in transitional nuclei, is still unclear as of today.

In summary, the empirical EDF method relies on a qualitativedecoupling of different categories of corre-
lations at play, i.e. on the different scales that characterize them (see Tab. II), and on the fact that correlations
that vary quickly with the filling of nuclear shells are explicitly accounted for through the breaking of sym-
metries and the quantum collective fluctuations of their associated order parameters. Until a completely non-
empirical design of the SR and MR EDF implementation exists,such a decoupling can only be approximate
and the separated account of various categories of correlations subject to trial and error. In that respect, it is
worth noting that until very recently [130] no parametrization of the basic energy kernelE [ρ ,κ ,κ∗] had been
fitted on the basis of MR calculations, i.e. including correlations associated with quantum collective fluctua-
tions. Such a procedure is to be systematized in the future, not only to avoid the obvious double counting of
correlations that exist when employing in MR calculations an energy functional fitted on data at the SR level,

10 Such a statement is to be taken with a grain of salt for rather light nuclei [185].
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. .

FIG. 16: (Color online) Energy gain from (i) spontaneous symmetry breaking and (ii) symmetry restoration
as a function of the magnitude of the order parameterq, followed by (iii) the mixing along that collective

coordinate. Left : breaking and restoration of rotational symmetry in the ground state of240Pu as a function
of the axial quadrupole moment of the single-nucleon density distribution, followed by the mixing along the
latter collective coordinate (adapted from Ref. [186]). Right : breaking and restoration of neutron-number

symmetry in the ground state of120Sn as a function of the norm of the anomalous pair density, followed by
the mixing along the latter collective coordinate. The right vertical axis indicate the absolute binding energy.

Adapted from Ref. [187].

but also to take into account the impact of such correlationson the fitted parameters.

TAB . II: Schematic classification of correlation energies as they naturally appear in nuclear EDF methods.
The quantityAval denotes the number of valence nucleons whileGdeg characterizes the degeneracy of the

valence major shell.

Correlations Treatment Scale Vary with
Bulk Summed into EDF kernel ∼ 8A MeV A
Static collective Non-zero order parameterq . 25 MeV Aval,Gdeg
Dynamical collectiveFluctuations ofq . 5 MeV Aval,Gdeg

G. Performances and limitations

It is an essential and constant effort made by practitionersto gauge performances and limitations of exis-
ting parameterizations of the nuclear EDF kernel, at both the SR and MR levels. Unfortunately, providing an
exhaustive and quantitative account of such an analysis is far beyond the scope of the present lectures. Conse-
quently, we limit ourselves to a schematic and qualitative discussion based on a few observable computed at
the SR level.

Roughly speaking, modern parameterizations of existing EDFs, e.g. Skyrme or Gogny, provide a fair des-
cription of bulk properties (ground-state mass, charge radius, "deformation", various separation energies, etc),
as well as of certain spectroscopic properties, of known nuclei [168]. Figure 17 displays nuclear ground-state
binding energies and charge radii along three different isotopes chains. Experimental data are compared to
results of SR-EDF calculations restricted to spherical symmetry and obtained using SkP [166] and SLy4 [71]
parameterizations of the Skyrme EDF, complemented with a mixed-type pairing. The results for Sn and Pb
isotopes provide an idea of the quality of the agreement thatcan be obtained with data. As a matter of fact, the
best root-mean-square deviation relative to 2149 measuredmasses is (i) about 1.5 MeV at the SR level [188]
and (ii) about 800 keV at the MR level [130]. Figure 17 also exemplifies the importance of static quadrupole
correlations that are essential to obtain a fair description of doubly-open-shell nuclei. Indeed, the restriction
of the calculation to spherical symmetry does not lead to thesame qualitative and quantitative agreement
with data for doubly-open-shell Dy nuclei than for semi-magic Sn and Pb isotopes. Given the scale used for
masses in Fig. 17, it is worth noting that such a difference isvery significant. When allowing for it, rotational
symmetry breaks in the SR calculation of Dy isotopes, which brings the agreement with data on the same
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qualitative level as the one seen for Sn and Pb isotopes in Fig. 17. Including quadrupole fluctuations further
improve the agreement with data [180].

FIG. 17: (Color online) SR-EDF calculations of Sn, Dy and Pb isotopic chains in spherical symmetry using
SkP [166] and SLy4 [71] parameterizations of the Skyrme EDF complemented with a mixed-type pairing.

Left : absolute binding energies. Right : Charge radii. Taken from Ref. [189].

Besides the satisfactory phenomenology provided for knownnuclei, existing parameterizations of the EDF
lack predictive power away from available data and a true spectroscopic quality. This is first exemplify in
Fig. 18 where predictions for binding energies, neutron pairing-gaps and two-neutron separation energies of
tin isotopes are shown for various combinations of Skyrme and DDDI functionals, knowing that the latter is
adjusted consistently with the former to reproduce the pairing gap (center plot) in120Sn. While the results
are consistent with each other and with existing data, predictions obtained with various parameterizations of
(nearly) the same functional form display a typical "asymptotic freedom" away from known data, in particular
as one crossesN = 82, i.e. as one jumps into the next major shell where the parameterizations have not been
constrained. Such a behavior is seen for most observable andnuclear isotopic/isotonic chains and can thus be
considered as archetypal of the situation presently encountered with nuclear EDF methods.

FIG. 18: (Color online) SR-EDF calculations of Sn isotopes in spherical symmetry using various
combinations of SLy4 [71], mstar1 [72], rho160 [72], T6 [73], SKa [74], T26 [75], SkP [166] Skyrme

parameterizations and volume-, mixed- and surface-type pairing. Left : absolute binding energies. Middle :
neutron theoretical pairing gap. Right : Two-neutron separation energies. Taken from Ref. [189].

In fact, the most stringent test regarding the quality of existing EDFs relates to spectroscopic features.
Although single-particle energies{εi} extracted from Eq. 7 do not provide the most advanced estimate of
one-nucleon separation energies through EDF methods (see Secs. II B 3 and II B 4), any spectroscopic data is
strongly influenced by such an underlying single-particle shell structure. Figure 19 provides the distribution
of ∆εi = εi − εexp

i for three different (refitted) Skyrme parameterizations, whereεexp
i denotes 58 separation

energies of good single-particle character around doubly-magic nuclei [125]. The results demonstrate that
current Skyrme functionals poorly predict the location of known spherical shells such that existing functional
forms do not allow the lowering of the root-mean-square deviation below about 1 MeV11. Given the numerous

11 Such a systematic error is larger than the uncertainty related to associatingεi from the SR-EDF calculation to separation energies.
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FIG. 20: Diagrams representing an amplitude between an initial(entering three lines) and a final (leaving
three lines) three-body state. Time flows from bottom to top.Left : diagrams are reducible to successive

two-body interactions. Right : diagrams contain an interaction involving the three nucleons at the same time.
Going from the left panel to the right panel illustrates how eliminating degrees of freedom leads naturally to

the existence of many-body forces ; e.g. three-body forces in the present case. Taken from Ref. [90].

on-going investigations of the evolution of nuclear shellstowards neutron-rich or superheavy nuclei, such a
limitation is critical. Providing results of spectroscopic quality constitutes the most immediate challenge for
theorists designing parameterizations of the nuclear EDF.As a matter of fact, several groups currently work
on empirically improving the analytical form and the fittingof energy functionals, e.g. see Refs. [127, 190]
for recent attempts to pin down the isovector content of local pairing functionals, Refs. [75, 126, 191–194]
for investigations on the role of tensors terms in the SkyrmeEDF and Ref. [129] for the recent derivation of
the local Skyrme-type EDF to sixth-order in derivatives.

Given that available experimental data do not constrain unambiguously all non-trivial characteristics of
the nuclear EDF, it is interesting to complement the phenomenology at play with an approach that relies
less on trial-and-error and fitting to data. Our ultimate objective is thus to connectE [ρ ,κ∗,κ ], as well as the
effective verticesvph andvpp, in a consistent and explicit fashion to vacuum NN and 3N interactions. It is
the objective of Sec. IV to discuss the path towards non-empirical EDF parameterizations explicitly linked
to such vacuum interactions. So-calledlow-momentumvacuum interactions are instrumental in that respect
as will be made clear in Sec. IV B. Consequently, we first dedicate Sec. III to introducing low-momentum
interactions generated from renormalization group techniques.

III. LOW-MOMENTUM INTERACTIONS FROM RENORMALIZATION GROUP METHODS

The present section briefly outlines the ideas that found low-momentum interactions generated from renor-
malization group methods. For a thorough review of the subject, we refer the interested reader to Ref. [90].
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A. Generalities

The first essential observation relates to the fact that any nuclear structure12 HamiltonianH is a low-
energy effective theory of QCD. It is unavoidable in such a context that certain underlying, i.e. high-energy,
degrees of freedom are omitted when designing the Hamiltonian. Such an omission translates into the fact
that H is characterized, even though it is often implicit, by anintrinsic resolution scaleΛ that separates
momenta/energies/degrees-of-freedomwhose dynamics is treated explicitly from those that are included only
implicitly, i.e. which arerenormalizedor integrated outin the modeling ofH(Λ).

The second important observation relates to the fact that integrating out degrees of freedom necessarily
translates into the presence of multi-body forces inH(Λ). This is exemplified in Fig. 20 that illustrates how
the elimination of nucleonic excitations or anti-nucleon components, as well as mesons whose masses are
larger than the cut-off scaleΛ, transforms diagrams involving repeated two-body interactions into a set of
irreducible three-nucleon vertices. As a matter of fact, there should/could exist up to A-body forces when
applyingH(Λ) to a A-body system. Of course, the relative importance of thevarious components ofH(Λ)
remains to be qualified at each givenΛ. Eventually, any given model of the Hamiltonian governing the
dynamics of point-like nucleons can be written under the generic form

H(Λ)≡ T +VNN(Λ)+V3N(Λ)+ . . . , (33)

whereΛ characterizes the high-momentum/short-distance physicswhose details are not modeled explicitly
and the fact that each individual component ofH(Λ) depends on it. In a sense, there is no such thing asthe
nuclear Hamiltonian. As will become clear below, the fact that interaction vertices or the Hamiltonian itself
depend on the resolution scale simply says that such quantities are intrinsicallynon-observable.

The third key observation relates to the fact that existing models ofH(Λ), i.e. so-called high-precision
conventional potentials (e.g. AV18 [1], CD-Bonn [78]. . . ) or chiral potentials [92, 94, 199, 200], are cha-
racterized by a rather high intrinsic resolution scale in the sense thatΛ≫ Λdata, whereΛdata≈ 2.1 fm−1

typically corresponds to the energyElab≈ 350 MeV up to which unambiguous scattering data are available to
adjustVNN(Λ). Consequently, existing NN interaction models reproduce scattering phase-shifts in a similar
way up toΛdata but diverge significantly from each other above that value, as exemplified in Fig. 21. The

12 We qualify in this way any Hamiltonian governing the dynamics of point-like nucleons, i.e. whose interaction vertices correspond to
scattering amplitudes between incoming and outgoing nucleonic states.
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lack of constrained beyondElab≈ 350 MeV translates into potentials displaying different short-range/high-
momentum physics as demonstrated in Fig. 22. Essentially, the short-range modeling of conventional nuclear
interactions is uncontrolled and arbitrary. Such a freedommay lead in some cases to impractical features,
e.g. requiring that the potential is local necessitates a strong repulsive core, which in turn implicitly relates to
choosing a (very) largeΛ = Λhigh.

One may be puzzled by the essentially arbitrary modeling of the short-range/high-momentum part of the
Hamiltonian. As a matter of fact, it fits with effective field theory considerations telling us that, whenever
interested in low-energy observable below a certain scaleΛphysics, the detailed modeling of high-energy virtual
processes characterized byk≫Λphysicsis irrelevant and cannot influence the result. This can in fact be used (i)
to choose a practically advantageous resolution scale whenbuildingH(Λ) and (ii) to select the simplest model
accounting for the integrated out short-distance/high-momentum physics. This is schematically illustrated in
Fig. 23. Such ideas precisely underly potential models based on χ-EFT that select pions and nucleons as
dynamical degrees of freedom belowΛχ ≈ 500 MeV. mρ and model the excluded physics through contact
and derivative-contact terms with scale-dependent coupling constants [92, 94, 199, 200]. Diagrams in the
Lagrangian are organized in powers ofQ/Λχ . At a given order this includes contributions from one- or
multi-pion exchanges and contact interactions whose couplings are fit to low-energy data for eachΛχ . There
are natural sizes to many-body forces that are made manifestin the EFT power counting and which explain
the phenomenological hierarchy between two-, three-, . . . ,A-body forces. We refer to E. Epelbaum’s lectures
for details onχ-EFT and chiral potentials [80].

As just discussed, details of the high-energy physics that are relevantto the computation of low-energy
observable can be captured by scale-dependent coupling constants in the low-energy Hamiltonian [201]. Ho-
wever, this does not necessarily mean that high- and low-energy physics are automatically decoupled inH(Λ).
One may further use the freedom offered in the modeling of theirrelevanthigh-energy physics to investigate
the possibility to produce such a decoupling in view of generatingsoftHamiltonians. Renormalization-group
transformations provide an efficient tool toevolvenuclear Hamiltonians such that they eventually display a
decoupling between high- and low-energy modes. As a rule, this must be implemented in such a way that the
long-range physics encoded in the initial Hamiltonian is not distorted, e.g. in such a way thatπ-exchanges
from χ-EFT are left untouched.

In the nuclear context, two different types of RG transformations have been used to evolve interaction
potentials [90], i.e. (i) theVlowk approach that corresponds to anon-unitarytransformation ofH(Λ) and (ii)
the similarity renormalization group (SRG) method that corresponds to aunitary transformation ofH(Λ).
We briefly discuss theVlowk approach to evolveVNN and only display results obtained from the SRG method.
Although we do sketch a few details about the SRG method when discussing the additional evolution ofV3N,
we refer the interested reader to Ref. [90] for a thorough discussion about this particular method.
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FIG. 23: (Color online) Natural separation of scales in hadron spectroscopy. From the point of view of
low-energy nuclear physics, such a separation of scales leads to the definition of a low-energy sector of

interest that is rather well separated from the high-energysector whose details are irrelevant.

FIG. 24: (Color online) Diagrammatic representation of the regularized Lipmann-Schwinger equation
(Eq. 34) from which the scattering T-matrix is obtained.

B. Low-momentum interactions in the NN sector

Inside a nucleus, typical nucleonic momenta areQ∼ kF ∼mπ ∼ 1.3 fm−1. Imposing a sharp cutoffΛ on
explicitly included relative momenta is the most direct wayto limit the resolution encoded inVNN. In order
to incorporate the relevant details from excluded high-momentum modes, the latter must be integrated out
rather than simply truncated. The idea of theVlowk approach is to run down the resolution scaleΛ to about
Λdata∼ 2.1 fm−1 in order to decouple unconstrained high-k modes built in an input HamiltonianH(Λhigh)
from low-momentum ones. Integrating out the physics associated with momentum modesk > Λ translates
into doing so for the short-distance physics correspondingto r . h̄/Λ. Such a modification of the resolution
scale is a relatively small (but significant) evolution for chiral potentials and a large one for phenomenolo-
gical potentials. In doing so, the truncation error, e.g. based on theχ-EFT power counting, of the original
Hamiltonian is maintained. However, and as will be seen in Sec. III D, the RG transformation necessarily
generates multi-body forces, even ifH(Λhigh) were to containVNN(Λhigh) only (which is not the case).

Within the Vlowk approach the RG evolution proceeds by demanding that the (half-on-shell) T matrix
computed fromVNN(Λhigh) through the Lipmann-Schwinger equation (see Fig. 24)

TJST
L (k,k′;E;Λ) =

m

h̄2 VJST
LL (k,k′;Λ)+

2
π

P

∫ Λ

0
k′′2dk′′

VJST
LL (k,k′′;Λ)TJST

L (k′′,k′;E;Λ)

E− h̄2k′′2/m
, (34)

is unchanged in each partial wave asΛ is lowered fork,k′ ≤ Λ, i.e.

dTJST
L (k,k′; h̄2 k2/m;Λ)

dΛ
= 0 for k,k′ ≤ Λ. (35)

Such a condition provides the RG flow equation for the NN potential VJST
LL (k,k′;Λ) which, for an uncoupled

partial-wave, reads as

d
dΛ

VJST
LL (k′,k;Λ) =

2
π

VJST
LL (k′,k;Λ)TJST

LL (Λ,k; h̄2 Λ2/2m;Λ)

1− (k/Λ)2 , (36)
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FIG. 25: (Color online) Momentum-space matrix elements ofVNN(Λ) in the1S0 partial-wave computed
from the initial Argonne V18 [1] potential atΛ = 5.0 fm−1 (left), 3.0 fm−1 (middle) and 1.8 fm−1 (right).

for k,k′ ≤Λ and is to be solved with the initial condition thatVJST
LL (k,k′;Λinit)≡VJST

LL (k,k′;Λhigh). Such a flow
does not correspond to a naive cut of the matrix elements beyond Λ. Still, it is a non-unitary transformation
over the two-body Hilbert space such that non-zero matrix elements only persist fork,k′ ≤ Λ where the
physics is preserved.

Given that scattering phase-shifts are obtained (uncoupled partial-wave) from the "fully-on-shell" T-matrix

tanδ JST
L (k;Λ) ≡ −kTJST

L (k,k; h̄2k2/m;Λ) , (37)

it is clear that such phase shifts are left invariant by the flow equation, just as the deuteron binding energy
Edeut.. Note that keepingδ JST

L (k;Λ) independent ofΛ necessarily implies that the interaction is not, i.e.
dVNN(k,k′;Λ)/dΛ 6= 0. It is not a problem given that, while the former quantity isobservable, the latter is
not.

Figure 25 exemplifies such a lowering of the resolution scaleΛ in the1S0 partial-wave of the NN interac-
tion, starting from the Argonne V18 potential as an initial condition. In practice, the evolution is not done by
solving the differential equation 36 but rather by performing a Lee-Suzuki transformation [202, 203]. Both
approaches are equivalent. It is clear from Fig. 25 thatVNN(k′,k;Λ) changes asΛ is lowered. This is not at
all problematic given that, while〈Ψ(Λ)|H(Λ)|Ψ(Λ)〉 is typically observable,H(Λ) and|Ψ(Λ)〉 are not. The
two main modifications observed asΛ is decreased are that (i) strong off-diagonal matrix elements associated
with the short-range repulsive core of the initial potential are tamed down, i.e. low- and high-k modes are
being decoupled and that (ii) the relevant features of the initial matrix elements beyondΛ are renormalized
onto those located atk,k′ ≤ Λ that become more attractive. Eventually, one evolves towards a so-calledsoft
low-momentumNN interactionVlowk. Notice that such low-momentum interactions are sometimesmista-
kenly said to be phenomenological interactions or regardedas an alternative to EFT interactions. Rather they
constitute an entire class of potentials associated with aninitial Hamiltonian.

Although the NN potential changes withΛ, NN observable are invariant by construction. As discussedin
connection with Eq. 37 and as exemplifies by Fig. 26 in the caseof the CD Bonn potential [205], phase shifts
δ JST

L (k) belowΛ are preserved by the RG evolution in all partial waves. Complementarily, the energy of the
only bound two-nucleon state, i.e. the deuteron, remains invariant asΛ is lowered as illustrated in Tab. III.

TAB . III: Deuteron binding energy computed from AV18 and the low-momentum interaction evolved from
it. Taken from Ref. [206].

VNN Edeut.[MeV]
AV18 −2.2247
Vlow k(2.1) −2.2247

An interesting question relates to the dependence of low-momentum interactions on the initial condition
of the flowVNN(Λinit). As illustrated by Fig. 27 for3S1 partial-wave,Vlowk interactions generated from dif-
ferent potentialsVNN(Λhigh) are found to be quantitatively similar forΛ ≈ 2.1 fm−1. One talks about the
universalityof Vlowk in the sense that the resulting low-momentum characteristics are largely independent on
the high-momentum details encoded in the initial potentials ; i.e. the model dependence of the latter has been
screened out. Such a collapse to universal low-momentum interactions isattributed to the long-range pion
physics common to all initial potentials and to their similar description of low-energy NN observable up to
the resolution scale.
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FIG. 26: (Color online) S-wave (singlet and triplet with mixingparameter) and P-wave phase shifts ofVlowk
for a cutoffΛ = 2.1 fm−1 compared to the input CD Bonn potential [78]. Results of the multi-energy phase

shift analysis (PWA93) of the Nijmegen group are also shown [204]. Taken from Ref. [198].
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FIG. 27: (Color online) The collapse of the diagonal momentum-space matrix elements ofVlowk as the cutoff
is lowered toΛ = 2.1 fm−1 in the1S0 partial wave. Taken from Ref. [206]

FIG. 28: (Color online) Momentum-space matrix elements ofVNN(Λ) in the1S0 partial-wave obtained from
the SRG evolution of the initial N3LO (500) Chiral potential [196] down toΛ = 10.0 fm−1 (left), 3.0 fm−1

(middle) and 2.0 fm−1 (right). Taken from Ref. [207].
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FIG. 29: (Color online) Momentum-space matrix elements in the3S1 partial-wave. Top : Argonne V18 [1]
potential. Bottom left : potential evolved from Argonne V18through SRG down to the resolution scale of

2.0 fm−1. Bottom right : G-matrix computed from Argonne V18. The qualitative features of the G matrix do
not depend on the particular choice of starting energy at which it is computed. Adapted from Ref. [90].

A similar universal behavior and decoupling is found for thelow-momentum part of interactions evolved
through theunitarySRG method rather than through the non-unitaryVlowk approach. The result of such a SRG
evolution is displayed in Fig. 28 for the1S0 partial-wave of the initial N3LO (500) Chiral potential [196]. The
low-momentum part of the resulting potential is essentially identical toVlowk. The only difference with the
latter resides in the appearance of a diagonal band of non-zero matrix elements at highk≈ k′ that is necessary
to maintain unitarity over the original two-body Hilbert space, e.g. to keep phase-shiftsδ JST

L (k) unchanged
at all k. Most importantly, the decoupling of high- and low-k modes is also achieved with the SRG approach
as is clearly seen in Fig. 28.

To terminate the brief introduction of low-momentum interactions, let us mention that RG methods discus-
sed here to renormalize the short-range/high-momentum physics arenot to be confused with the Brueckner
G-matrix approach [139, 208]. WhileVlowk denotes a class ofenergy-independent vacuuminteractions, the
G-matrix corresponds to anenergy-dependent in-mediumvertex. Most importantly, and as shown in Fig. 29,
while Vlowk achieves a decoupling between high- and low-k modes, the G-matrix does not as it still displays
large positive off-diagonal matrix elements that couple such modes. As a matter of fact, the G-matrix re-
mains "hard" enough that the many-body energy cannot be expanded in powers of it, i.e. one must rely on the
non-perturbative hole-line expansion [209–211].

C. Advantages for light-nuclei calculations

Given that observable likeδ JST
L (k) andEdeut. remain invariant under the RG flow, one may wonder about

the utility of such a procedure. Beside providing a deeper understanding of the (non-absolute) nature of the
nuclear Hamiltonian, RG methods exploit the scale dependence of non-observable quantities, e.g. correlations
in the wave function, to provide technically simpler many-body calculations ofscale-independentobservable.
This is achieved by working with a convenient/physically-sound resolution scaleΛlow. Although the intro-
duction of RG transformations may seem formal at first, theirprimer interest is actually of very practical
nature.

More specifically, the evolution of phenomenological or chiral EFT interactions to lower resolution and the
associated decoupling of high- and low-k modes are beneficial as they weaken or largely eliminate sources
of non-perturbative behavior coming from the strong short-range central repulsion and the strong short-range
tensor force. Eventually, lower cutoffs require smaller bases in many-body calculations, leading to improved
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calculations using a code from Ref. [213]. Taken from Ref. [214].

convergence for finite-nuclei investigations. Given that the plane-wave basis is not the most convenient basis
to work with when computing finite-nuclei properties, Fig. 30 demonstrates for two different partial-waves
that lowering the resolution scale from 5 to 2 fm−1 does also eliminate the coupling between low-lying and
high-lying configurations of a harmonic oscillator basis.

The above statements are now exemplified through no-core shell model calculations of the triton3H. Fi-
gure 31 provides the convergence of the triton binding energy computed from a N3LO chiral potential and
the SRG interaction evolved from it at variousλ values. The binding energy is displayed as a function of the
harmonic oscillator parameter̄hΩ for different (many-body) basis sizes (Nmax). One sees that the calculation
is converged for a much smaller basis whenλ is decreased. Eventually, this leads to the promise of computing
heavier nuclei more easily. Looking closer at Fig. 31 though, one notices that converged values ofE3H are
actually different in the various calculations. One may wonder whether this contradicts the fact that physical
observable should be scale dependent? We address this question in the following subsection.
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D. Low-momentum interactions in the 3N sector

The key point is that an observable such as〈ΨA(Λ)|H(Λ)|ΨA(Λ)〉 of the A-body system is scale in-
dependent only if (i) many-body forcesV3N,. . . , VAN that are originally present or generated through the
RG evolution are kept in the A-body calculation and if (ii) the A-body problem is solved exactly. In other
words, any scale dependence of an observable, e.g.∂Λ〈Ψ(Λ)|H(Λ)|Ψ(Λ)〉 6= 0, signals the omission of non-
negligible many-body forces and/or an incomplete many-body calculation.

In the previous example, the convergence of the NSCM calculation can be considered as achieved such
that the origin of the scale dependence ofE3H can be traced back to the omission ofV3N induced by the RG
evolution13. Indeed, it is essential to understand that any RG transformation necessarily generates many-body
forces, even though one starts from a HamiltonianH(Λinit) that contains a NN interaction only. Such a fact
is well known from Lee-Suzuki effective-interaction theory. Whenever the system of interest contains a finite
number of A bodies, up to A-body forces are picked out throughthe evolution while higher-body forces
project out to zero.

The fact that a RG evolution induces many-body forces is mosteasily seen from the SRG method [215].
The SRG performs a pre-diagonalization of the Hamiltonian in a chosen basis, i.e. the plane-wave basis, by
means of a series of infinitesimal unitary evolutions ofH parameterized byΛ that takes the form of a double
commutator

dH(Λ)

dΛ
= −

4
Λ5

[[

T,H(Λ)
]

,H(Λ)
]

∝
[[

∑c†c,∑c†c†cc
2-body

]

,∑c†c†cc
2-body

]

∝ . . .+∑c†c†c†ccc
3-body

+ . . . , (38)

such that many-body forces are naturally induced from an initial NN interaction. One may wonder if the
generation of a whole series of many-body forces is problematic as handling them is likely to make the
many-body problem untractable and requires to track them explicitly through the RG evolution. To answer
such a question, one must first remember that up to A-body forces are a priori present inH(Λinit) anyway such
that one might as well develop the (S)RG machinery to make them soft. Of course, one aims in practice at
dropping as many of such (induced) many-body forces as possible, i.e. keep only those that are not negligible
in the regime ofΛ values one is interested in. Eventually, the problem posed by induced many-body forces
will be tractable as long as (i) they remain of "natural size", e.g. they followχ-EFT power counting built in the
initial Chiral Hamiltonian, such that only up to a-body forces with a≤A need to be kept and (ii) tracking the
RG evolution of those a-body forces is computationally feasible. Eventually, theΛ-dependence of computed
observable can be used to assess the effect of omitted many-body forces (given that the many-body calculation
is sufficiently converged).

As shown below, the current situation is that 3N interactions cannot be avoided at anyΛ while 4N inter-
actions (and beyond) are likely to be negligible. Given thatthe machinery to evolve the 3N interaction along
with the NN one through SRG method has recently been developed [216], the prospect to use low momentum
interactions in finite-nuclei calculations look promisingat this point. Let us now illustrate the situation in
three- and four-body systems.

Figure 32 displaysE3H versusE4He obtained for differentΛ values through NCSM calculations when
omitting multi-body forces beyondVNN(Λ). Both binding energies depend onΛ and correlates along the
so-called Tjon line. Such a feature suggests that 3N and possibly 4N interactions cannot be omitted. To
confirm this, Fig. 33 isolatesE3H as a function ofΛ. The observed variation is∆E3H ∼ 0.6 MeV over the
interval Λ ∈ [2,∞[. This is non negligible but remains much smaller that the potential energy contribution
fromVNN(Λ) such that the omitted many-forces seem to remain of natural size over such an interval ofΛ.

Thus, the next step consists of evolving the induced 3N interaction along withVNN(Λ) and including it in
the NCSM calculation of3H [216]. Figure 33 demonstrates that the inclusion of the induced 3N interaction
makesE3H scale independent as expected, whether the 3N interaction present initially inH(Λinit) is included
along with the induced one or not. Incorporating the former only changes the overall result by a constant such
that it moves closer to experiment. This is due to the fact the3N part ofH(Λinit) was fitted to provide a good

13 As discussed below, the initial NN interaction should itself be accompanied by a 3N interaction. However, since the present calculation
starts from the NN part of the Chiral Hamiltonian only, the observed scale dependence relates only to theinduced3N interaction.
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FIG. 32: (Color online) Binding energy of the alpha particle vs.the binding energy of the triton. The Tjon
line from phenomenological NN potentials (dotted) is compared with the trajectory of SRG energies when

only the NN interaction is kept (circles). When the initial and induced 3N interactions are included, the
trajectory lies close to experiment for a SRG scale greater than 1.7 fm−1 (see inset). Taken from Ref. [216].

FIG. 33: (Color online) NCSM calculation of the ground-state energy of3H as a function of the SRG
evolution parameter. Taken from Ref. [216].

account ofE3H. Comparing the two sets of calculations demonstrates that the potential energy contribution of
the induced 3N force is not unnaturally large compared to theone of the 3N interaction originally tailored in
H(Λinit). Eventually, the huge benefit of evolving the Hamiltonian tolower scale is that the net resulting 3N
interaction is much softer than the initial one such that theNCSM calculation converges faster.

Figure 32 shows that the inclusion ofV3N(Λ) allows the result to break away from the Tjon line and move
closer to experiment. The remaining scale dependence ofE4He due to the omission ofV4N(Λ) seems to be
small as the insert shows. To confirm the last point,E4He is displayed in Fig. 34 as a function of the RG
scale. Although the induced 4N interaction is omitted, one sees that the energy is nearly scale independent.
The slight variation ofE4He at low cut-off together with the difference with experimentindicate that the
inducedV4N(Λ) could be responsible for about 200 keV at most. Before declaring thatV4N(Λ) can be safely
neglected, it must however be monitored in heavier nuclei.

E. Summary

To close the section on low-momentum interactions, we now list some of the key points we have encoun-
tered and learnt from RG and EFT ideas. In addition, we brieflyoutline the strategy that can be followed next
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FIG. 34: (Color online) NCSM calculation of the ground-state energy of4He as a function of the SRG
evolution parameter. Taken from Ref. [216].

to build non-empirical parameterizations of the nuclear EDF.

1. Low-momentum interactions provide a new paradigm for realistic nuclear interactions

(a) The "hard core" is not an absolute feature ofH(Λ) but a scale-dependent one

(b) H(Λhigh) contains highly non-perturbative vertices

(c) Lowering the resolutionΛ through RG transformations suppresses the main sources of non-
perturbativeness

(d) RG transformations necessarily induce many-body forces

2. Use ofH(Λlow) for low-energy studies

(a) One must keepmπ ,kF < Λlow ≤ Λdata to leave the encoded long-range physics untouched

(b) The convergence of ab-initio calculations of light-nuclei is greatly improved

(c) TheΛ-dependence ofobservablesignals missing many-body forces and/or incomplete calcula-
tions

(d) InducedV3N(Λ) must be tracked but 3N interactions are unavoidable anyway

(e) V4N(Λ) seems to be negligible in4He but must be monitored in heavier nuclei

3. What about the link to nuclear EDF calculations ?

(a) Investigate perturbative calculations of infinite nuclear matter from low-momentum interactions

(b) Investigate perturbative calculations of doubly-magic nuclei from low-momentum interactions

(c) Build the energy functional from many-body perturbation theory

(d) Approximate the still-too-complicated resulting EDF to constrain Skyrme- or Gogny-like energy
functionals

IV. TOWARDS NON-EMPIRICAL ENERGY DENSITY FUNCTIONALS

A. Generalities

In Sec. II, we have outlined key features of nuclear EDF methods and elaborated on some of the challenges
they currently face. In particular, the possibility to explicitly link the EDF kernel to underlying vacuum NN
and 3N interactions was envisioned. Within such a context, microscopically-educated energy functionals
are to be derived through analytical approximations of the ground-state energy computed from an ab-initio
method of reference. As summarized in Fig. 35, the complexity of such a task depends on the nuclear Ha-
miltonian model and the ab-initio many-body method one starts from. Indeed, not all ab-initio methods offer
a natural matching, even through a set of controlled approximations, to energy density functionals that are



38

FIG. 35: (Color online) Route towards non-empirical energy functionals. Right : knowledge acquired from
phenomenology. Left : questions relevant to this endeavor.

close to the form of standard quasi-local (Skyrme, relativistic point coupling. . . ) or non-local (Gogny, effec-
tive meson-exchange Lagrangian. . . ) variants. As discussed in the introduction, ab-initio methods that are
amenable to such a mapping must share certain key features with EDF methods, the most important of which
being the concept of spontaneous symmetry breaking (and further restoration).

An ab-initio method that fulfills such requirements is provided by many-body perturbation theory (MBPT)
performed on top of a (potentially) symmetry-breaking vacuum. Although it is possible to consider an elabo-
rate Dyson (Gorkov) self-consistent green’s function theory [59, 217], we restrict presently ourselves to Gold-
stone many-body perturbation theory for simplicity [140, 209]. An interesting point is that any conventional
list of available nuclear ab-initio methods14 will miss out on a perturbative approach. The reason relatesto
the conventional wisdom that the non-perturbative short-range central repulsion and tensor force are absolute
features of the NN interaction. As discussed in Sec. III, thenew paradigm set by low-momentum interactions
is modifying such a picture. In particular, the in-medium Weinberg eigenvalue analysis [95] indicates that
the nuclear many-body problem may become perturbative whensolved in terms of a low resolution-scale
Hamiltonian.

As a matter of fact, recent calculations discussed below in Secs. IV C 1 and IV C 2 confirm the (essen-
tially) perturbative nature of infinite nuclear matter and doubly-magic nuclei when expressed in terms of
low-momentum NN and 3N interactions. Many-body perturbation theory becoming a reliable, if not totally
quantitative, starting point to compute nuclear systems and derive microscopically-educated energy functio-
nals through analytical approximations of the (itself approximate) ab-initio ground-state energy. Doing so
requires specific approximation methods that are presentedin Secs. IV D 2 and IV E, where it is explained
that available methods are incomplete as of today. Before coming to that, we first introduce basic elements of
Goldstone MBPT.

B. Elements of time-ordered many-body perturbation theory

1. Unperturbed vacuum of reference

Although it was argued in the introduction that the ab-initio method of reference must be formulated wi-
thin a symmetry-breaking framework, we restrict ourselvesfor simplicity to a MBPT that preserves particle

14 Refer to the Denis Lacroix’s introductory lecture [37].
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number, i.e. which does not explicitly incorporate pairingcorrelations through the breaking of gauge inva-
riance. Consequently, the MBPT presented below is not general enough to eventually constrain all parts of the
nuclear EDF. In addition, formulae are written forVNN(Λ) only although it is to be understood thatV3N(Λ)
must be taken into account as well.

The unperturbed vacuum of reference takes the form of a Slater determinant

|Φ(Λ)〉 ≡
N

∏
i=1

a+
i (Λ) |0〉 , (39)

whose one-body density matrix in the associated basis isραβ (Λ) = δα i δβ i. As a convention, greek indices
{α,β , . . .} denote arbitrary single-particle basis states while romanindices{i, j, . . .}/{a,b, . . .} denote occu-
pied/empty ("hole/particle") single-particle basis states in the unperturbed vacuum. Next are defined Slater
determinants|Φab...

i j ... (Λ)〉 obtained through particle-hole excitations on top of the unperturbed vacuum, e.g.
2p-2h states of the form

|Φab
i j (Λ)〉 ≡ a+

a (Λ)a+
b (Λ)a j(Λ)ai(Λ)|Φ(Λ)〉 . (40)

The vacuum is actually defined once the single-particle basis {a+
α /ψα} has been specified. The present

choice is to use the Hartree-Fock basis whose elements are solutions of the eigenvalue problemhHF(Λ)ψα =
εα(Λ)ψα , where the Hartree-Fock field is expressed in an arbitrary basis as

hHF
αγ (Λ)≡ tαγ +∑

β δ
V̄NN

αβ γδ (Λ)ρδβ (Λ) . (41)

Antisymmetrized matrix elements ofVNN(Λ) are defined throughVNN
αβ γδ (Λ)≡ 〈1 : α ;2 : β |VNN(Λ)|1 : γ ;2 :

δ 〉 andV̄NN
αβ γδ (Λ)≡VNN

αβ γδ (Λ)−VNN
αβ δγ(Λ).

Using Wick’s theorem with respect to|Φ(Λ)〉, the HamiltonianH(Λ) is put under normal-ordered form

H(Λ) = EHF(Λ)+∑
α

εα(Λ) : a+
α aα : +

1
4 ∑

αβ γδ
V̄NN

αβ γδ (Λ) : a+
α a+

β aδ aγ : , (42)

from which the Hartree-Fock energy

EHF(Λ)≡ 〈Φ(Λ)|H(Λ)|Φ(Λ)〉 = ∑
i

tii +
1
2 ∑

i j
V̄NN

i ji j (Λ) , (43)

the unperturbed Hamiltonian

H0(Λ)≡ EHF(Λ)+∑
α

εα (Λ) : a+
α aα : , (44)

and the residual interaction

Vres(Λ)≡
1
4 ∑

αβ γδ
V̄NN

αβ γδ (Λ) : a+
α a+

β aδ aγ : , (45)

can be defined. In the above set of equations, all quantities expected to depend on the resolution scaleΛ
have been labeled by it. In particular, and even if the complete HamiltonianH(Λ) were used, quantities
associated with anapproximatemany-body calculation, e.g.|Φ(Λ)〉, EHF(Λ) or hHF

αγ (Λ), are expected to
be scale dependent. Only fully converged observable such asthe actual ground state energyE are scale
independent. Having said that, the labelΛ is omitted in the following for simplicity, unless stated otherwise.
Using the above definitions, it is straightforward to demonstrate that

H0|Φab...
i j ... 〉= Eab...

i j ... |Φ
ab...
i j ... 〉 , (46)

with Eab...
i j ... ≡EHF +(εa+εb+ . . .−εi−ε j− . . .) and that〈Φ|Vres|Φ〉= 〈Φ|Vres|Φa

i 〉= 0, which shows that the
residual interaction does not couple the unperturbed vacuum to itself or to unperturbed 1p-1h configurations
when using Eq. 44 as a definition ofH0.
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2. Correlation energy and the perturbative expansion

Given the unperturbed reference state and energy, one defines the correlation energy∆EHF (Λ) through
E ≡ EHF(Λ) + ∆EHF(Λ). The correlation energy obviously depends on the chosen unperturbed state of
reference and one aspect of MBPT consists of minimizing∆EHF through an a priori optimal choice of the
unperturbed vacuum, e.g. by exploiting symmetry breaking in the spirit of the SR-EDF method. Still, it is
usually not sufficient and part, if not all, of the correlation energy beyond HF must be computed explicitly.
The idea of time-ordered (Goldstone) MBPT is to expand∆EHF in powers ofVres. Starting from Gell-Man-
Low’s theorem [218], Goldstone demonstrated [140] that

∆EHF = ∑
n=0

〈Φ|Vres

(

1
EHF −H0

Vres

)n

|Φ〉connected, (47)

where "connected" means that|Φ〉 cannot appear as an intermediate state (see below).
Summing all terms in Eq. 47 provides the exact many-body ground-state energy. However, the practical

use of the perturbative expansion resides in the possibility to truncate it, i.e. in the fact that a meaningful
and accurate enough result can be obtained from a finite number of terms, which usually requires that contri-
butions decrease asn increases. In order to speed up the convergence of the perturbative series, it might be
necessary to optimize the unperturbed Hamiltonian/vacuumH0/|Φ〉 by modifying the content of the one-
body fieldh that defines the single-particle basis{a+

α /ψα} (see Sec. IV D 2). Sometimes however, modifying
the content ofh in a perturbative manner is not sufficient such that expansion 47 breaks down. It is precisely
the case when forcing the unperturbed vacuum to fulfill a symmetry when it would choose to spontaneously
break it if offered to do so. For instance, the Cooper pair instability associated with strong pairing correla-
tions necessitates to expand around a Bogoliubov vacuum rather than a Slater determinant. As mentioned
above, we do not consider this possibility here for simplicity although most of nuclear systems encoun-
ter such an instability15. Another source of non-perturbative character arises whenever one chooses to work
with H(Λhigh) that contains a strong coupling between low- and high-momentum modes. As demonstrated by
Brueckner [139, 208, 219], such a coupling necessitates to reorganize expansion 47 by summing up so-called
particle-particle ladder diagramsprior to truncating it. This leads to introducing the Brueckner G-matrix as
a basic two-nucleon kernel. Still, the many-body energy cannot be expanded in powers of the G-matrix such
that one relies on the non-perturbative hole-line expansion in this case [209–211].

The main benefit of starting fromH(Λlow) rather than fromH(Λhigh) is precisely that the purely perturba-
tive expansion 47 is meaningful, as exemplified in Secs. IV C 1and IV C 2, which tremendously simplifies
our view on the nuclear many-body problem.

3. Computation

We briefly present the method to compute contributions to Eq.47 up to the truncation ordernmax. We use
a pedestrian approach, which is only convenient to compute low orders and only mention at the end the more
practical diagrammatic approach. We exemplify the method by computing the simplest, i.e. the second order
contribution (n = 1).

The procedure consists of first inserting the (quasi) completeness relationship on the N-body Hilbert space
HN

1N−|Φ〉〈Φ|= ∑
a
i

|Φa
i 〉〈Φ

a
i |+

(

1
2!

)2∑
a,b
i, j

|Φab
i j 〉〈Φ

ab
i j |+

(

1
3!

)2 ∑
a,b,c
i, j,k

|Φabc
i jk 〉〈Φ

abc
i jk |+ . . . (48)

in between each pair of operators appearing in Eq. 47. The fact that the vacuum contribution has been sub-
tracted from the completeness relationship in Eq. 48 relates to the fact that only "connected" terms must
appear in Eq. 47 [140]. In all contributions thus generated,each resolvent operator(EHF −H0)

−1 can be
trivially applied onto unperturbed Slater determinants|Φab...

i j ... 〉. According to Eq. 46, it results into the energy

denominator(εa + εb + . . .− εi− ε j − . . .)−1 times the state|Φab...
i j ... 〉, which eventually selects the same Slater

15 Only doubly-magic nuclei do not encounter the Cooper pair instability.
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VNN

VNN

FIG. 36: (Color online) Hugenholtz diagram for the second-order contribution to the ground-state binding
energy from the NN interaction.

determinant from the (quasi) completeness relationship inserted to the left of the resolvent operator as a result
of the scalar product onHN. At that point, one is left with computing matrix elements〈Φa′b′c′...

i′ j ′k′... |Vres|Φabc...
i jk... 〉

between a variety of unperturbed multi-particle multi-hole Slater determinants.
Let us exemplify the above procedure by calculating the second-order contribution (n = 1)

∆EHF
2 = 〈Φ|Vres

1
EHF −H0

Vres|Φ〉connected. (49)

We first insert the (quasi) completeness relationship 48 to the left and the right of the resolvent operator in
Eq. 49. Before proceeding further, we note that the two-bodyresidual interactionVres can only couple the
unperturbed vacuum to 2p-2h states, i.e. in addition to having〈Φ|Vres|Φ〉= 〈Φ|Vres|Φa

i 〉= 0, one can use Wi-
ck’s theorem to prove that〈Φ|Vres|Φab

i j 〉= V̄NN
i jab and that〈Φ|Vres|Φabc...

i jk... 〉= 0 for 3p-3h, 4h-4h. . . This reduces
tremendously the number of non-zero terms resulting from the above insertion of the (quasi) completeness
relationship. As a result, and following the steps outlinedabove, the second-order contribution finally reads

∆EHF
2 =

1
4 ∑

i jab

|〈Φ|Vres|Φab
i j 〉|

2

EHF −Eab
i j

=
1
4 ∑

i jab

|V̄NN
i jab|

2

εi + ε j − εa− εb
, (50)

which is necessarily negative, i.e. it lowers the ground-state energy compared toEHF . Anticipating the dis-
cussion of Sec. IV D 2, it is worth noting that restricted sumsover hole and particle states in Eq. 50 can be
replaced by unrestricted sums over the complete single-particle basis at the price of inserting a factorραα for
hole states and a factor 1−ραα for particle states ; i.e. Eq. 50 can be rewritten as

∆EHF
2 =

1
4 ∑

αβ γδ

|V̄NN
αβ γδ |

2

εα + εβ − εγ − εδ
ραα ρβ β (1−ργγ)(1−ρδδ) . (51)

The computation of∆EHF
2 is instructive but hides the rising algebraic complexity asthe ordern in-

creases. Many more terms are non-zero and necessitate the evaluation of matrix elements of the form
〈Φa′b′c′ ...

i′ j ′k′... |Vres|Φabc...
i jk... 〉 that are cumbersome to compute. Analyzing the outcome of thepedestrian procedure

presented above, a more systematic approach can be designedto compute contributions to Eq. 47. This consti-
tutes the so-called diagrammatic technique [220] that relies on a set of rules to draw and compute diagrams
representing all possible contributions to a given order∆EHF

n . For example, the second order contribution
is represented in Fig. 36 using so-called Hugenholtz diagrams. Expression 50 can be easily recovered from
such a drawing by applying the set of diagrammatic rules. Although we do not discuss such rules here, they
can be found in many textbooks dealing with the quantum many-body problem, e.g. in Ref. [220].
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FIG. 37: (Color online) Hugenholtz diagrams for the unperturbed kinetic energy and the first-order
contributions to the ground-state binding energy from NN and 3N interactions.

VNN

VNN

VNN

V3N

V3N

VNN

V3N

V3N

V3N

V3N

FIG. 38: (Color online) Complete set of second-order Hugenholtz diagrams from NN and 3N interactions.

C. Many-body perturbation theory calculation of nuclear systems

1. Infinite nuclear matter

The present section briefly discusses recent computations of the equation of state (EOS) of infinite nuclear
matter (INM) through MBPT [87, 88]. In that respect, some (Λ-dependent) questions of interest are

1. Is infinite nuclear matter perturbative?

2. What is the role ofV3N ?

3. What is the saturation mechanism ?

4. Can phenomenology be accounted for ?

To answer such questions, the computation is performed at first and second order in MBPT. First-order
diagrams, together with the unperturbed kinetic-energy diagram, are displayed in Fig. 37 while the complete
set of second-order diagrams are shown in Fig. 38. The calculation usesVNN(Λ) from RG methods together
with the Chiral 3N interaction at N2LO. The two unknown low-energy constants(cD,cE) entering the Chiral
3N interaction at N2LO are fitted, consistently withVNN(Λ), on E3H and the charge radius of4He [88]. In
other words,V3N is not evolved through the similarity RG as done in Ref. [216]and discussed in Sec. III D
but (cD,cE) are rather adjusted for eachΛ on light-nuclei data along withVNN(Λ). Still, the 3N interaction
thus produced is not used as such in MBPT calculations of INM.Instead, an averaging over the third particle
is performed to approximateV3N by a density-dependent NN vertexVNN〈N〉. Such a procedure relates in
particular to omitting the last diagram among all second-order ones displayed in Fig. 38. Last but not least,
single-particle energies entering energy denominators are computed from the HF (i.e. first-order self-energy)
field including both NN and 3N contributions.

Traditionally, i.e. using conventional potentials, nuclear matter is believed to be non perturbative. This is
visible in Fig. 39 displaying the EOS of symmetric matter to first, second and third order using AV18 or
Vlow k(2.1) but omitting any 3N force. With AV18, the first-, second- and third-order16 contributions to the
EOS are large, of alternative sign and do not display any signof convergence. The Hartree-Fock energy in
particular is large and positive due to the strongly repulsive character of AV18’s S-waves such that symmetric
nuclear matter is not bound at first order. Such patterns are typical of a non-perturbative problem and require
that the energy is expanded in a different fashion as explained in Sec. IV B. Contrarily withVlow k(2.1) sym-
metric nuclear matter is bound at first order and higher-order contributions are quickly decreasing in absolute

16 Only the third-order ladder diagram is computed here.
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FIG. 39: (Color online) Particle-particle contributions to the EOS of symmetric nuclear matter for Argonne
AV18 potential [1] (thick lines) and the low-momentum interactionVlowk evolved from it down to

Λ = 2.1 fm−1 (thin lines). Taken from Ref. [87].

FIG. 40: (Color online) Symmetric nuclear matter energy-per-particle as a function of Fermi momentumkF .
The computation is based on evolved N3LO NN potentials and 3N forces fitE3H and the charge radius of

4He [88]. Results are shown at the HF level (left), including second-order contribution (middle) or
particle-particle-ladder contributions to all orders (right). Taken from Ref. [88].

value such that the expansion seems to display a gentle converging character. Such patterns are typical of a
perturbative problem. The present results shed a new light of the nuclear many-body problem by showing
that its perturbative or non-perturbative nature depends on the resolution scale used, although the result of the
complete calculation does not. This constitutes a new paradigm of nuclear theory that can be used to reduce
the intrinsic difficulty to solve the associated many-body problem.

Although the expansion in terms ofH(Λlow) seems to be perturbative, the EOS shown in Fig. 39 does
not saturate. To reach a satisfactory description, one musttake the 3N interaction into account as is visible
from Fig. 40. From the left panel, one sees that symmetric nuclear matter already saturates at first order
when doing so, although away from the empirical point. In addition, a significant residualΛ dependence is
observed. As visible from the central panel of Fig. 40, the second-order contribution brings additional binding
such that the EOS saturates very close to the empirical pointand presents a reasonable, though slightly too
low, compressibility. The various curves in each panel correspond to calculations performed for different
values of NN RG scaleΛNN. In addition, the 3N scale is allowed to vary independently of the NN one. The
shaded regions in Fig. 40 show the range of results for 2.0 fm−1 < Λ3N < 2.5 fm−1 at fixedΛNN = 2.0 fm−1.
Overall, the significant dependence on the RG scales at the HFlevel is largely suppressed at second-order,
which is an indication that convergence might be reached. This is further confirmed in the right panel where,
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FIG. 41: (Color online) Nuclear matter energy per particle displayed in Fig. 40 at the
particle-particle-ladders level compared to NN-only results for two representative NN cutoffs and a fixed 3N

cutoff. Taken from Ref. [88].

except for rather low density, the summation of particle-particle ladders to all orders is not modifying the
EOS. Still, the convergence pattern in the particle-hole channel has not been investigated so far.

As further illustrated by Fig. 41, the saturation of symmetric nuclear matter is driven by the 3N force when
using a resolution scale in the perturbative regime from 1.8to 3 fm−1. At the same time, the Coester line
problem is solved by the inclusion of the 3N force such that the empirical saturation point is satisfactorily
reproduced. For similar EOS calculations of pure neutron matter, we refer the reader to Ref. [89].

2. Doubly-magic nuclei

The present section briefly discusses recent computations of doubly-magic nuclei through MBPT [138,
221]. In that respect, some (Λ-dependent) questions of interest are

1. Are bulk properties of doubly-magic nuclei perturbative?

2. What is the role ofV3N ?

3. Is phenomenology accounted for ?

Besides their numerical tractability, MBPT calculations of doubly-magic nuclei allows one to disentangle
bulk correlations from those brought in through the spontaneous breaking ofN,Z andJ and the associa-
ted collective fluctuations (see discussion in Sec. II F). The results provided in Fig. 42 have been obtained
through first and second-order MBPT calculations. They are only indicative given that (i) the NN interaction
S-UCOM(SRG) is only renormalized in the S waves, (ii) the 3N interaction used is a schematic (regularized)
contact force and (iii) second-order calculations are not converged as a function of the single-particle har-
monic oscillator basis size, especially for heavy nuclei [138]. Still, such results provide valuable information
on the interplay between realistic two-body and phenomenological three-body interactions as well as on how
well systematics of masses and charge radii systematics of doubly-closed shell nuclei can be reproduced at
this level of calculations.

The strength of the 3N contact interaction has been fixed to reproduce the systematics of charge radii at the
HF level. Indeed, it is possible to track such a systematics as seen in Fig. 42, which is a non trivial result by
itself. Perturbative corrections to charge radii are very small [221] and will not affect the general agreement.
As for binding energies, HF provides the correct trend with Abut underbinds significantly. It is to be reminded
however that nuclei are not even be bound at the HF level with conventionalH(Λhigh) Hamiltonians. The 3N
interaction is responsible for a repulsive contribution that ranges from 1.5 MeV/A in light nuclei to 3 MeV/A
in 208Pb.
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FIG. 42: (color online) Binding energies per nucleon and chargeradii of selected closed-shell nuclei
resulting from HF (filled symbols) and second-order MBPT (open symbols) calculations. The

S-UCOM(SRG) NN interaction withα = 0.16 fm4 is used together with a 3N contact interaction
characterized by the couplingC3N = 2200 MeV fm6. The basis size isemax = 14, lmax = 10. Adapted

from [138].

As shown in Fig. 42, low-order MBPT, i.e. second order, provides a good account of missing bulk correla-
tions such that binding energy systematics are correctly accounted for. The extrapolation of the present results
with the basis sizeemax→∞ shows that the agreement with data is qualitatively and semi-quantitatively good.
Except for light nuclei, the second-order contribution from the 3N interaction is negligible [138] such that it is
omitted from the results shown in Fig. 42. Although it is not shown in Fig. 42, the second-order contribution
reduces, although not completely, in particular for heavy systems, the scale dependence of the results [138].

D. Mapping many-body perturbation theory onto the SR-EDF method

1. Generalities

As discussed in the previous section, first MBPT calculations with low-momentum interactions have de-
monstrated that the 3N interaction plays an important role and that second-order contributions provide the
correct systematics of bulk correlations≈ −8 MeV/A in doubly-magic nuclei. Still, results are quoted in
energy per particle and can only be viewed as indicative given the much higher accuracy that is eventually
needed. Such calculations pave the way towards more quantitative ab-initio studies of doubly-magic nuclei
that must employ realistic 3N interactions and more advanced many-body schemes, i.e. that re-sum correla-
tions in a non-perturbative fashion with an explicit inclusion of collective fluctuations, e.g. through MR-like
methods.

The ab-initio description of singly and doubly open-shell nuclei is even more challenging. Correlations
that vary rapidly with the filling of a major shell are harder to grasp and require MR techniques, if not the
explicit breaking of particle number (singly open-shell nuclei) and angular momentum (doubly open-shell
nuclei). In the latter case in particular, MBPT must be performed with respect to a deformed unperturbed
vacuum that ultimately corresponds to handling much largersingle-particle bases than for doubly-closed shell
nuclei. Given that second-order MBPT scales asN5

basis, this becomes quickly prohibitive computationally as
A increases.

Despite such numerical difficulties, ab-initio calculations of heavier and more challenging nuclei must
be pursued in order to provide theoretical benchmarks. In parallel, one must identify shortcuts to profit by
the best of both low-order MBPT, i.e. its explicit link to vacuum low-momentum interactions, and of the
SR-EDF method, i.e. the breaking of various symmetries, in such way that one can address doubly open-
shell nuclei in a systematic fashion while avoiding the prohibitive computational scaling. In other words, one
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wishes to design controlled approximations allowing the mapping of (second-order) MBPT onto a (genera-
lized) Skyrme-like EDF. Such a program is meant to provide (i) an a posteriori understanding of the success
of phenomenological energy functionals, (ii) an educated guess for extended functional forms and (iii) an
estimate of the couplings of such a generalized EDF, including uncertainties associated with their RG scale
dependence. Eventually, the needed accuracy could be obtained through a controlled refit of the "educated"
couplings within their uncertainties, together with the addition for MR correlations associated with collective
fluctuations.

2. Comparing Skyrme-EDF and MBPT energy expressions

Mapping MBPT onto SR-EDF does not strike as an natural and easy task at first. As already mentioned,
MBPT fulfills the first basic requirement for such a mapping, i.e it naturally incorporates the symmetry-
breaking concept by allowing the unperturbed vacuum of reference to break them. Still, it remains to be
seen how various MBPT contributions can be approximated under the form of a quasi-local Skyrme-like
EDF. To simplify the discussion, we omit the possibility to break particle number and thus to address the
corresponding part of the nuclear EDF, i.e. its dependence on the anomalous tensorκ . Doing so requires to
extend standard MBPT introduced in Sec. IV B to incorporate anomalous propagators, which is beyond the
scope of the present lectures.

To simplify the discussion further, we consider the Skyrme parametrization defined in Eq. 20 in the limit
where spin is omitted and where the coupling constantCρρ

qq′ depends linearly on the local density such that it
generates the simplest possible trilinear contribution. Eventually, the coordinate-space expression of such a
simplified Skyrme EDF reads

E [ρ ] =

∫

d~r ∑
q

h̄2

2m
τq(~r)+∑

qq′

[

Cρρ
qq′ ρq(~r)ρq′(~r)+Cρ∆ρ

qq′ ρq(~r)∆ρq′(~r)+Cρτ
qq′ ρq(~r)τq′(~r)+Cρρρ

qqq′ ρ2
q(~r)ρq′(~r)

]

.

(52)
In the canonical basis whereραβ = ραα δαβ , all local densities at play can be expressed under the form

fq(~r)≡∑
α

W f
αα(~rq)ραα . (53)

with f ∈ {ρ ,τ,∆ρ} and

Wρ
αα(~rq) ≡ ψ†

α(~rq)ψα(~rq) , (54)

Wτ
αα(~rq) ≡ ∇ψ†

α (~rq) ·∇ψα(~rq) , (55)

W∆ρ
αα (~rq) ≡ ∆

[

ψ†
α(~rq)ψα(~rq)

]

, (56)

such that the trilinear Skyrme EDF given in Eq. 52 can be re-written as [158]

E [ρ ] = ∑
α

tαα ραα +
1
2 ∑

αβ
v̄ρρ

αβ αβ ραα ρβ β +
1
6 ∑

αβ γ
v̄ρρρ

αβ γαβ γ ραα ρβ β ργγ , (57)

where matrix elements of the effective vertices are defined through

tαα ≡

∫

d~r
h̄2

2m
Wτ

αα(~rq) , (58)

vρρ
αβ αβ ≡

∫

d~r 2 ∑
f f ′

C f f ′

qq′ W
f

αα(~rq)W f ′

β β (~rq′) , (59)

vρρρ
αβ γαβ γ ≡

∫

d~r 6Cρρρ
qqq′ W

ρ
αα(~rq)Wρ

β β (~rq)Wρ
γγ (~rq

′) . (60)

Expression 57 demonstrates that any quasi-local Skyrme EDFcan be seen as a particular functional of the
density matrixραβ . This makes the connection with MBPT easier. Indeed, and omitting V3N second-order
contribution for simplicity17, the second-order MBPT energy reads in the canonical basis of the unperturbed

17 As discussed in Ref. [138], such a contribution is small, at least for schematic 3N forces.
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state

EHF = ∑
α

tαα ραα +
1
2 ∑

αβ
V̄NN

αβ αβ ραα ρβ β +
1
6 ∑

αβ γ
V̄3N

αβ γαβ γ ραα ρβ β ργγ , (61)

∆EHF
2 =

1
4 ∑

αβ γδ

|V̄NN
αβ γδ |

2

εα + εβ − εγ − εδ
ραα ρβ β (1−ργγ)(1−ρδδ) , (62)

which defines a non-empirical, generalized, nuclear EDF. Before stressing the differences with the Skyrme
EDF, one can formally rewrite Eqs. 61 and 62 to make their resemblance with Eq. 57 even more apparent.
Doing so, the second-order MBPT ground-state energy reads

E2[ρ ;{εα}] = ∑
α

tαα ραα +
1
2 ∑

αβ
w̄ρρ

αβ αβ ραα ρβ β +
1
6 ∑

αβ γ
w̄ρρρ

αβ γαβ γ ραα ρβ β ργγ +
1
24 ∑

αβ γδ
w̄ρρρρ

αβ γδαβ γδ ραα ρβ β ργγ ρδδ ,(63)

with up to four-body effective vertices defined as

w̄ρρρρ
αβ γδαβ γδ ≡ 6

∣

∣V̄NN
αβ γδ

∣

∣

2

εα + εβ − εγ − εδ
; w̄ρρρ

αβ γαβ γ ≡ V̄3N
αβ γαβ γ−

1
2 ∑

l

w̄ρρρρ
αβ γδαβ γδ ; w̄ρρ

αβ αβ ≡ V̄NN
αβ αβ +

1
12∑

γδ
w̄ρρρρ

αβ γδαβ γδ .(64)

The functionalE2[ρ ;{εα}] thus obtained generalizes the Skyrme EDF in several respects, i.e. (i) it is of fourth
order in the density matrix, (ii) it is not only a functional of the density matrix but also of single-particle ener-
gies and, as extensively discussed below, (iii) its coordinate-space expression is significantly more involved.
The first of these extensions would be further enhanced by including V̄3N second-order contribution or by
going to higher orders in MBPT. In itself though, it does not lie outside the frame of existing quasi-local
Skyrme parameterizations that could handle higher-order dependencies on the density matrix. Contrarily, the
explicit functional dependence on single-particle energies{εα} lies outside the frame of existing nuclear EDF
parameterizations. It is worth noting that such functionals are however known asorbital-dependent energy
functionals[222] within the frame of electronic systems’ density functional theory (DFT). The dependence
on single-particle energies relates to the time non-locality associated with nucleonic in-medium propagations.
It remains to be seen in the future whether an explicit dependence on single-particle energies is necessary and
tractable in the nuclear context or whether it can be safely and consistently recast into a simpler form, e.g. an
effective dependence on the density matrix.

The EDF form of Eq. 63 may naively suggest, just as Eq. 57, thatit results from the average value, in
the unperturbed vacuum|Φ〉, of an (hypothetical) effective Hamilton operator containing two-body (second
term), three-body (third term), four-body (fourth term). ..pieces. However, Eq. 64, that provides microscopic
expressions for the matrix elements of ¯vρρ , v̄ρρρ . . . , demonstrates that re-extracting an (effective) Hamilton
operator from the energy density has no foundation18 and can at best be the result of approximations.

One further possible difference between the SR-EDF method introduced in Sec. II and MBPT described
in Sec. IV B relates to the choice of self-energyΣαβ from which single-particle energies{εα} are extracted.
Indeed, the freedom exist in MBPT as to howhαβ ≡ tαβ + Σαβ , i.e. H0 and the unperturbed vacuum|Φ〉, is
chosen. Let us discuss three possible choices

1. In Sec. IV B, the HF self-energy

ΣHF
αβ = ∑

γ

[

V̄NN
αγβ γ +

1
2 ∑

γδ
V̄3N

αγδβ γδ ρδδ

]

ργγ (65)

≡ ∑
γ

v̄ph
αγβ γ ργγ ,

was used independently on the ordernmax of the ground-state energy expansion. In such a case, single-
particle energies{εα} have no particular meaning. Equation 65 provides the effective vertexv̄ph to first
order.

18 Note for instance that symmetry properties of ¯vρρ
i jkl , v̄ρρρ

i jklmn and v̄ρρρρ
i jkli jkl under the exchange of fermionic indices arenot as expected

from two-, three- and four-body operators.
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2. A choice made to design non-empirical DFT consists of extracting the local and multiplicative optimi-
zed effective potential (OEP) from the correlated many-body energy

ΣOEP(~r) ≡
δ [E−T]

δρ(~r)
, (66)

whereT is the unperturbed kinetic energy. In such a case, the energyεF of the last occupied orbital
approximates the one-nucleon separation energy with the ground state of the neighboring system.

3. The choice leading to a natural mapping with the nuclear SR-EDF method, as it is traditionally imple-
mented, consists of computing the energy-dependent self-energy

ΣEDF
αβ ≡

δ [E−T]

δρβ α
, (67)

from the correlated binding energy and of extracting its on-shell quasi-particle part to definehαβ .
Consequently, and similarly to Eq. 65, the on-shell part ofΣEDF

αβ provides thedressedeffective vertex

v̄ph (similarly to Eq. 6). In such a case, single-particle energies{εα} approximate the quasi-particle
component of one-nucleon separation energies with the neighboring systems.

Let us finally discuss the coordinate-space representationof the first and second-order contributions to
the many-body ground-state energy. In order to make it transparent, we further simplify the analysis (i)
by neglecting entirely the 3N force, (ii) by choosingVNN as purely central and local, as well as (iii) by
omitting spin and isospin degrees of freedom. For a more complete discussion, we refer the interested reader
to Refs. [149, 152, 223]

The second term of Eq. 61 contains two contributions, i.e. the Hartree (direct) and the Fock (exchange)
terms. By inserting two completeness relationships on the two-body Hilbert spaceH2, the Fock contribution
reads

EF ∝
∫∫

d~r1d~r2VNN(|~r1−~r2|)ρ~r1~r2
ρ~r2~r1

, (68)

which is a non-local functional of thenon-localdensity matrixρ~r1~r2. Conversely, the Hartree contribution
obtained from a local interaction is a non-local functionalof the local partρ~r1~r1 of the density matrix. Even-
tually, the first-order HF contribution displays a more involved coordinate-space expression than the local
Skyrme functional. However, and as discussed in the next section, the fact that it is anexplicit functional of
the coordinate-space density matrix makes it amenable to the density matrix expansion.

Inserting four completeness relationships onH2, one typical second-order energy contribution reads

∆EHF
2 ⊂

∫∫∫∫

d~r1234

[

∑
αβ γδ

ψ∗α(~r1)ψ∗β (~r2)V
NN(|~r1−~r2|)ψγ(~r1)ψδ (~r2)

×ψ∗γ (~r3)ψ∗δ (~r4)V
NN(|~r3−~r4|)ψα(~r3)ψδ (~r4)

]ραα ρβ β (1−ργγ)(1−ρδδ)

εα + εβ − εγ − εδ
,

and thus contains four triple integrals. The energy becomesa highly non-local functional that will be even
more so when (i) starting from a non-local NN interaction, (ii) including the contribution fromV3N and/or
(iii) going beyond second order, i.e. to largernmax. An additional key difference withEHF is that∆EHF

2 is not
an explicit functional of the coordinate-space density matrix and static potentials.

E. The density matrix expansion

1. Basic features

Let us first present the basic idea of the density matrix expansion. The objective is to map finite-range
physics associated with vacuum NN and 3N interactions into the form of a Skyme-like EDF with density-
dependent couplings. To do so, the studied contribution must take the form of an explicit functional of the
one-body density matrix of the auxiliary state|Φ〉. As discussed in the previous section, this is indeed the
case of the HF contribution to the binding energy. Contrarily, the fact that∆EHF

2 is not an explicit functional
of the coordinate-space density matrix makes it unamenableto the DME in its standard formulation. As a
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matter of fact, one is still missing as of today a generalization of such an expansion technique to approximate
contributions beyond the HF ones under a Skyrme-like form [224]. It is a challenge for the future to formulate
such an extension. For now, we thus focus on approximating the HF contribution to the binding energy. The
present discussion is again simplified by omittingV3N as well as spin and isospin degrees of freedom, unless
stated otherwise.

The DME technique comes back to Negele and Vautherin [143, 225]. Given that the energy is an explicit
functional of the non-local density matrix, the central idea is to expand the latter into a finite sum of terms
that are separable in relative~r ≡~r1−~r2 and center of mass~R≡ (~r1 +~r2)/2 coordinates

ρ~r1~r2 ≈ ∑
f

Πρ
f

(

kr
)

f (~R) , (69)

wheref (~R) represents a set of local one-body densities. Typically, one hasf ∈ {ρ ,τ,∆ρ}, which corresponds
to expanding the HF density matrix with up to two derivatives. The arbitrary parameterk in Eq. 69 has the
dimension of the inverse of a distance and is to be equated to the local Fermi momentum19 k≡ kF(~R), or to
a similar function. Inserting expansion 69 back into Eq. 68,the Fock contribution to the energy reads

EF ∝
∫

d~R
[

Cρρ(~R)ρ(~R)ρ(~R)+Cρ∆ρ(~R)ρ(~R)∆ρ(~R)+Cρτ(~R)ρ(~R)τ(~R)
]

, (70)

which is nothing but a generalized local Skyrme-EDF expressed in terms of non-empirical, position/density
dependent couplingsC f f ′(~R), e.g.

Cρρ(~R)≡ 4π
∫

r2drVNN(r) Πρ
ρ(kF(~R)r) Πρ

ρ(kF(~R)r) . (71)

Equation 71 makes clear that the density/position dependence of the couplings is a direct consequence of the
finite-range of the NN interaction. Given thatall couplings acquire a density dependence through the DME,
Eq. 70 is indeed more general than any existing empirical Skyrme EDF. Starting from a realistic vacuum
Hamiltonian containing a 3N force, as one should, a richer EDF including a wealth of trilinear terms is ob-
tained [223] that generalize the single trilinear term included for illustration purposes in Eq. 52. We note in
passing that it is important to differentiategenuinedensity dependencies associated with original dependen-
cies on the density matrix, as discussed in Sec. IV D 2 in connection with MBPT, from those resulting from
the application of the DME. Indeed, both types of density dependencies do not carry the same physics. Last
but not least, treating explicitly spin and isospin degreesof freedom also leads to a richer functional than the
one displayed in Eq. 70. Including all those terms is eventually essential to any realistic application of the
DME [152, 223].

Equation 70 is to be complemented with the Hartree contribution that can either be put under the form of
a Skyrme-like EDF [153] or treated exactly. Regardless, theEDF thus obtained only contains the HF physics
such that correlations associated with higher-order contributions must be added to produce any reasonable
description of nuclei. Such a point is further discussed in Sec. IV E 4.

2. Negele and Vautherin DME

So far, Eq. 69 provides a formal expansion of the one-body density matrix. It remains to be seen how such
an expansion can actually be obtained in practice, i.e. how quantitativeΠρ

f functions are determined. Several
DME variants applicable to the HF energy have been developedin the past [143, 226–228]. They mainly
differ regarding (i) the choice made to fix the momentum scalek, (ii) the path followed to obtain actual
expressions of theΠρ

f functions (see below) and (iii) the set of local densities that occur in the expansion.
The original DME expansion of Negele and Vautherin [143] relies on a truncated Bessel expansion of the

non-locality operatore
1
2~r ·(

~∇1−~∇2) that leads to analytically-derivedΠρ
f ( functions. The expansion presents

the advantage to be exact in symmetric nuclear matter ; i.e. it reduces to one term that provides the exact HF
density matrix and energy. However, Negele and Vautherin’snon-trivial DME is only formulated for spin-
saturated nuclei where the spin degree can essentially be omitted. We refer the reader to Ref. [143] for details
concerning the original DME approach.

19 The local Fermi momentum relates to the isoscalar density throughkF (~R) = (6π2ρ0(~R)/st)1/3, where s=2 (1) and t=2 (1) when spin
and isospin degrees of freedom are (not) taken into account.
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3. Novel DME approach based on phase-space-averaging techniques

Given that the overwhelming majority of nuclei are spin-unsaturated, an extension of the original DME is
necessary. Recently, such a task was taken up and a new approach based on so-calledphase-space averaging
techniqueswas proposed to design an analytical DME in the general case of spin-unsaturated nuclei [149,
152]. After accuracy tests were performed in Ref. [149], thenew expansion method was applied to realistic
chiral NN and 3N potentials in Refs. [152] and [223], respectively.

Let us thus present this novel phase-space-averaging DME (PSA-DME) in some details. To do so, we
re-introduce the spin degree of freedom but still omit the isospin one for simplicity. For a more complete
discussion, we refer the reader to Ref. [152]. The approach aims at approximating both the scalar partρ(~r1,~r2)
and the vector part~s(~r,~r2) of the one-body density matrix defined in an arbitrary single-particle basis through

ρ(~r1,~r2) ≡ ∑
σ1σ2

ρ(~r1 σ1,~r2 σ2)〈σ2|1|σ1〉= ∑
σ1

∑
i j

ϕ∗i (~r2σ1)ϕ j(~r1σ1)ρ ji , (72)

~s(~r ,~r2) ≡ ∑
σ1σ2

ρ(~r1 σ1,~r2 σ2)〈σ2|~σ |σ1〉= ∑
σ1σ2

∑
i j

ϕ∗i (~r2σ2)〈σ2|~σ |σ1〉ϕ j (~r1σ1)ρ ji , (73)

where the former is nothing butρ~r1~r2 used previously when omitting the spin degree of freedom. Inthe
approximation that the single-particle wave-functions ofspin-orbit partners are identical, it can be shown that
~s(~r1,~r2) is zero in spin-saturated nuclei.

Consideringρ(~r1,~r2) and~s(~r1,~r2) as the first and last three components of a four-vectorρµ(~r1,~r2), respec-
tively, one starts with the formal identity

ρµ(~r1,~r2) = ei~r·~k e~r·
[~∇1−

~∇2
2 −i~k

] A

∑
i=1

ϕ∗i (~r2~σ2)ϕi(~r1~σ1)〈~σ2|σµ |~σ1〉

∣

∣

∣

∣

~r1=~r2=~R

≈ ei~r·~k
[

1+~r ·

(~∇1−~∇2

2
− i~k

)

+
1
2

(

~r ·
(

~∇1−~∇2

2
− i~k

)

)2] A

∑
i=1

ϕ∗i (~r2~σ2~τ2)ϕi(~r1~σ1~τ1)〈~σ2|σµ |~σ1〉

∣

∣

∣

∣

~r1=~r2=~R
,(74)

with µ ∈ {0,1,2,3}, while σ0 corresponds to the two-by-two identity matrix andσ1,2,3 ≡ σx,y,z. The vector
~k is a yet-to-be-determined momentum scale whose choice mustbe driven by the optimization of the trun-
cated expansion in Eq. 74. Physically,~k typically represents an averaged relative momentum in the nucleus.
Assuming a model local momentum distributiong(~R,~k) and defining

Πn(~r ,~R) ≡

∫

d~k ei~r·~k
(

~r ·~k
)n

g(~R,~k)
∫

d~kg(~R.~k)
, (75)

ja,µ(~R) ≡ −
i
2

(

~∇(1)
a −~∇(2)

a
)

ρµ(~r1,~r2)

∣

∣

∣

∣

~r1=~r2=~R
, (76)

τab,µ(~R) ≡ ∇(1)
a ∇(2)

b ρµ(~r1,~r2)

∣

∣

∣

∣

~r1=~r2=~R
, (77)

with a,b ∈ {x,y,z}, the phase-space averaging of Eq. (74) is performed over themodel space defined by
g(~R,~k) to obtain

ρµ(~r1,~r2) ≈

[

Π0 + Π0~r ·
~∇1−~∇2

2
− i Π1+

Π0

2

(

~r ·
~∇1−~∇2

2

)2

−
Π2

2
− iΠ1

(

~r ·
~∇1−~∇2

2

)]

×
A

∑
i=1

ϕ∗i (~r2~σ2~τ2)ϕi(~r1~σ1~τ1)〈~σ2|σ̂µ |~σ1〉

∣

∣

∣

∣

~r1=~r2=~R
,

≈

[

Π0− iΠ1−
Π2

2

]

ρµ(~R) + i

[

Π0− i Π1

]

∑
a

ra ja,µ(~R) +
Π0

2 ∑
ab

ra rb

[

1
4

∇a∇bρµ(~R)− τab,µ(~R)

]

,(78)

where local densities are as defined previously. Among those, we note that, whileja,0(~R) denotes the so-far
unspecified current densityja(~R), densities∑a τaa,0(~R) and ja,i(~R) match, at the price of adding an isospin
index, the kinetic densityτ(~R) and the spin-current tensorJai(~R) defined in Eqs. 16 and 17, respectively. Even
without specifying the chosen model momentum distribution, it is clear that the PSA-DME of the scalar and
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vector parts are treated on equal footing. In other words, the PSA leads to a channel-independent DME with
identicalΠρ

f andΠs
f functions for the scalar part and the vector part of the density matrix, respectively.

As discussed in Ref. [149], the PSA-DME is well-suited to incorporate effects of the diffuseness and the
anisotropy of the local momentum distribution at the surface of finite nuclei. Presently, we take a simplified
approach that consists of using the phase space of symmetricnuclear matter to perform the averaging, i.e.
g(~R,~k) = Θ(kF −~k). As a result, one obtains in Eq. 78

Π0(kF r) = 3
j1(kF r)

kF r
≈ 1 + O(kF r)2 , (79)

Π1(kF r) = − i 3 j0(kF r) + i 9
j1(kF r)

kF r
≈ i

(kF r)2

5
+ i O(kF r)4 , (80)

Π2(kF r) = 15 j0(kF r) − 36
j1(kF r)

kF r
− 3cos(kF r) ≈

(kF r)2

5
+ O(kF r)4 . (81)

While Π0 starts with 1,Π1 andΠ2 start withO(kF r)2. Using a weak ordering that countskF and a gradient
on the same ground, Eq. (78) can be rearranged as

ρµ(~r1,~r2) ≈ Π0ρµ(~R) + iΠ0∑
ab

ra ja,µ(~R) +
Π0

2 ∑
ab

ra rb

[

1
4

∇a∇bρµ(~R)− τab,µ(~R) +
δabΛ(kF r)k2

F

5
ρµ(~R)

]

,(82)

wherei Π1 ∑a ra ja,µ(~R) was neglected as it that turns out to be a third-order correction. The functionΛ(kF r)
appearing in Eq. 82 is defined as

Λ(kF r) ≡ −5
i 2Π1(kF r) + Π2(kF r)

k2
F r2 Π0(kF r)

≈ 1+O(kFr)2 , (83)

such that, approximating it by its leading term, one finds

ρµ(~r1,~r2) ≈ Π0ρµ(~R) + i Π0 ∑
a

ra ja,µ(~R) +
Π0

2 ∑
a,b

ra rb

[

1
4

∇a∇bρµ(~R)− τab,µ(~R) + δab
k2

F

5
ρµ(~R)

]

.(84)

The last step consists of performing an angle averaging overthe orientation of~r . Using the identity

1
4π

∫

d~er (~r ·~A)(~r ·~B) =
r2

3
~A ·~B , (85)

and noting that the current density~j(~R) vanishes in time-reversal invariant systems, one finally obtains

ρ(~r1,~r2) ≃ Π0(kF r)ρ(~R)+
r2

6
Π0(kF r)

[

1
4

∆ρ(~R)− τ(~R)+
3
5

k2
Fρ(~R)

]

, (86)

and

sν (~r1,~r2)≃ i Π0(kF r)
z

∑
µ=x

rµJµν(~R) . (87)

It is then trivial to reorder terms in order to generate the expansion in the form of Eq. 69, i.e. obtainingΠρ ,
Π△ρ andΠτ in terms ofΠ0. It is worth noting that, just like the original Negele and Vautherin’s DME, the
PSA-DME is exact in the symmetric nuclear matter limit. In Ref. [154], it was shown that the PSA-DME is
the most accurate DME to second order in gradients. In the same study, a DME approach based on a (phe-
nomenologically) damped Taylor expansion was proposed andshown to display the most optimal accuracy
among existing variants when expanding the one-body density matrix up to sixth order in derivatives.

4. On-going developments

In Refs. [152] and [223], the PSA-DME was applied to the non-local Fock energy obtained from chiral
EFT NN and 3N interactions at N2LO. The input chiral interaction separates into finite-range pion-exchange
interactions and scale-dependent contact terms, e.g. the NN piece can be decomposed according to

VNN
EFT ≡VNN

π +VNN
ct (Λ) . (88)
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As a result, DME couplingsC f f ′

qq′ (from NN) andC f f ′ f ′′

qq′q′′ (from 3N) appearing in the local EDF decompose into
a cutoff-dependent coupling constant arising from zero-range contact interactions and a cutoff-independent
coupling function of the density arising from universal long-range pion exchanges, e.g.

Cρτ
qq′ ≡Cρτ

qq′(Λ;VNN
ct )+Cρτ

qq′(
~R;VNN

π ) . (89)

This implies that (i) the part of the resulting EDF associated with C f f ′

qq′ (Λ;VNN
ct ) andC f f ′ f ′′

qq′q′′ (Λ;V3N
ct ) is of the

same form as the one obtained from a density-independent Skyrme vertex and that (ii) the novel density-

dependencies enteringC f f ′

qq′ (
~R;VNN

π ) andC f f ′ f ′′

qq′q′′ (
~R;V3N

π ) come from the best-understood parts of the under-
lying nuclear interactions. Restricting to time-reversalinvariant systems, analytical expressions of all DME
couplings were derived. The corresponding expressions aretoo lengthy to be reported here and we refer the
reader to Refs. [152] and [223]. Still, all couplings can be written in a systematic way using a “skeleton
form”. For example, each coupling coming from the NN interaction is given by the sum of the LO (n = 0),
NLO (n = 1), and N2LO (n = 2) contributions

C f f ′

qq′ (u) =
2

∑
n=0

C f f ′

qq′,n(u) , (90)

with u≡ kF/mπ and the generic expressions

C f f ′

qq′,0(u) = α f f ′

0 (qq′,u)+ α f f ′

1 (qq′,u) log
(

1+4u2)+ α f f ′

2 (qq′,u) arctan(2u) ,

C f f ′

qq′,1(u) = β f f ′

0 (qq′,u)+ β f f ′

1 (qq′,u)

[

log
(

1+2u2+2u
√

1+u2
)

]2

+ β f f ′

2 (qq′,u)
√

1+u2 log
(

1+2u2+2u
√

1+u2
)

,

C f f ′

qq′,2(u) = γ f f ′

0 (qq′,u)+ γ f f ′

1 (qq′,u) log
(

1+u2)+ γ f f ′

2 (qq′,u) arctan(u) ,

where (lengthy) rational polynomials inu, i.e. α f f ′

j (qq′,u), β f f ′

j (qq′,u) andγ f f ′

j (qq′,u), factorize functions
exhibiting non-analytic behavior inu originating from the finite-range of the NN interaction.

The resulting dependence of the couplings on the isoscalar density is rather significant over the interval
of interest for all couplings, which is at variance with standard phenomenological Skyrme parameterizations,
whose only density-dependent couplings areCρρ

qq′ . Without going into details, such a feature is visible in
Fig. 43 that compares the density dependence of two particular couplings with those obtained from standard
Skyrme parameterizations. We refer the reader to Refs. [152] and [223] for a more extensive analysis.

In the long term, investigating the impact of such non-trivial in-medium dependencies generated by pion
exchanges is one key objective. For such a study to be based onan entirely non-empirical EDF, a gene-
ralized DME method applicable to perturbative contributions beyond HF remains to be invented [224]. In
the meantime, one can use a semi-empirical approach based ona microscopically-guided Skyrme pheno-
menology [229] where the density-dependent couplings associated with pion-exchanges from NN and 3N
interactions at the HF level are added to density-independent Skyrme parameters subsequently refit to data.
This semi-phenomenological approach is motivated by the observation that the EFT contact terms can in
principle be fixed to any low-energy quantities.

Even within such a semi-empirical approach, the inclusion of chiral EFT one- and two-pion-exchange
interactions are expected, through their rich spin and isospin dependence, to provide valuable microscopic
constraints on the poorly-understood isovector properties of the EDF. Dramatic changes of bulk nuclear
properties are not envisioned compared to simpler empirical parameterizations due to the tendency of pions
to average out in spin and isospin sums. However, interesting consequences can be expected for single-particle
properties (which phenomenology tells us are sensitive probes of the tensor force) and systematics along long
isotopic chains. In particular, two very different microscopic origins of spin-orbit properties (i.e., short-range
NN and long-range 3N spin-orbit interactions) are treated on equal footing and can thus be investigated. This
is in contrast to empirical Skyrme and Gogny functionals, where the zero-range spin-orbit interaction has no
obvious connection with the sub-leading (but quantitatively significant) 3N sources of spin-orbit splittings.
Overall, probing the impact of microscopic 3N forces on the structure of medium- and heavy-mass nuclei is
one current frontier of low-energy nuclear theory.

V. SUMMARY

The present lectures outline the starting efforts that are currently being made towards the building of so-
callednon-empiricalenergy density functionals that are explicitly rooted intolow-momentum interactions
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FIG. 43: (Color online) Density dependence of the Fock DME isoscalarCJJ
0 and isovectorCJJ

1 couplings
augmented with a "natural" Skyrme-like contribution (see Ref. [152]) and compared to the corresponding

couplings obtained from a representative set of Skyrme parameterizations. Taken from Ref. [152].

generated from renormalization group methods. The goal of such an endeavor is two (re)connect two sub-
fields of low-energy nuclear theory, i.e. so-called ab-initio and energy density functional approaches, which
have been rather disconnect over the last three decades. Eventually, the objective is to gain predictive power
in the computation of heavy-nuclei properties, in particular in view of studying the unknown territory of very
neutron-rich nuclei.
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