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I. INTRODUCTION

A. Generalities

In spite of over fifty years of theoretical and experimentatiges, low-energy nuclear physics remains an
open and difficult problem. While extensive progress has lmade, an accurate and universal description
from first principles is still beyond reach.

The first difficulty resides in the inter-particle interagtiat play. Strong inter-nucleon interactions relevant
to describing low-energy phenomena must be modeled witleimbn-perturbative regime of the gauge theory
of interacting quarks and gluons, i.e. quantum chromodyesa(QCD). Within such a frame, nucleons are
assigned to spin and isospin SU(2) doublets such that tlee-aomponent fermions interacting in various
configurations stemming from invariances of the problei, #hey interact through central, spin-orbit, ten-
sor, quadratic spin-orbit... couplings. As an example, Eigisplays coordinate-space matrix elements the
state-of-the-art local two-nucleon (NN) Argonne V18 [1]t@atial in the four two-body spin/isospin chan-
nels. In addition to its complex operator structure, the Mke€ produces a weakly-bound neutron-proton
state (i.e. the deuteron) in the coupf8i-3D; channels and a virtual di-neutron state in tBg channel. As-
sociated large scattering lengths, together with the sfamige repulsion between nucleons make the nuclear
many-body problem highly non-perturbative. In additiosteh difficulties, the treatment of three-body (3N)
interactions in a theory of point-like nucleons is unavbiéaThis has become clear over the last fifteen years
as one was aiming at a consistent understanding of (i) diff&al nucleon-deuteron cross-sections [2—4], (ii)
the under-estimation of triton and light-nuclei bindingeegies [5], (iii) the Tjon line [6], (iv) the violation
of the Koltun sum rule [7], (v) the saturation of symmetricclear matter [8—13] and (vi) the Coester line
problem [14-16].
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FiG. 1: (Color online) Coordinate-space matrix elements ofolrge V18 NN force in the four different
spin/isospin channels, i.e. contributions that are prigaal to 1,71 - T2, 01 - 02 and (11 - T2) (01 - 02), where
gi (17) denotes the one-body spin (isospin) Pauli matrix actingueieon numbei. Each channel separates
into various contributions : central 1, ten$ap and spin-orbi(f ~§). Centrifugall 2 and quadratic
spin—orbit(E . §)2 components are not shown. The various mespn@(c . ..) that are thought to propagate
the inter-nucleon interaction at various distances a@sthematically represented.

The second difficulty stems from the nature of the systemtef@st. Most nuclei (i.e. those with masses
typically between 40 and 350) are by essence intermediatesebn few- and many-body systems, as sche-
matically pictured in Fig. 2. As a result (a) most nuclei aegydnd theoretical and computational limits of
ab-initio techniques that describe the interacting sysiem basic NN and 3N vacuum forces, while (b)
finite-size effects play a significant role, which preventtistical treatments. Furthermore, a unified view
of low-energy nuclear physics implies a coherent desaoniptf (i) small- and large-amplitude collective
motions, (ii) closed and open systems, e.g. the struceaetion interface that is mandatory to understand
spontaneous and induced fission, fusion, nucleon emissithre @rip-line..., as well as (i) the structure of
exotic systems.

The treatment of the nuclear many-body problem aims at céimgpground- (masses, radii, deformation
and multipolar moments...) and excited- (single-particibrational, shape and spin isomers, high-spin and
super-deformed rotational bands...) states propertiestbe nuclear chart, not only for the nearly 3100 ob-



FiG. 2: (Color online) Pictorial view of a nucleus, as an intediag¢e between pure few-body and extended
many-body systems.

served nuclei [17] but also for the thousands that are stiletdiscovered. In that respect, a cross-fertilization
between theoretical and experimental studies is topiati,tive apparition of (i) new-generation radioactive-
ion-beam (RIB) facilities producing very short-lived syists with larger yields, and (ii) high-precision de-
tectors allowing precise measurements with low statisticbhigh noise-to-signal ratios. Upcoming facilities
based on in-flight fragmentation, stopped and reaccekktlsams or a combination of both are going to fur-
ther explore the nuclear chart towards the limits of stgbdgainst nucleon emission, the so-called nucleon
drip-lines. The study of the terra incognita in the neutrimh-region will help understand the astrophysical
nucleosynthesis of about half of the nuclei heavier than thwough the conjectured r-process that was re-
cently ranked among the "Eleven science questions for tkieceatury" by the American National Research
Council [18]. The large neutron-over-proton ratio acdalssihrough neutron-rich nuclei leads to the modi-
fication of certain cornerstones of nuclear structure,some of the "standard" magic numbers are strongly
weakened while others (may) appear [19]. When adding evere meutrons, the proximity of the Fermi
energy to the particle continuum gives rise to new phenongreh as the formation of light nuclear halos,
e.g.'1Be [20, 21] or'lLi [22, 23], with anomalously large extensions [24, 25] oe #xistence of di-proton
emitters [26]. In addition to reaching out to the most exnticlei, experiments closer to the valley of stability
still provide critical information. For instance, precisess measurements using Penning traps [27, 28] or
Schottky spectrometry [29] refine and extend mass diffexdéoionulee, e.g. leading to a better understanding
of pairing correlations. Also, the study of Wigner energ@][associated with the over stability 6f = Z
elements might provide leads regarding the existence t€ §ta= 0 proton-neutron pairing, while the study
of the first 2 state in even-even nuclei together with B&2) transition to the ground state provides key
information about closing and opening of magic numbers. @frse, experiments dedicated to the study of
rotational or vibrational bands [31], shape coexisten@ 83], fission properties of actinides [34], collec-
tive modes [35] are all of primer interest. Finally, othenits of existence are of fundamental importance,
e.g. the quest for superheavy elements and for the congettisliand of stability beyond th2 = 82 magic
number [36].

The challenge of contemporary nuclear structure theonyus to describe this entire range of nuclei and
properties as well as neutron stars and supernovae in aotiedtand unified way. While bulk properties of
nuclei can be roughly explained using macroscopic appesshch as the liquid drop model (LDM) [38, 39],
microscopic techniques are the tool of choice for a cohedestription of all static and dynamical nuclear
properties. This leads to defining the class of so-calledhitio methods that consists of solving the nuclear
many-body problem, as exactly as possible, in terms of vachiN, 3N, 4N...interactions. For three- and
four-nucleon systems, essentially exact solutions of tiddEev or Yakubowski equations can be obtained
using realistic vacuum forces [40—-42]. Likewise, Greenction Monte-Carlo (GFMC) calculations [43—
45] provide a numerically exact description of nuclei up &ohon starting from local NN and 3N vacuum
forces, although such a method already faces huge numehafiénges fot?C. Complementary ab-initio
methods allow the treatment of nuclei upAcs 16, e.g. (i) the stochastic variational method (SVM) that
expands the many-body wave function over gaussian waveefmfk6-48], (ii) the no-core shell model
(NSCM) [49-52] that projects the interacting problem oneegimodel space defined within a harmonic
oscillator basis. Coupled-cluster (CC) theory [53-58]jahihconstructs the correlated ground-state from a
product state using an exponentiated cluster expansiorcated tB-body operators (tyB ~ 1—3), renders
possible calculations in the immediate vicinity of doulhagic nuclei up taA ~ 50. In the same regime, the
self-consistent Green'’s function (SCGF) approach offeréngeresting alternative to CC [59-61] through
the approximate computation of the dressed one-body Gzéenction that describes the propagation of a
nucleon in the correlated medium and from which one and taaylobservable can be extracted.

To go to heavier systems, an approximate treatment of betintaracting problem is needed. Part of the



Name Short description Variational Scaleas Upto
(::c‘lhali-::: y) HU = EW Yes MA A=24
Green-Function | V(r)=e @ FUni; m!
Monte-Carlo —[e=F-EOL TPy Yes —_— A<12
(GFMQ) I (M—A)IAl
+auxiliary field
No-i ;

She: ::;:el HY = E¥ @ Yes 4A A<16
Coupled- [W) = ¢ ‘-‘l‘[,”; > 3 A <100
Cluster o ) No (M-A)4A2 Only
(cc) S=8+85+--- doubly-magic

for now

M : configuration space size

FiG. 3: (Color online) Schematic illustration of Faddeev-Ybakwski, Green-Function Monte-Carlo,
No-Core Shell Model and Coupled-Cluster methods (from tolpattom). In each case, the basic equation
used, a logo summarizing the method, the computationalrcostms of system and configuration space

sizes as well as the actual (or estimated for the CC caseg @frapplication are shown. Taken from

Ref. [37].

physics that is not treated explicitly is often accountedtifwough the formulation and use of so-calied
medium interactionsFor instance, the configuration interaction (Cl) model, [62], or shell model (SM),
constructs a model space within which valence nucleonsaate¢hrough an effective interaction that com-
pensates for high-lying excitation outside that model sgcwell as for excitations of the core that are not
treated explictly. Even though such an effective intemactian be constructed starting explicitly from vacuum
interactions, e.g. as a microscofematrix complemented with perturbative core-polarizatitagrams [64],
certain combinations of two-body matrix eleménteed to be slightly refitted on experimental data within
the chosen model space (sd, pf...) to correct for the seaationopole part of the interaction. Conjectures
that wrong monopoles originate from the omission of the 3i¢ddn the starting vacuum Hamiltonian are
currently being explored [66, 67]. Eventually, unknown apascopic properties are described with a very
high accuracy with such refitted effective interactions [g&). Still, improved accuracy is needed in the shell
model in order to use nuclei as laboratories for fundamesytaimetries, e.g. to provide isospin-symmetry-
breaking corrections to superallowed decays, study maléss double-beta decay or octuple enhancement
factors of electric dipole moments. Finally, the theorattool of choice for the microscopic and systematic
description of medium- and heavy-mass nuclei is the eneeggity functional (EDF) method [68], often
referred to as "self-consistent mean-field methdBased on a relativistic or a non-relativistic framework,
such a method provides a unified description of nuclei oventhole nuclear chart thanks to its favorable
numerical scaling with increasing A. However, state-ad-Hrt calculations are based on empirical energy
functionals (Skyrme, Gogny...) that are adjusted on erpental data, which raises questions regarding (i)
the connection with underlying vacuum NN and 3N forces, difithe predictive power of extrapolated EDF
results into the terra incognita, as is illustrated in Figoda particular observable of interest related to the
prediction of halo structures and the location of the neuthap-line in medium-mass nuclei.

Consequently, the connection between currently usedtafeioteractions or energy functionals for the
approximate calculations of medium-heavy nuclei and vactfiorces is neither explicit nor qualitatively
transparent. Discussing how to go beyond the present stattis the frame of EDF methods is the central
objective of the present lectures. However, the technimahbility of doing so depends on the characteristics
of the initial Hamiltonian that need now to be discussed.

1 n the sd shell for example, it is necessary to (slightly)trafiout 30 combinations of two-body matrix elements in ordereach
about 140 keV root mean square error on nearly 600 piecesofregcopic data [65].
2 We refer to M. Grasso’s lectures in the present volume [69}elbas to Sec. |l for details.
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FiG. 4. (Color online) Left : halo paramet&Ry0 [70] extracted for nearly five hundreds (predicted)
spherical nuclei using SLy4 [71] Skyrme parametrizatioighiR: halo parametedRy,, computed for
drip-line chromium isotopes using different Skyrme partrizations of the nuclear EDF; i.e. SLy4 [71],
mj [72], pgoeWith i = 1,2,3 [72], T6 [73], SKa [74], T21 [75], T26 [75] and SlII [76]. Lge discrepancies
in the prediction of the drip-line position and in the extethalo parameter are obtained from the various
parameterizations. Taken from Ref. [72].

B. Nuclear hamiltonian and renormalization group methods

Establishing an interparticle Hamiltonian, which is thesthbasic precursor to many-body calculations,
is a challenge for low-energy nuclear physics. The two-bselytor has been intensively investigated such
that various interactions exist that reproduce phasesshith x2/Nqof = 1 in the elastic regime (up to about
300-350 MeV energy in the laboratory frame). The unsettlentfer is three- and higher-body forces.

As for the NN part, so-callebigh-precision conventional modéiave been available since the 1990s. Ba-
sed on an operator expansion [1], a meson-exchange modéigJ,or a simple parametrization [79], such
NN models constitute phenomenological anzétze whose maeas(typically 40) are adjusted to reproduce
high-precision nucleon-nucleon scattering data with amoat perfect precision. Figure 1 displays the four
two-body spin/isospin channels of Argonne V18 [1] potdritizoordinate space. The longest-range feature
is the one-pion exchange and is common to most conventiotahpals. The mid-range part, which provides
a net attraction, has usually been associated with two-g@ichange and/or the exchange of a phenomenolo-
gicalo "meson". The short-range part of the potential can be atgibto the exchange of heavier mesqms (
w) or simply empirically parameterized. In Fig. 1, one sees the short-distance presents a repulsive core
(often called a “hard core”). The fact that Argonne V18 pditdns local leads to such a strong short-range
repulsion in the S-waves when fitting elastic scatteringspkghifts. However, locality of the potential bet-
ween composite particles is a feature that is only expedtiehg distances. As a matter of fact, the potential
at short range is not an observable such that locality isiombpsed for convenience, not because of physical
necessity. There exists an infinite number of equally vatiteptials related to each other through unitary
transformations, and once one allows for non-locality jautsive core is no longer inevitable.

Recently, the development of chiral effective field thedrf-EFT) has made possible the connection
between low-energy inter-nucleon forces and QCD, whosvaek high-energy effects are renormalized
through fitted low-energy contact terms [81-84]. Typicaie same precisior€/Ngof ~ 1) as for conven-
tional NN potentials is obtained at next-to-next-to-nexteading-order (RLO) using about 26 parameters.
Eventually, lattice QCD calculations are expected to helpstraining low-energy coupling constants that
are not determined precisely enough through data fitting $8%. The main benefits of-EFT are (i) to
formulate the problem at hand in terms of relevant low-epetggrees of freedom (pions and nucleons)
while retaining the (chiral) symmetry (breaking) of the engling theory (QCD) and (ii) to naturally explain
the phenomenologically-observed hierarchy that makestwateon interactions more important than three-
nucleons interactions, which are themselves dominant eoecito four-nucleon forces etc. Such a hierarchy
relates to the existence ofmower countinghat organizes the infinite number of diagrams in }h&FT

3 We refer to E. Epelbaum’s lectures in the present volume étails [80].
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FiG. 5: (Color online) Matrix elements of the Argonne V18 NN putial in the'S partial-wave. Matrix
elements are given as a function of the incoming/outgoitadive momentumkK/k’) of the two interacting

nucleons. Matrix elements are measured in fm, i.e. onefluses= m= 1, wheremis the nucleon mass.
Taken from Ref. [90].
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Lagrangian [80].

Conventional oy -EFT Hamiltonians display several sources of nonpertiveéehavior that complicate
nuclear structure calculations. First are the virtual @tins of nucleons to high relative momenta (energy).
This is made apparent by computing the matrix element of tRephitential in (relative) momentum space,
as shown in Fig. 5 for théS, partial wave of Argonne V18, where the strong low- to highmsmtum
coupling driven by the short-range repulsion is manifestgdhe large regions of repulsive off-diagonal
matrix elements. While such virtual excitations are duéntodtrongly model-dependent short-range central
and tensor forces in conventional potentials, they remgimificant in x-EFT potentials that better separate
the high-energy, model-dependent, physics from the logrggnsector of interest. The second source of non-
perturbative behavior is due to the presence of low-eneogyt and nearly-bound states in ft& and'S
of the NN interaction, respectively. Such states corredpgomoles in the scatterinf matrix that render the
perturbative Born series divergent at low energy.

Progress toward controlled nuclear calculations has leeghindered by the difficulty to solve the nuclear
many-body problem expressed in terms of nuclear poteritiatscouple low- and high-momentum modes.
This has historically been accepted as an unavoidablayedécently, EFT and RG methods [87-90] have
promoted a completely different view point based on thetfaat the Hamiltonian (potential) is not an obser-
vable to be fixed from experiment (there is no “true potefjtidut rather that there exists an infinite number
of Hamiltonians (potentials) capable of accurately déseg low-energy physics [91]. In order to be predic-
tive and systematic, an organization (“power counting”)strioe present to permit a truncation of possible
terms in the Hamiltonian (potential). As briefly explaindxbae,x-EFT potentials indeed build on such consi-
derations. They are based on a power counting that orgateizas in the Hamiltonian in powers @/ Ager,
where/Agrt ~ 500—-600 MeV embodies the separation of scale between the higiggishort-distance sec-
tor that is not modeled explicitly (e.g., heavy mesainsgesonances. . .) and the low-energy/long-range sector
associated with explicitly treated degrees of freedom@end point-like nucleons) and characterized by ty-
pical momenta) ~ my, kg. As long as a complete Hamiltonian to some order is usedu@iey many-body
forces), all observable should be equivalent up to trunoagirors, independently of the details used to model
the short-distance (high-energy) physics. In that respeEtFT potentials provide a modern starting point to
attack the nuclear many-body problem.

Renormalization group (RG) methods exploit EFT ideas euethér. Starting from g-EFT Hamiltonian,
one can proceed to a (unitary) transformatiodécoupldow-momentum modes from high-momentum ones
that are still present at the separation s&ster used to build they-EFT Hamiltonian to some order in the
power counting. The RG transformation "changes the reisolstale\" (< Aggr) of the Hamiltonian, while
preserving the original truncation error, such that it messofterthanks to the elimination of the original
non-perturbative coupling between low- and high-momemodes. In such a context, NN, 3N, 4N. . . forces
between nucleons depend A92-94]. Tracking the change of many-body observable wWithresolution
scaleA of the input Hamiltonian can be used as a powerful tool toysthd underlying physics scales and to
evaluate the incompleteness of approximate calculatiookdropping multi-body forces in the Hamiltonian.
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FiG. 6: (Color online) Schematic illustration of two types of R@olution for NN potentials in momentum

space : (@Viowk running in/\, and (b) SRG running id. At each/\; or A;, the matrix elements outside of

the corresponding lines are zero, so that high- and low-nmumne states are eventually decoupled. Taken
from Ref. [90].

Eventually, the source of nonperturbative behavior assediwith weakly and nearly bound states, which
remains independent of the cutoff in the two-body sectasjss tamed down as the density of the medium
increases [95]. Using such classlofv-momentunidamiltonians leads to interesting consequences; i.e. the
nuclear many-body becomes much more perturbative thancwithentional ory-EFT Hamiltonians [87].

While soft potentials derived from RG methods constitutew development in nuclear physics [93, 96],
attempts to use soft potentials to compute the equatiorats ef infinite nuclear matter were made in the mid
sixties and early seventies [97, 98]. It had long been oleskihvat a strongly repulsive core is not resolved un-
til eight times nuclear saturation density [99] such thatisgtion is not driven by it. However, soft potentials
were abandoned because they seemed incapable of quaaltjtatiproducing nuclear matter properties, and
in particular its saturation. From the EFT perspectivejlafato reproduce nuclear matter observable should
not be interpreted as showing that the low-energy poteistitong, but that it is incomplete. This miscon-
ception still persists and has led to the conclusion thatdowmentum NN interactions are "wrong” because
they do not give saturation in nuclear matter and finite riwasle overbound for lower cutoffs. The missing
physics that invalidates such a conclusion is many-bodyefarin a low-energy effective theory, many-body
forces are inevitable ; the relevant question is how largy #ire ? As already mentioned, it has been esta-
blished beyond doubt that 3N forces are required to providersistent description of various low-energy
nuclear phenomena. When evolving the NN part through RG oastithree-body (and higher-body) inter-
actions evolve naturally with the resolution scale. As Wwélseen, 3N forces offer a natural and quantitative
tool to generate saturation in conjunction with soft NN ratgions.

There exists in fact two major classes of RG transformatirsesl to construct low-momentum interactions,
which are schematically illustrated in Fig. 6. In tkig,k approach, decoupling is achieved by lowering a
momentum cutoff\ above which matrix elements go to zero. In the SRG unitary@agh, decoupling is
achieved by lowering a momentum cutdffusing flow equations that drive the potential toward a band
diagonal form in momentum space. The effects can be reasily B the series of contour plots in Figs. 7(a)
and 7(b). With either approach, lowering the cutoff leawss-Energy observable unchanged by construction,
but shifts contributions between the NN, 3N, 4N. . . intei@tstrengths and the sums over intermediate states
in loop integrals.

We note that the RG is an integral part of any EFT. MatchingnefEFT at a given truncation level (to data
or to an underlying theory) but at different regulator ctgastablishes the RG evolution (or “running”) of
the EFT couplings. This includes the shift of strength betweop integrals and couplings and between two
and many-body interactions. However, because the EFT isasisicated, the error at the initial cutoff is not
preserved with the running, in contrast to the momentuncespas evolution usingowk 0r SRG techniques,
which keep all orders.



K (fm™") K (fm™) k' (fm™) k' (fm™) k' (fm™)

0 1 2 30 1 2 30 1 2 301 2 30 1 2 3 ’
0{fm)
A =201m! A=15fm" 1

Om
b Jd LA
. g A =251fm

-1
(a)

0(fm)

A =2.0fm™

(b)

FiG. 7: (Color online) Two types of RG evolution applied to onefoé chiral NLO NN potentials
(550/600 MeV) of Ref. [100] in thé'S; channel : (a)jowk running inA\, and (b) SRG running i . Taken
from Ref. [90].

C. A path towards non-empirical energy density functionals

Impressive progress has been made in extending the lim@b-afitio methods beyond the lightest nu-
clei [60, 61, 101-103]. Still, the nuclear EDF approach remahe only computationally-feasible method
to provide a comprehensive description of medium- and h@aags nuclei [68]. Indeed, EDF calculations
present a computational scaling that makes them amenagystematic studies of systems with large num-
bers of nucleons, independently of their expected sheittire. This makes also possible to study the idea-
lized system ofinfinite nuclear mattethat is relevant to the description of compact astrophysibgects
such as neutron stars. The nuclear EDF method presentslfsimitarities with density functional theory
(DFT) [104-110] that provides a framework to compute thecegaound-state energy and one-body density
of electronic many-body systems in condensed-matter pysid quantum chemistry [111]. However, and
even if itis often referred to asuclear DFT[112—-117], the nuclear EDF method as it has been done sodar ha
deeply rooted conceptual differences with standard DFTrilate to symmetries; e.g. see Refs. [118-123].
We briefly come back to this point below.

Questions in astrophysics and the advent of new experimfaditities to study nuclei at the limits of
existence are driving multi-pronged efforts to calculatelear structure and reaction properties across the
full table of nuclides in a reliable manner. In that respemdern parameterizations of the nuclear EDF, i.e.
Skyrme, Gogny, or relativistic energy functionals, pravia good description of bulk properties and, to a
lesser extent, of spectroscopic features of known nucki [dowever, such parameterizations are pheno-
menological as they rely on empirically-postulated fuoitil forms whose free couplings are to be adjusted
on finite-nuclei data through a chosen fitting protocol. Thetk of microscopic foundation often leads to
parametrization-dependent predictions away from knovta dad makes it difficult to design systematic im-
provements. As a matter of fact, limitations of existing Elffave been identified [75, 124-126] over the
last decade and relate to (i) their (too) simple analytiepresentations, (ii) the biases in their adjustment
procedure and (iii) the lack of a solid microscopic foundatiFueled by interests in controlled extrapolations
of nuclear properties in isospin, density, and temperagfferts are currently being made to develop energy
functionals with substantially reduced errors and impdopeedictive power. One possible path forward fo-
cuses on empirically improving the analytical form and tliénfj procedure of existing phenomenological
functionals [75, 124, 127-131].

A second path that complements the development of empitEibds based on trial-and-error consists
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of connecting energy functionals to ab-initio nuclear stuwe calculations. Such a connection is meant to
lead to so-calledhon-empiricalenergy functionals possessing a link to the microscopitean¢iamiltonian
describing few-body scattering and bound-state obsezvakiven the limited reach of ab-initio schemes,
such a strategy aims at benefiting from the best of both woirklscombining the predictive character of an
ab-initio reference method with the gentle numerical sgpbf the EDF method that can be applied to any
nucleus, independently of its doubly-magic, singly-magidoubly-open-shell character.

In practical terms, there exists multiple paths to non-eicgienergy functionals and the optimal choice is
not obvious at this pointin time. First, various ab-initi@thods can be used as starting points, the idea being
to set up the connection in nuclear systems (e.g. infinitéeanenatter, doubly-magic nuclei...) accessible
to that ab-initio method prior to extending the use of therogcopically-constrained energy functional to
more complicated systems. Second, such a connection carpleniented at various levels of sophistication.
Lastly, such a connection to ab-initio methods necessitat@rder to be rigorously formulated, to distinguish
between approaches based on the standard nuclear EDF nastlitdlslas empirically been used so far and
approaches that try to base the energy functional approauidei on DFT.

1. Connecting the nuclear EDF method to ab-initio approache

A rather indirect procedure consists of benchmarking EBfulte obtained for a set of systems and ob-
servable from an empirically-postulated form with thosedurced through the ab-initio method of reference.
Unknown couplings of the empirical EDF parametrization barfmicroscopically” constrained in this way.
However, the reliability of the postulated functional foman only be assessed indirectly through such a
strategy. Still, constraining the employed parametrizatd reproduce a large set of (independent) obser-
vable can allow one to discriminate between different fiomal forms [75, 124, 126]. The benefit of such
an indirect approach is that any ab-initio method that cavide precise enough benchmarks for the sys-
tems/observables of interest can be used. But again, noi/éixplicit connection with vacuum interactions is
realized in this case such that no specific insight aboufidime of new functional terms that can capture the
missing physics is easily gained in this way.

An approach that we aim at promoting in the present lectursists of connecting more explicitly the
functionalform and thevalueof its couplings to vacuum nuclear interactions. The oljeds not to replace
but rather complement approaches based on empirical Eb&tsatready achieve an accuracy for known
observable, e.g. nuclear masses, which will be difficulioif impossible to reach with purely non-empirical
functionals. One is essentially looking fianicroscopically-educated guessd#sew functional terms and the
value of their couplings. Eventually, a fine-tuning of theipbings, within the intrinsic error bars with which
they will have been produced, can be envisioned. In praatideroscopically-educated functional terms are
to be complemented with yet empirical ones until the forneeoant for enough in-medium correlations. Of
course, one must prevent the added empirical terms fromld@olinting the physics that is already included
through microscopically-derived ones.

Within such a scheme, microscopically-educated functiterens are to be derived through analytical ap-
proximations of the ground-state energy computed from thimiio method of reference. It is a challenging
task whose complexity depends on the particular many-batkod and nuclear Hamiltonian one starts from.
Indeed, not all ab-initio methods offer a natural matchiggn through a set of controlled approximations,
to energy density functionals that are close to the form afidard quasi-local (Skyrme, relativistic point
coupling...) or non-local (Gogny, effective meson-exaf@hagrangian...) variants. As a matter of fact,
ab-initio methods that are amenable to such a mapping mast slertain key features with EDF methods,
the most important of which being the concept of spontanegmsnetry breaking (and further restoration).
Let us take the part of the EDF that drives superfluidity as>ample, i.e. the part that is a functional of
the anomalous pairing tensk;; }. Such a dependence exists in the EDF only because pairingjations
are grasped through the breaking of good particle-numisercagted withU (1) gauge symmetry. Deriving
microscopically-educated terms that are explicit furicof { k;j } can only be achieved using an ab-initio
method that also incorporates pairing correlations thinahg breaking (and restoration) of U(1) gauge sym-
metry*. Similarly, static quadrupole correlations containedhie energy functional can be more directly
benchmarked using an ab-initio method that allows the lingatand restoration) of angular momentum

4 Of course, the corresponding ab-initio calculations mestibable in systems where such terms are indeed switcheceoall ibut
doubly-magic nuclei in the present example.
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associated with SO(3) rotational symmetry.

2. Connecting the nuclear DFT method to ab-initio approache

It has become customary in nuclear physics to assimilat8x&DF method, eventually including correc-
tionsa la Lipkin or Kamlah, with DFT, i.e. to state that the Hohenb&man (HK) theorem underlays nuclear
SR-EDF calculations. This is a misconception as distirretagies actually support both methods. Whereas
the SR-EDF method minimizes the energy with respect to a sstnyatoreaking trial density, DFT relies on
an energy functional whose minimum must be reached for ebong-local density that possessesl sym-
metries of the actual ground-state density, i.e. that digpfingerprints of the symmetry quantum-numbers
that characterize the exact ground-state [132]. As a mattict, generating a symmetry-breaking solution
is known to be problematic in DFT, as it lies outside the frashthe HK theorem, and is usually referred to
as thesymmetry dilemmalo by-pass the symmetry dilemma and grasp kinematicaélaiions associated
with symmetries, several reformulations of DFT have bee@ppsed over the years, e.g. see Refs. [133, 134],
some of which are actually close in spirit to the nuclear MBFENMethod [133].

Recent efforts within the nuclear community have been dalti formulating a HK-like theorem in terms
of the internal density, i.e. the matter distribution rigdato the center of mass of the self-bound system [118,
119]. Together with an appropriate Kohn-Sham scheme [1tl#llows one to reinterpret the SR-EDF method
as a functional of the internal density rather than as a fanat of a translational-symmetry-breaking density.
This constitutes an interesting route whose ultimate oqunsiece would be to remove entirely the notion of
breaking and restoration of symmetries from the energytfanal approach and make the SR formulation a
complete many-body method, at least in principle. To reach s point though, the work of Refs. [118, 119]
must be extended, at least, to rotational and particle-musbmmetries, knowing that translational symmetry
was somewhat the easy case to deal with given the explicgiuging of internal and center of mass motions.

Within the (hopefully extended) scheme of Ref. [119], one eavision to design a so-calleb-initio
nuclear DFT approach [135]. Although some of the techniques used to dmight be the same as for
designing non-empirical nuclear EDF, we differentiatehbattempts as they build on different theoretical
grounds that influence strongly the way symmetries are ledratid the need for a multi-reference extension.
Given that the present lectures are dedicated to descrihingath towards non-empirical EDFs only, we
refer the reader to Ref. [135] for a discussion regardingenurefforts made to design an ab-initio nuclear
DFT.

For illustration purposes, we can briefly mention one wayrtzped that is specific to the nuclear DFT and
that does not apply to the nuclear EDF. The idea is (i) to campiuvough an ab-initio method of reference
the (a set of) ground-state density(ies) and energy for afseiclei embedded in a tunable (set of) external
potential(s), (i) find for various choices of the externatgntial(s) the associated one-body local Kohn-Sham
potential(s) from which a non-interacting system can beaex¢d that reproduce the correlated density(ies),
(iif) use a model energy functional parametrization whagecfional derivative(s) with respect to the (set
of) local density(ies) map the one-body local Kohn-Shaneptial(s) extracted from the previous step. The
difficulties of such a scheme in the nuclear case rely in thetfat (i) the tunable external potential(s) are A-
body operators rather than one-body ones as in electrosiersyDFT [119] and that (ii) it is not guaranteed
that there exists a Kohn-Sham non-interacting system tiratreproduce several correlated local densities
at the same time; i.e. this has to do with the so-called nteraiting v-representability of such a set of
local densities. Such an approach is currently being dpeeldased on CC calculations of doubly-magic
nuclei [136].

D. Outlineof thelectures

Following the preceding discussion, the present set ofitestdiscusses the route towards an explicit and
guantitative connection between high-precision NN and 3)efs and energy density functionals used to
describe heavy nuclei, as is schematically illustrateddgn & To do so, the nuclear energy density functional
method is briefly reviewed in Sec. Il. The basics of the foismalare discussed and the limitations of EDFs

5 The scheme can be extended to a set of several local demsitigen to the full density matrix.
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calculations employing currently available empirical graeterizations are exemplified through a limited
number of cases.

The design of non-empirical energy functionals nowadapdesenvisioned thanks to the new paradigm set
by low-momentum vacuum interactions. Indeed, ssftinuclear interactions allow a quantitative treatment
of infinite nuclear matter [87—89] and doubly closed-shaltlei [137, 138] within the frame of many-body
perturbation theory (MBPT) [139, 140], e.g. Hartree-Foekdmes a reasonable (if not fully quantitative)
starting point. Consequently, Sec. Ill is dedicated toe@ung low-momentum interactions generated through
renormalization group techniques.

In this context, MBPT calculations constitute our most basdi-initio method of reference. To suit our
purpose, we consider Goldstone (time-ordered) MBPT basethanperturbed vacuum that possibly breaks
particle number and rotation invariances. Works followsugh a strategy have been initiated recently [135,
141, 142]. Section IV B is thus dedicated to summarizing thsids of Goldstone MBPT, where the explicit
breaking of particle number is however omitted for simpyici

Although MBPT constitutes the simplest, yet quantitatateinitio reference method to be contemplated,
systematic MBPT calculations of self-bound superfluid lygaxclei in terms of realistic nuclear interactions,
even restricted to second order, still constitute a nurakcicallenge as of today. Indeed, perturbative contri-
butions to the energy involve density matrices and propagdblded with finite-range interaction vertices,
and are therefore highly non-local in both space and timis.Why controlled approximations are manda-
tory to map such calculations onto a numerically tractatidé Ehat allows for non-empirical calculations of
heavy open-shell nuclei. At lowest order in MBPT (i.e., HagtFock), the density matrix expansion (DME)
of Negele and Vautherin [143] can be unambiguously appbepproximate the spatially non-local energy
expression as a generalized Skyrme functional with demsendent couplings calculated explicitly from
vacuum interactions. Section IVE is thus dedicated to disitiyg the basics of the DME following recent
works that have revived and improved such a method [144--T%4 non-trivial density dependence of the
DME couplings is a consequence of the finite-range of the tlyidg NN interactions, and is controlled by
the longest-ranged components of the NN interaction. Gpresaly, the DME offers a path to incorporate
physics associated with long-range one- and two-pion exgénanteractions into existing Skyrme functionals.
Given the rich spin and isospin structure of such interastid is hoped that their inclusion will improve pre-
dictive power away from known data and provide microscopitstraints on the isovector structure of nuclear
EDFs. Still, and as briefly illustrated in Sec. IV D 2, the DMtitis standard formulation is not amenable to
approximating perturbative contributions beyond HF sttt bne is awaiting as of today for a generalization
of such an expansion technique. This is part of the persmesctif the building and the use of non-empirical
nuclear energy functionals whose first attempts are digcuissSec. IV E 4.

Non-empirical

Predictive...

FiG. 8: (Color online) Schematic representation of the desfgroa-empirical energy density functional
rooted into Chiral NN and 3N interactions, further softett@@dugh renormalization group methods.
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1. BASICSOF ENERGY DENSITY FUNCTIONAL METHODS

A. Generalities

The nuclear EDF method [68] is a two-step approactpirically adaptedrom specific variational wave-
function-based approaches. The first step is denoted afmtyie-seference EDF (SR-EDF) implementation
and has originally been adapted from the symmetry-unotsttiHartree-Fock-Bogoliubov (HFB) method
using adensity-dependemffective Hamilton "operator" [155]. Later on, the apprmoste energy was for-
mulated directly as a possibly richer functional of oneypdénsity matrices computed from a symmetry-
breaking product-state of reference. The second stepedanit through the multi-reference (MR) extension
of the SR-EDF approach has been adapted from the projectébelrock-Bogoliubov and generator coor-
dinate methods. The nuclear EDF method strongly relies erdimcept of spontaneous symmetry breaking
and associated restoration. The MR step necessitatesaipties to extend the SR energy functiohakso-
ciated to a single auxiliary state of reference, i.e. a diafjenergy kernel, to the non-diagonal energy kernel
associated with a pair of reference states. This leads fioudtfes [120, 121, 156-159] that will not been
discussed in the present lectures.

Unlike the wave-function-based approaches it has beertedi&pm, the nuclear EDF methodristbased
on an attempt to approximate the correlated many-body iavetion. Rather, part of the correlations are
directly built into the energy functional kernel under tloerh of a functional of one-body density matrices.
The main advantages of the method are that (i) it uses thegatie of single-particle states, (ii) althoughiit is
fully quantal, the use of densities and currents as basiablas combined with the spontaneous breaking of
symmetries provides a natural description of collectiveawgors, (iii) the energy functional is universal in the
sense that it is meant to be applied to all nuclei (but thetdigf) and that (iv) correlations varying smoothly
with the filling of nuclear shells, i.e. with the number of fieles are rather easily mocked up into the energy
functional kernel itself. On the other hand, the main ditfies are that (a) although the EDF method is
applicable to any nucleus, there exists no unique paramaéiyn at this point in time that works satisfactorily
for all nuclei and all observable, (b) the empirical chagacf existing parameterizations of the EDF strongly
limits its predictive power, (c) certain categories of ébations that vary rapidly with the number of particles
can hardly been parameterized into the EDF itself or gratipedigh the breaking of symmetries such that
non-trivial extensions of the basic SR-EDF method, i.e. MIBF schemes, are often unavoidable to reach
the necessary accuracy, and finally that (d) a quantitativeunt of spectroscopic properties also necessitates
MR-EDF extensions.

In the present section, the basic SR-EDF is briefly descntigite Fig. 14 summarizes its key features.
The MR extension is however only sketched through Fig. 150Alime-dependent variants of the SR- and
MR-EDF methods are not discussed in the present documebit 164].

B. Singlereference EDF method

1. Elements of formalism

The binding energy¥’[p, k*, K] of the many-body system is postulated to be a functionahénmathe-
matical sense, of the one-body density matrix and pairingdedefined, respectively, in an arbitrary single-
particle basigb;} as

pji = (@b bj|®) 5 Kji = (Dlbibj|®) , @

where|®) denotes a symmetry-breaking state of reference. The isti@auxiliary state in the sense that it is
not meant to provide a realistic approximation of the cated many-body wave-function but a reference to
compute the density matricesandk. The form of|®) is the result of a compromise between simplicity and
the need to incorporate enough physics, e.g. providing azeomvalue ok requires a many-body state that
spans Hilbert spaces associated with different number mictes. In practice, the SR-EDF implementation

6 |.e., the density-dependence of the effective Hamiltorraipe in more standard formulations.
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relies on using a product state of the Bogoliubov type
|®) = |._|Bi 0y ; fBi= zUJ’; bj +V;i bj+ , (2)
| 1

which is a vacuum of the fermionic quasi-particle opera{@$ defined through the latter Bogoliubov trans-
formation, i.e.3i|®) = O for all i. The information contained in the product sté® is encoded into the
so-called generalized density matrix
K
Z = P ,
—K* 1—p*

which is idempotent, i.e%? = %. The dependence of the EDF arallows the treatment of static pairing

correlations between nucleons. Such correlations arensgpe for the superfluid nature of a majority of
nuclei and impacts essentially all low-energy propertieauxlei as well as certain static and dynamical
features of neutron stars. Microscopically speaking;pketicle pairing in nuclei (mostly) reflects the strong
attraction of the NN interaction in theg partial-wave [141, 142, 162-165].

The optimization of the vacuum stai®), i.e. the determination of the amplituddd,V) of the uni-
tary Bogoliubov transformation, is performed through thiaimization of the energy’[p, k*, k] under the
constraints that (i) the average number of particlegsbhremains fixed to a chosen value and (ii) the auxi-
liary state remains a quasi-particle vacuum, i.e. its gaired densityZ remains idempotent. Given that
is hermitian andc is antisymmetric, the irreducible set of independent \deis selected for the variation is
{0ij P} Kij. Kij for j <iandp; for all i}. Using a Lagrange method, the constrained minimizatiodsea

* 1 *
5(&1p.k.k"] = 5 (TH{p} +Tr{p"}) — THA(#2 - #)} ) = 0, (3)
where the Lagrange parametéss A;; } are adjusted to satisfy the conditions

Tr{p} =Tr{p*} = (N)

The minimization leads to solving Hartree-Fock-Bogoliulike equations expressed in the single-particle

basis{b;} as
A, ), e, e
u u u

from which the quasi-particle wave-functiofi$,V),, and energieg, are extracted. The Bogoliubov matrix
A is expressed in terms of effective fieldsA) and effective verticeg/P", vPP) defined through

N ;| Z%*-#=0. (4)

o0& _oh ) _0E 1
hij = a Et” + ;Vipkjl Pik , A” = 6—Krj = z ;Vﬁfl Kyl - (6)
Given that the effective fields depend on the quasi-partiohglitudes(U,V) throughp = V*VT andk =
V*UT, equation of motion 5 is to be solved iteratively and selfisistently.

2. Spontaneous symmetry breaking

TaB. I: Categories of nuclei that tend to spontaneously breatstational, rotational and particle number
invariances at the SR level. Connection is also provideddeh the spontaneous breaking of those
symmetries and excitation modes observed in nuclei.

Nuclei Excitation pattern]
Translation in coordinate spai&ll Surface vibrations
Rotation in gauge space All but doubly-magig Energy gap

Rotation in coordinate space|All but singly-magic | Rotational bands
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FiG. 9: (Color online) Schematic view of the SR energy as a famabf the phase and magnitude of the
order parameteag of a spontaneously broken symmetry.

The nuclear EDF method strongly relies on the concept of sgmnbreaking, i.e. the auxiliary stat®)
does not necessarily reflects the symmetries of the undgriyamiltonian. In other word$p) is allowed to
span several irreducible representations of the symmetwypgs of the nuclear Hamiltoniakl when mini-
mizing the energy functional. In the nuclear case, the sytmngeoup is characterized by the simultaneous
commutation ofH with neutron numbeN, proton numberZ, center of mass momentuR) total angular
momentumJ? in the center of mass and its projection on a chosen &xigarity 1 and time reversal7?
operators.

Given that|®) is allowed to span several irreducible representationf@&ymmetry group, the density
matricesp andk approximate those of a wave packet rather than those of amstimte oH. As a result,
the spontaneous breaking of the symmetries carries intiwmabout the favored modes of excitation of the
system, as exemplified in Tab. I.

The breaking of each symmetry is monitored by the magnitudkethe phase of an order parameger
such that the (approximate) SR enedjp, k*,k;|q|] only depends on the magnitude @fand not on its
phase, as schematically shown in Fig. 9. This correspontiettact that a spontaneous symmetry breaking
is accompanied by the presence of a zero-energy Goldstode.rmbe energy as a function [gf provides
a potential energy curve/surfadbat characterizes the restoring force of the system agdiewariation of
|g|; i.e. the "polarizability" of the system with respect to foiening" it along the collective variablg|. In
practical terms, the potential energy curve can be accéissmajh repeated SR-EDF calculatimustrained
to various values ofg| = (®|Q|®) whereQ is most often taken as a one-body operator, i.e. by adding the
Lagrange term-Aq (Tr{pQ} —|q|) to Eq. 3.

The (breaking of) symmetries translates into the (redusgaimetries of the fields andA, which even-
tually translates into the (absence of) symmetry quantumbmurs carried by the solutions of Eqg. 5 and by
the (reduced) degeneracy of the corresponding eigen speddf course, that a certain symmetry does break
spontaneously usually depends on the number of elemertastituents of the system under consideration.
For example, while translational symmetry (strongly) e all nuclei, particle-number symmetry tends
to (weakly) break in all but doubly-magic nuclei whereastimnal symmetry remains unbroken if either the
neutron number or the proton number is "magia$ is recalled in Tab. I.

As explained in Sec. Il F, the breaking of symmetries is arcieffit and inescapable way of grasping
essential correlations into a simple SR description of earckystems. The drawback is that the connection
between certain computed quantities and experimentaheddsie is not direct, until one eventually restores
the broken symmetries. As a matter of fact, the breaking ofregtries can only provide an intermediate
description of a finite system such that good symmetries sugsttually be restored to describe properties of
actual eigenstates. Doing so is one of the objective of theedBnsion of the nuclear EDF method.

7 The fact that the neutron or proton number is magic is not knaweriori but is based on a posteriori observations and expetal
facts. In particular, the fact that traditional magic numshé.e.N,Z = 2,8,20,28,50,82,126, remain as one goes to very isospin-
asymmetric nuclei is the subject of intense on-going expenial and theoretical investigations [19].
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3. Single-particle field

The role played by the single-particle fighdis most easily understood in the limit where the auxiliary
state|®) is taken as a Slater determinant, i.e. when particle-nuisygdametry is enforced such that pairing
correlations are not explicitly incorporated through degencies ox. In such a case, the equations of motion
(Eq. 5) reduce to the eigen-value problem

hei](r) = &¢i(T) , (7)

whose eigen-spectrufe; }, as schematically shown in Fig. 10, provides an approxinatd the nuclear
"shell structure”, i.e. to one-nucleon separation ensrigéween the ground state of the N-body system and
eigen-states of thé&\—1)- and (N+1)-body systems. As the EDF incorporates a large fracti@oolations,

in particular through the breaking of symmetries, the frefdust be seen as effectively reflectingarelated
single-particle motion.

€

FiG. 10: (Color online) Schematic representation of the sipglgicle "shell structure” obtained by solving
Eq. 7.

Although the SR-EDF method imta Hartree-Fock approximation, a Koopmans-like theorerdssich
that the single-particle energy of an occupied (unoccupied) level provides a fair approxiomaof the
computed one-nucleon separation energies. Of course,ssuntiernal consistency of the SR method does
not guarantee that such a separation energy is itself a gmaxdmation of the experimental observable
and even that it can be straightforwardly related to it.ti-tfee inclusion of pairing correlations will modify
such a separation energy in singly- or doubly-open shellemticat are statically paired. Second, the loss
of good angular momentum associated with the breaking atiostal invariance makes the connection to
experimental states indirect in doubly-open shell nudlkird, and most importantly, the effect of collective
fluctuations that significantly renormalize the positiontleé quasi-particle peak and the spreading of the
single-particle strength that is not pronounced enoughdagh not zero as is often believed) at the SR level.

Finally, and although such a quantity is even more likely ¢orénormalized by collective fluctuations,
energy differences, — &, involving an occupiedr) and an emptyp) single-particle state close to the Fermi
energy provides a first approximation of low-lying indivadexcitations of thé\-body system.

4. Pairing field

As explained above, static pairing correlations are grasgi¢hin the SR-EDF through the breaking of
particle number, i.e. through the use of an auxiliary stdtthe Bogoliubov form (Eq. 2) that is a linear
superposition of Slater determinants with various numbgparticles. As is schematically shown in Fig. 11,
the effective vertex/PP (Eq. 6) drives the scattering of nucleonic pairs on top of simgjle-particle shell
structure provided by. Such a process correlates nucleons in time-reversed statkeventually results in
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a non-zero pairing field whenever the pairing energy gained in this way overcomesdbBeof scattering
pairs to higher-energy states.

€

iz

[ [ U

FiG. 11: (Color online) Schematic representation of the paittecing mechanism driving by the effective
vertexvPP (Eg. 6) and of its resulting impact on the average occupati@anonical single-particle states

(Eq. 8).

For all but magic numbersH1 particle), i.e. systemsH1 particle) with a large gap at the Fermi energy in
the{g} spectrum, the minimization of the energy does usually leadgolution with a non-zero pairing field
A. At convergence, this yields smoothed-out single-particicupations as schematically shown in Fig. 11.
This can be best seen in the so-calbagionicalsingle-particle basi§a, } that provides the one-body density
matrix and the pairing tensor under the particular form

By — A

1
Puv = Vfl5uv = 2 1- > 5uv , (8)
\/(huu —A)P+00
Aup
as well as the auxiliary state under a BCS-like form
) =] (Uu +Vy aﬁaﬁ) 0) , (10)

u>0

in which single-particle statgg, 4) are two-by-two conjugated.

5. Eigen spectrum

The HFB eigen-spectrum of Eq. 5 is separated into two grouthsopposite eigenvaludE; : (U,V);} and
{=E: (V*,U*);}. If the chemical potential is positive, the quasi-particle spectrum is entirely comdius.
If A <0, the system is bound [166] such that the quasi-particletsa is partly continuougl;| > —A) and
partly discrete |Ej| < —A). Such a property is illustrated in Fig. 13. One observesartiqular that quasi-
particles associated with deep single-particle statepleaww the continuum through the residual pairing
interaction and acquire a width, i.e. they describe unetatdmentary excitations of the systems. When the
Fermi level tends to zero, the quasi-particle spectrum tmesomore and more continuous as a result of the
increased coupling induced by pair scattering between dauna unbound single-particle states. To build
the auxiliary product statgp) and the density matrices associated to it, one must selégthaif of the
solutions such that only one of the conjugated solutioesKj.and —E;) is picked. The lowest energy state
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FIG. 12: (Color online) Schematic representation of the irtgrpetween the single-particle fietdand the
pairing fieldA in the HFB matrix (see text).

is obtained from selecting all quasi-particle with pogtenergies. Doing so, localized one-body and pairing
densities are obtained as long/s: 0, in spite of the fact that most of selected quasi-partiotdeng to the
continuum [166].

Within the HFB self-consistent scheme, modified singleiplgroccupations associated with the non-zero
field A feedback onto the single-particle fidgidhrough its dependence gn which then feedbacks onto the
pair scattering, etc, as is schematically depicted in RigSlich a feature modifies the structure of the ground
state and the nature of elementary excitations. Given tiea¢igen-spectrum approximately reads

B~ /(8- A)2+ 02 (1)

elementary excitations described by auxiliary states @fthm |®;;) = BiT BJ-T |®) are such that

N N
sV - &N ~E+Ej > 28, (12)
whereAr denotes the matrix element of the pairing field associatet thie canonical paifur, i) the
closest to the Fermi level. Consequently, a gap opens ugeiaxbitation spectrum of open-shell nuclei that
would be absent in the limit of zero pairing as

A=0
GV = Y 22 Jep— AL+ len—A| = g —n (13)
and given that the spacing at the Fermi between singleepmsiates is essentially zero in open-shell nuclei.
Such features can also be read off Fig. 13 that displays thdificetion of the quasi-particle excitation
spectrum brought about by the inclusion of pairing coriete.

C. Empirical energy functionals

The SR-EDF method outlined above can be applied as soon ammetsization of the nuclear EDF is
available. As of today, existing parameterizations haentmiilt empirically through trial and error, i.e. using
symmetry requirements to constraint the functional formh fiiting to data to fix the free coupling constants.
In the following, we briefly review how the formal building ¢fie Skyrme-type local parametrization is
achieved in the limit where time-reversal symmetry is ecéol:

8 Such an expression is strictly valid in the canonical basig but, except for low-lying = 0 quasi-particle states in drip-line nuclei,
the actual HFB spectrum is close to the canonical one.
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FiG. 13: (Color online) Excitation spectrum built from the aigspectrum oh. a) Single-particle spectrum
& : discrete bound states in black and continuum in red. Sipghticle resonances are represented with their
width on top of the continuum background. b) Associated gpagticle energy spectrum, i.E = |§ — A|.
¢) Quasi-particle spectrum after switching on pairing correlations. Resonances cgrfriom
deeply-bound single-particle states acquire a finite wédtl result of their coupling to the single-particle
continuum through pair scattering. In b) and c), only thetp@spart{E; } of the quasi-particle spectrum is
shown, i.e. the mirror negative partftE;} is omitted for simplicity.
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FiG. 14: Schematic representation of the single-referencéemmgntation of the nuclear EDF method
(embedded in the more general multi-reference implemientafThe various ingredients of the method, e.g.
the auxiliary stategb) from which the density matrices are computed, the impogafispontaneous
symmetry breaking and the associated loss of selectios,rasawell as the type of correlations that are
accounted for, are indicated. Observable that are reaotedcribed at the SR level are also listed.
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1. Density matrices and local densities

Starting from the density matrices expressed in[the |o) ® |g) single-particle basis
Prograig = (DI F'TDCFON|P)  ©  Keagrog = (®|c(F'a’a)c(foq)|P) (14)

one first extracts all time-even local densities that canuik tp to second order in derivativés

Pq(T) = Y Progroq » (15)
g
TQ(r) = z D'Dlpf’aq?'aq‘?:r/ s (16)
g
i /
Jauv(F) = 5 OZUI (0" =), Progrorg 0V °|_, 17
z
Jok (1) = Z Ecpv Jguv(T) (18)
U, V=X
pq(1) = ZK?oq?Eq a7, (19)
g

Whereo‘?/" andeg,y denote the matrix element of the two-by-two cartesian Faalrix 4 = X,y,z and the
Levi-Civita symbol, respectively. In Egs. 15-19, the sdlezhmatter, kinetic, spin-current tensor, spin-orbit
and pairing densities have been defined, respectively.tiddi local densities must be considered, i.e. are
different from zero, when an auxiliary state breaking tireeersal symmetry is in use [168]. For a general
discussion on the properties of non-local and local desssitnder various set of self-consistent symmetries,
we refer the reader to Ref. [169]. Local densities as definé&djs. 15-19 are the physical degrees of freedom
at play in the SR-EDF method. While their quantal nature msstheir sensitivity to nucleonic degrees of
freedom, the use of densities and currents as basic vagjadienbined with the spontaneous breaking of
symmetries, provides a natural description of collectigbdyiors in heavy nuclei.

2. Energy

The procedure consists of building the many-body energylasa functional of the above set of local
densities, i.e. as one triple integral of a local energysitgnvhose various terms may contain up to two Pauli
matriceso, and spatial derivativelS throughpy, Tq, Jguv @andpq. In doing so, specific constraints must be
enforced for the resulting functional to be a scalar underahsformations of the symmetry grogp; i.e.
under transforming®) and the densitiep, k, k* constructed from it. For a local functional of the Skyrme
type, we refer the reader to Refs. [167, 170] for the formaiedf such constraints.

Focusing on a system that preserves time-reversal symreagryhe ground-state of an even-even nucleus,

9 For the anomalous part, we restrict the discussion to terithsne derivative. In addition, no isospin mixing is predgmonsidered.
See Ref. [167] for a more general and detailed presentation.
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one finally obtains the functional form, hereafter refeteds the Skyrme functional

Elp, K, K" /d?z o
+Z / df’[ (7) Pg (1) +CEa? pg(T) Bpg (F) + Chy pa(F) 7 (7)

z
CpDJPq( )t q/(?)—i—Cééc Z I, v (1) Iy v (1)

V=X

Cé(th z [‘]CI-,HH (?) ‘]q',vv (T’) + ‘]CI-,HV (T’) ‘]q',vu (T’)} ‘|

V=X

+3 JarciR B (20)

where all couplingﬁég may further depend or e.g. through a dependencemytr). The first line of Eq. 20
denotes the uncorrelated kinetic energy. Given such aifimadtform, the set of free parameters entering the
couplings are typically fitted, depending on the protocatudice, to infinite nuclear matter properties (e.qg.,
saturation point, compressibility, effective massespangtry energy) and a selection of finite-nuclei data
(e.g., masses, charge radii, spin-orbit splittings) [AL,128, 171]. Unfortunately, and as will be elaborated
on below, although such a functional form can be applied lt¢fal> 16) nuclei, there does not exist as of
today a parametrization that satisfactorily describesaiand observable in a universal manner. We refer the
reader to Ref. [168] for examples of modern parameterinatio

3. Single-particle field

Starting from the Skyrme functional given in Eq. 20, the ngarticle fieldh defined through Eq. 6 reads

W = [dr ol O (7). (21)
where
hg(F) = —0-Bq(F)0+Uq(F) - |§ Wix [Wo.uv (F) O + O Wa v (7)] 0 - (22)
The local multiplicative potentials appearing in Eq. 22 deéined as

5 56 ¢
Soar) - =m0 Ve D=5 0w

such that their expression can be obtained from Eq. 20 bypeifig a functional derivative. The potential
Bq(T) provides a position-dependent effective mass whéigas (') denotes the spin-orbit potential.

Ug(F) = (23)

4. Pairing field

Similarly to what was done fdn9, the pairing fieldA9 obtained from Eq. 20 reads

o) = [ar[of(ra)84(r) 9] Q) — ¢](ra) 8q(F) 97 (Fa))] (24)
where
Ng(F) = —Uq(P)ioy . (25)
The local multiplicative potential appearing in Eq. 25 idided as
Uqg(r) = od : (26)

305 (T)
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such that its expression can be obtained from Eq. 20 by peifigra functional derivative. The use of a
local pairing EDF leads to an ultraviolet divergence thadssto be regularized [166, 172, 173] or renorma-
lized [174-178]. We choose not to elaborate on this poirg her

D. Pseudo potential and effectiveinteraction

Historically, the Skyrme EDF (Eqg. 20) has been introducethasxpectation value, in the auxiliary state
|®), of an effective density-dependent Skyrme "interactioofhplemented by a density-dependent delta
"interaction" (DDDI) to generate the pairing part8fp, K, k*]. Such effective vertices should not be seen as
genuine in-medium effective interactions but rather assenient auxiliary operators, @seudo potentials
from which a local functional can be derived. Indeed, anyisga in-medium effective interaction would
necessarily be both finite-range and non-local, if not epelgpendent (see Eq. 64 in Sec. IVD2). The
schematic (i.e. quasi zero-range) form of the auxiliartiges, together with the mixed account they provide
of both in-medium correlations and the effect of many-feraeake their connection to actual NN and 3N
interactions extremely indirect at best.

The Skyrme pseudo-potential providing the part of the EDdt tlepends solely on the normal density
matrix takes the typical form

—

Veent = to(l—i—xoPg)é(?)—i—%tl(l—i—leg) [5(7) , K2+ k28(7)] +t2(1+xPs) k- 81K (27)

Voot = St (14 X6P0) p5(1) (1) (28)
Vis = Wo(d1+02) kK ASF) K , (29)

Vers = 2 {[3(61- 1) (@ K) — (31-2) k2] 8() + 8(1) [3(31- K) (0 K) — (31 &) K7 }
+ to{s(*l-?)a(?)(*z?)—(51-52)? 5(?)?} , (30)

where the various terms denote central, spin-orbit andteswmponents, respectively. In the above expres-

sion,? = —i(0; — 0)/2 defines the relative momentum operator of the incomingemmit pair andk its
complex conjugate associated with the outgoing nucleoaicgzcting on the wave-functions located to its
left. The operatoP, = (1+ 61 - d2)/2 is the spin-exchange operator that controls the relatreagth of the
S= 0 andS= 1 two-body spin channels for a given term in the two-bodyaiée vertex.

Computing the expectation value of the Skyrme "interactiarthe state|®), a functional of the same
form as the one given in the first three lines of Eq. 20 is ole@itsuch an apparent similarity between the
EDF approach introduced in the previous section and thergal Skyrme "interaction" approach hides two
important differences. In the latter case, and although itat an intrinsic limitation of the "interaction”
approach as it can be made more general than in Egs. 27-30C§§1Id0 further depend opq(F). Such
a restricted dependence of the couplings on the mattertgemas considered at the time as the minimal
extension beyond a strictly densitydependenSkyrme vertex that could reasonably account for nuclear
saturation and single-particle properties at the same fifost importantly, the couplings of terms depending
on time-odd densities (not shown in Eq. 20) are entirely fikRgdhose associated with terms depending
on time-even densities (shown in Eq. 20) when the EDF is ddrfvom the Skyrme "interaction”. In the
more general EDF approach, about half of such relationgtapsbe relaxed while the other half remains
as the result of symmetry constraints. Historically, thegity-dependent term (Eq. 28) was introduced with
o =1 such that it was equivalent, in time-reversal invariastesms, to a three-body contact pseudo-potential.
Eventually,a was taken smaller than one to account for a realistic incesgibility of symmetric nuclear
matterK. and to provide reasonably good single-particle energgsat the same time.

As for theT = 1 pairing part of the EDF, it is traditionally derived as thegge value of a DDDI made
of the following two terms

Veent = T0(1—Py)0(F) , (31)
Bent = B3(1—Po)pd (1) 3(7) , (32)

that are purely central and of S-wave character. Doing suigkes a functional form similar to the last line
of Eq. 20. Foifz = 0, one refers to &olumetype pairing given tha@@é’ is independent of the density. For
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fgf —to/psas Wherepsat is the saturation density of nuclear matter, one refersgortacetype pairing as

C@é’ is larger at the surface of the nucleus than in its volumeelwben, one refers toraixedtype pairing.

As will be discussed in Sec. IV, the connection between d IBD& of the Skyrme type and underlying NN
and 3N interactions can be performed at the level of the E&dffjinot at the level of the Skyrme "interaction"
that has in fact no physical meaning whatsoever. At the mfickealing with a very non-local energy functio-
nal, it becomes possible to consider an intermediate fraitgle, non-local, energy- and density-dependent
effective vertex that possesses the physical meaning of-aredium interaction [179].

E. Multi-reference extension

An exhaustive discussion as to why and how the SR-EDF methedtended to a multi-reference for-
malism (see Fig. 15) is beyond the scope of the present &tttistorically, the MR-EDF implementation
has been adapted from the projected Hartree-Fock-Bognliabd generator coordinate methods. In generic
terms, the aim is to allow for (collective) fluctuations oétphase and magnitude of the order parameters
associated with the symmetries broken at the SR level. Dsimgcorrelations associated with large am-
plitude collective motions complement static correlasiancorporated at the SR level. Beyond including
further ground-state correlations, excitations of theesyscorresponding to treated fluctuations are accessed
and selection rules are recovered, which allows the cortipataf transition probabilities on a safe ground.
Consequently, the MR extension is not only meant to refineléseription of observable reasonably accoun-
ted for by SR calculations but also to extend the reach of ththad as to which observable and nucleus
can be safely compared to experiment (see Fig. 15). Mangmarior approximations of it are also being
implemented and extensively used, e.g. the quasi-partioigom phase approximation or the Bohr Hamilto-
nian method [68]. The energy functional at play in full MR-EBalculations depends on so-calteghsition
density matrices constructed from all possible pairs ofleuy product-states entering the MR set. For each
such pair, the SR (diagonal) energy functional kernel mesbtiended to a non-diagonal energy kernel. This
leads in general to non-trivial difficulties and to the nesitysto use functionals containing integer powers of
the density matrices only [120, 121, 156-159].

F. Correlations

Given that the nuclear EDF method is empirical, the mostd#di point consists of assessing with a certain
rigor what correlations are actually accounted for, esglyagiven that the method comes into two consecu-
tive steps that must be implemented consistently. Firstggsential to understand that the SR-EDF approach
doesnotreduce to a Hartree-Fock (HF) approximation when formatathe many-body problem in terms
of vacuum NN plus 3N interactions. Otherwise, SR-EDF calttahs could not even qualitatively, if not
guantitatively, account for the equation of state of inémiuclear matter [87, 88] or for doubly-magic nu-
clei[137, 138], as they do by construction. From the outsatielations beyond HF are effectively built into
&[p,k,K*] thanks to its flexible functional form and the fitting of itsrpmeters to data. Such a fact makes
improper to refer to SR-EDF calculations as representingdimfield” or "Hartree-Fock" calculations as is
often done.

Second, it is first essential to realize that the appropfata of the functional must be discussed within
the frame of spontaneous broken symmetries. The latteigeahe most efficient way of grasping static col-
lective correlations. Figure 16 displays the correlatinargy incorporated id*®Pu and'?°Sn ground-states
energy through the spontaneous breaking of rotational anticfe-number symmetries, respectively. Such
symmetry breakings may account for up to 20 MeV correlatioergy out of about 2 GeV binding energy,
i.e. for about 2%, which is much larger than the targeted @aguon nuclear masses. Such correlations could
hardly be re-summed into a symmetry-conserving energyekere. there would be little chance to des-
cribe at the same time doubly-magic, singly-magic and dpapkn-shell nuclei using an energy functional
that enforces particle-number and rotational symmethneleed, static pairing and quadrupolar correlations
increase and decrease significantly across a major shathwhakes difficult to mock them up through
(conventional) functional terms that do not break symrestri

Third, and as already mentioned, it is mandatory to treafltietuations of the order parameter of the
broken symmetries when describing a finite quantum systesnsh®dwn in Fig. 16, doing so for angular
momentum and particle number adds a few MeV binding to themgestate energy of heavy nuclei. This
is significant in view of the few hundreds keV targeted accym@n nuclear masses and tend to improve on
wrong patterns that exist at the SR-EDF level [180]. As dised in Sec. Il E, the incorporation of such
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FiG. 15: (Color online) Schematic representation of the nmaiterence implementation of the nuclear EDF
method (encompassing the more limited single-referenpéeimentation). The various ingredients of the
method, e.g. the set of auxiliary stag®,)} from which the transition density matrices are computed,
treated collective fluctuations, the restoration of symiastand the associated recovering of selection rules,
as well as the type of correlations that are accounted feiipalicated. Observable that are accessible at the
MR level are also listed.

correlations within the MR-EDF implementation is charaizied by the extension of the diagonal energy
kernel&’[p, k,k*] into a more general non-diagonal energy kernel that depamtiansition density matrices.
Still, one may ask whether or not such correlations that garigkly with the filling of nuclear shells may
be re-summed directly into the diagonal (symmetry-bregkenergy kernef[p, k, k*] by simply using a
more elaborated functional form. As a matter of fact, methagproximating correlations from symmetry
restorations in this way, e.g. Lipkin [181, 182] or Kamlal83l 184] methods, do exist. While it is likely
that the strongly broken translational symmetry can belp#feated through such approximate projection
method$®, whether the same is true for weakly broken symmetries paugicle number symmetry in all but
doubly-magic nuclei or rotational symmetry in transitibnaclei, is still unclear as of today.

In summary, the empirical EDF method relies on a qualitadigeoupling of different categories of corre-
lations at play, i.e. on the different scales that charasdhem (see Tab. Il), and on the fact that correlations
that vary quickly with the filling of nuclear shells are exqilly accounted for through the breaking of sym-
metries and the quantum collective fluctuations of theioeisdéed order parameters. Until a completely non-
empirical design of the SR and MR EDF implementation ex&ish a decoupling can only be approximate
and the separated account of various categories of caomdatubject to trial and error. In that respect, it is
worth noting that until very recently [130] no parametrieatof the basic energy kernél[p, k, k*] had been
fitted on the basis of MR calculations, i.e. including caatielns associated with quantum collective fluctua-
tions. Such a procedure is to be systematized in the futotegmly to avoid the obvious double counting of
correlations that exist when employing in MR calculation®aergy functional fitted on data at the SR level,

10 sych a statement is to be taken with a grain of salt for ratget huclei [185].
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FiG. 16: (Color online) Energy gain from (i) spontaneous synmgniteaking and (i) symmetry restoration
as a function of the magnitude of the order paramgtésllowed by (iii) the mixing along that collective

coordinate. Left : breaking and restoration of rotatioyahmetry in the ground state t%Pu as a function

of the axial quadrupole moment of the single-nucleon dgmistribution, followed by the mixing along the
latter collective coordinate (adapted from Ref. [186]gIRi: breaking and restoration of neutron-number
symmetry in the ground state &1°Sn as a function of the norm of the anomalous pair densityviad by

the mixing along the latter collective coordinate. The tigértical axis indicate the absolute binding energy.

Adapted from Ref. [187].

but also to take into account the impact of such correlatiomthe fitted parameters.

TAB. Il: Schematic classification of correlation energies &y thaturally appear in nuclear EDF methods.
The quantityAya denotes the number of valence nucleons wBilgyg characterizes the degeneracy of the
valence major shell.

Correlations Treatment Scale Vary with
Bulk Summed into EDF kernel |~ 8A MeV |A

Static collective Non-zero order parameter S 25 MeV | Aya), Ggeg
Dynamical collectiveFluctuations ofj <5MeV  |Aval; Gdeg

G. Performancesand limitations

It is an essential and constant effort made by practitioteegauge performances and limitations of exis-
ting parameterizations of the nuclear EDF kernel, at ba#t8R and MR levels. Unfortunately, providing an
exhaustive and quantitative account of such an analysas kssfyond the scope of the present lectures. Conse-
qguently, we limit ourselves to a schematic and qualitatigewssion based on a few observable computed at
the SR level.

Roughly speaking, modern parameterizations of existing&[[@.g. Skyrme or Gogny, provide a fair des-
cription of bulk properties (ground-state mass, chargeisatideformation”, various separation energies, etc),
as well as of certain spectroscopic properties, of knowten{t68]. Figure 17 displays nuclear ground-state
binding energies and charge radii along three differentbfses chains. Experimental data are compared to
results of SR-EDF calculations restricted to sphericalsgtny and obtained using SkP [166] and SLy4 [71]
parameterizations of the Skyrme EDF, complemented withx@datype pairing. The results for Sn and Pb
isotopes provide an idea of the quality of the agreement#rabe obtained with data. As a matter of fact, the
best root-mean-square deviation relative to 2149 measnasdes is (i) about 1.5 MeV at the SR level [188]
and (ii) about 800 keV at the MR level [130]. Figure 17 alsorapéfies the importance of static quadrupole
correlations that are essential to obtain a fair descripbiodoubly-open-shell nuclei. Indeed, the restriction

of the calculation to spherical symmetry does not lead tostiree qualitative and quantitative agreement
with data for doubly-open-shell Dy nuclei than for semi-ricagn and Pb isotopes. Given the scale used for
masses in Fig. 17, it is worth noting that such a differensiy significant. When allowing for it, rotational
symmetry breaks in the SR calculation of Dy isotopes, whighds the agreement with data on the same
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gualitative level as the one seen for Sn and Pb isotopes irnLFFigncluding quadrupole fluctuations further
improve the agreement with data [180].
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FIG. 17: (Color online) SR-EDF calculations of Sn, Dy and Pbadgit chains in spherical symmetry using
SkP [166] and SLy4 [71] parameterizations of the Skyrme EBfRglemented with a mixed-type pairing.
Left : absolute binding energies. Right : Charge radii. Tekem Ref. [189].

Besides the satisfactory phenomenology provided for knouatei, existing parameterizations of the EDF
lack predictive power away from available data and a truetspscopic quality. This is first exemplify in
Fig. 18 where predictions for binding energies, neutromipgigaps and two-neutron separation energies of
tin isotopes are shown for various combinations of Skyrme@BDI functionals, knowing that the latter is
adjusted consistently with the former to reproduce theimgigap (center plot) if2°Sn. While the results
are consistent with each other and with existing data, ptietis obtained with various parameterizations of
(nearly) the same functional form display a typical "asyatigtfreedom" away from known data, in particular
as one crossdd = 82, i.e. as one jumps into the next major shell where the petenmations have not been
constrained. Such a behavior is seen for most observablewarteiar isotopic/isotonic chains and can thus be
considered as archetypal of the situation presently erteceshwith nuclear EDF methods.

Sn
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Vol. pairing
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FiG. 18: (Color online) SR-EDF calculations of Sn isotopes ihesjcal symmetry using various
combinations of SLy4 [71], mstarl [72], rho160 [72], T6 [7SKa [74], T26 [75], SKP [166] Skyrme
parameterizations and volume-, mixed- and surface-typ@pal eft : absolute binding energies. Middle :
neutron theoretical pairing gap. Right : Two-neutron sapian energies. Taken from Ref. [189].

In fact, the most stringent test regarding the quality osgng EDFs relates to spectroscopic features.
Although single-particle energi€g; } extracted from Eg. 7 do not provide the most advanced esimiat
one-nucleon separation energies through EDF methods éaseI8B 3 and 11 B 4), any spectroscopic data is
strongly influenced by such an underlying single-partitlelisstructure. Figure 19 provides the distribution
of Ag = & — &7 for three different (refitted) Skyrme parameterizationseves™® denotes 58 separation
energies of good single-particle character around doatdgic nuclei [125]. The results demonstrate that
current Skyrme functionals poorly predict the location obwn spherical shells such that existing functional
forms do not allow the lowering of the root-mean-squareatiwi below about 1 Me¥t. Given the numerous

11 such a systematic error is larger than the uncertaintyeeblat associating; from the SR-EDF calculation to separation energies.
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FiIG. 19: (Color online) Histograms of residudls; = & — sieXp for standard (upper panels) and refitted
(lower panels) Skyrme parameterizations SK5], SkP [166], and SLy5 [71]. Taken from Ref. [125].
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FIG. 20: Diagrams representing an amplitude between an if@rgkring three lines) and a final (leaving
three lines) three-body state. Time flows from bottom to tagit : diagrams are reducible to successive
two-body interactions. Right : diagrams contain an intéoadnvolving the three nucleons at the same time.
Going from the left panel to the right panel illustrates hdimaating degrees of freedom leads naturally to
the existence of many-body forces; e.g. three-body forcésd present case. Taken from Ref. [90].

on-going investigations of the evolution of nuclear shdlsards neutron-rich or superheavy nuclei, such a
limitation is critical. Providing results of spectroscopjuality constitutes the most immediate challenge for
theorists designing parameterizations of the nuclear BBR matter of fact, several groups currently work
on empirically improving the analytical form and the fittio§energy functionals, e.g. see Refs. [127, 190]
for recent attempts to pin down the isovector content ofllpading functionals, Refs. [75, 126, 191-194]
for investigations on the role of tensors terms in the SkyED& and Ref. [129] for the recent derivation of
the local Skyrme-type EDF to sixth-order in derivatives.

Given that available experimental data do not constraimioguously all non-trivial characteristics of
the nuclear EDF, it is interesting to complement the phenmmiogy at play with an approach that relies
less on trial-and-error and fitting to data. Our ultimatesghiye is thus to conneét[p, k*, k], as well as the
effective vertices/®" andvPP, in a consistent and explicit fashion to vacuum NN and 3Nradons. It is
the objective of Sec. IV to discuss the path towards non-soghiEDF parameterizations explicitly linked
to such vacuum interactions. So-calledv-momentunvacuum interactions are instrumental in that respect
as will be made clear in Sec. IV B. Consequently, we first dediSec. Il to introducing low-momentum
interactions generated from renormalization group temphes.

1. LOW-MOMENTUM INTERACTIONS FROM RENORMALIZATION GROUP METHODS

The present section briefly outlines the ideas that foundrtmmentum interactions generated from renor-
malization group methods. For a thorough review of the sipyee refer the interested reader to Ref. [90].



28

100 0
50 -10
=) 0 -20
(] "
= ) 501 3 30
E i 1 1 1 1 l 1 1‘ ‘1 1 ] 1 1 1 1 l 1 1 1 1 1 1 1 1 l 1 1 T T =
S 0 500 1000 O 500 1000 0 500 1000
8‘; 5 T T T T [ T T T T
© L, | — AV18
%_ --- CD-Bonn
e N3LO

Lo v by ™ I A

0 500 1000 O 500 1000
E,, [MeV]

FiG. 21: (Color online) Phase shifts for the Argonne V18 [1], 8Dan [78] and Chiral RLO [196]
potentials in selected channels. The phase shifts afté&R@evolution from each initial potential agree for
all values of the SRG scale to within the widths of the linealb¢nergies. Taken from Ref. [197].

A. Generalities

The first essential observation relates to the fact that amjear structure® HamiltonianH is a low-
energy effective theory of QCD. It is unavoidable in such ategt that certain underlying, i.e. high-energy,
degrees of freedom are omitted when designing the HamdtorBuch an omission translates into the fact
thatH is characterized, even though it is often implicit, by iatrinsic resolution scale\ that separates
momenta/energies/degrees-of-freedom whose dynamresigt explicitly from those that are included only
implicitly, i.e. which arerenormalizedbr integrated outn the modeling oH (A).

The second important observation relates to the fact thegiating out degrees of freedom necessarily
translates into the presence of multi-body forceBl{@\). This is exemplified in Fig. 20 that illustrates how
the elimination of nucleonic excitations or anti-nucleamponents, as well as mesons whose masses are
larger than the cut-off scal®, transforms diagrams involving repeated two-body intioas into a set of
irreducible three-nucleon vertices. As a matter of faarehshould/could exist up to A-body forces when
applyingH (A\) to a A-body system. Of course, the relative importance ofvéiréous components dfl (A)
remains to be qualified at each givén Eventually, any given model of the Hamiltonian governihg t
dynamics of point-like nucleons can be written under thesgierform

HA) =T +VINA) VN + . (33)

where/\ characterizes the high-momentum/short-distance phydicse details are not modeled explicitly
and the fact that each individual componenttifA) depends on it. In a sense, there is no such thingeas
nuclear Hamiltonian. As will become clear below, the faeittimteraction vertices or the Hamiltonian itself
depend on the resolution scale simply says that such gigsrdite intrinsicallynon-observable

The third key observation relates to the fact that existiragels ofH(A), i.e. so-called high-precision
conventional potentials (e.g. AV18 [1], CD-Bonn [78]...1) chiral potentials [92, 94, 199, 200], are cha-
racterized by a rather high intrinsic resolution scale i@ $ense thaf >> Agata WhereAgaa~ 2.1 fm=1
typically corresponds to the enerBy, ~ 350 MeV up to which unambiguous scattering data are avaitabl
adjustVNN(A). Consequently, existing NN interaction models reprodwedtsring phase-shifts in a similar
way up toAgata but diverge significantly from each other above that valiseexemplified in Fig. 21. The

12 \We qualify in this way any Hamiltonian governing the dynasnig point-like nucleons, i.e. whose interaction verticesespond to
scattering amplitudes between incoming and outgoing padestates.
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FIG. 22: (Color online) Momentum-space matrix elementy§¥ for various potentials in th&S and3S;
channels. Taken from Ref. [198].

lack of constrained beyori,, ~ 350 MeV translates into potentials displaying differentigtrange/high-
momentum physics as demonstrated in Fig. 22. Essentiadl\shiort-range modeling of conventional nuclear
interactions is uncontrolled and arbitrary. Such a freedoay lead in some cases to impractical features,
e.g. requiring that the potential is local necessitatesmgtrepulsive core, which in turn implicitly relates to
choosing a (very) larga = Anign.

One may be puzzled by the essentially arbitrary modelingpefshort-range/high-momentum part of the
Hamiltonian. As a matter of fact, it fits with effective fieldegory considerations telling us that, whenever
interested in low-energy observable below a certain sEagsics the detailed modeling of high-energy virtual
processes characterizedhoy- ApnysicsiS irrelevant and cannot influence the result. This can inldaaised (i)
to choose a practically advantageous resolution scale ti&tingH (A) and (i) to select the simplest model
accounting for the integrated out short-distance/highmmiatum physics. This is schematically illustrated in
Fig. 23. Such ideas precisely underly potential models dasex-EFT that select pions and nucleons as
dynamical degrees of freedom beldwy ~ 500 MeV < m, and model the excluded physics through contact
and derivative-contact terms with scale-dependent cogpbnstants [92, 94, 199, 200]. Diagrams in the
Lagrangian are organized in powers@fAy. At a given order this includes contributions from one- or
multi-pion exchanges and contact interactions whose aoggphre fit to low-energy data for eadlh. There
are natural sizes to many-body forces that are made mairifdst EFT power counting and which explain
the phenomenological hierarchy between two-, three-A-body forces. We refer to E. Epelbaum’s lectures
for details ony-EFT and chiral potentials [80].

As just discussed, details of the high-energy physics tratedevantto the computation of low-energy
observable can be captured by scale-dependent couplistprig in the low-energy Hamiltonian [201]. Ho-
wever, this does not necessarily mean that high- and lowggmhysics are automatically decoupledd(h).
One may further use the freedom offered in the modeling ofrtbkevanthigh-energy physics to investigate
the possibility to produce such a decoupling in view of gatirgsoftHamiltonians. Renormalization-group
transformations provide an efficient tool éwolvenuclear Hamiltonians such that they eventually display a
decoupling between high- and low-energy modes. As a rukenthst be implemented in such a way that the
long-range physics encoded in the initial Hamiltonian i$ aistorted, e.g. in such a way thatexchanges
from x-EFT are left untouched.

In the nuclear context, two different types of RG transfatiores have been used to evolve interaction
potentials [90], i.e. (i) th&,wk approach that corresponds tman-unitarytransformation oH (A) and (ii)
the similarity renormalization group (SRG) method thatresponds to anitary transformation oH (A).

We briefly discuss th¥qk approach to evolvéNN and only display results obtained from the SRG method.
Although we do sketch a few details about the SRG method wisensking the additional evolution GfN,
we refer the interested reader to Ref. [90] for a thorougbudision about this particular method.
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FiG. 23: (Color online) Natural separation of scales in hadpmtioscopy. From the point of view of
low-energy nuclear physics, such a separation of scalds keche definition of a low-energy sector of
interest that is rather well separated from the high-ensegyor whose details are irrelevant.
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FIG. 24: (Color online) Diagrammatic representation of theutagzed Lipmann-Schwinger equation
(Eq. 34) from which the scattering T-matrix is obtained.

B. Low-momentum interactionsin the NN sector

Inside a nucleus, typical nucleonic momenta@re kg ~ m; ~ 1.3 fm~1. Imposing a sharp cutofk on
explicitly included relative momenta is the most direct wayimit the resolution encoded MNN. In order
to incorporate the relevant details from excluded high-rantam modes, the latter must be integrated out
rather than simply truncated. The idea of W&,k approach is to run down the resolution scaléo about
Adata~ 2.1 fm~1 in order to decouple unconstrained higimodes built in an input HamiltoniaH (MAnigh)
from low-momentum ones. Integrating out the physics assediwith momentum modds> A translates
into doing so for the short-distance physics corresponttimg< h/A. Such a modification of the resolution
scale is a relatively small (but significant) evolution fdriral potentials and a large one for phenomenolo-
gical potentials. In doing so, the truncation error, e.gduhon thex-EFT power counting, of the original
Hamiltonian is maintained. However, and as will be seen io. 8D, the RG transformation necessarily
generates multi-body forces, everHfAnigh) were to contair\/NN(/\high) only (which is not the case).

Within the Vioyk approach the RG evolution proceeds by demanding that tHedhahell) T matrix
computed from/NN(/\high) through the Lipmann-Schwinger equation (see Fig. 24)

2 N\ V‘]ST(k k”'/\)T‘]ST(k” k"E'/\)
TSTKGEA) = VKA + 5 2 [P SR D Eeent (3
L ( ) ﬁz LL ( ) T Jo E_ﬁZk//Z/m ( )
is unchanged in each partial wave/ass lowered fork, k' <A, i.e.
IST(L 1/ R2 L2 /o
dTe™ (KKSRTK/MA) g for kK < A (35)

dA

Such a condition provides the RG flow equation for the NN pidaé¥)ST(k,K'; A) which, for an uncoupled
partial-wave, reads as

EVLJLST(kla k;A) TIST(A k; R2AZ /2m; A)

d JST . _
m LL (k/akv/\)_ T 1—('(//\)2 5

(36)
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FIG. 25: (Color online) Momentum-space matrix element¥ 8% (A) in the'S, partial-wave computed
from the initial Argonne V18 [1] potential ak = 5.0 fm~* (left), 3.0 fm~* (middle) and 18 fm~ (right).

fork,k' < A and is to be solved with the initial condition th&tST(k, K'; Ainit) =V ST(k, K'; Anigh). Such a flow
does not correspond to a naive cut of the matrix elementsrabfoStill, it is a non-unitary transformation
over the two-body Hilbert space such that non-zero matexneints only persist fok, k' < A where the
physics is preserved.

Given that scattering phase-shifts are obtained (uncduygaeial-wave) from the "fully-on-shell" T-matrix

tand’ST(kA) = —kT2ST(k k;RZKk2/m;A) | (37)

it is clear that such phase shifts are left invariant by the #guation, just as the deuteron binding energy
Egeut- Note that keepingSfST(k; A) independent of\ necessarily implies that the interaction is not, i.e.
dVNN(k,K'; A)/dA # 0. It is not a problem given that, while the former quantitpisservable, the latter is
not.

Figure 25 exemplifies such a lowering of the resolution sfaile the'S, partial-wave of the NN interac-
tion, starting from the Argonne V18 potential as an initiahdition. In practice, the evolution is not done by
solving the differential equation 36 but rather by perfargha Lee-Suzuki transformation [202, 203]. Both
approaches are equivalent. It is clear from Fig. 25 YH#{(k',k; A) changes a4 is lowered. This is not at
all problematic given that, whilé&P(A)|H(A)|W(A)) is typically observable (A) and|W(A)) are not. The
two main modifications observed Ass decreased are that (i) strong off-diagonal matrix elémassociated
with the short-range repulsive core of the initial potelngige tamed down, i.e. low- and highmodes are
being decoupled and that (ii) the relevant features of thimimatrix elements beyond are renormalized
onto those located &t k' < A that become more attractive. Eventually, one evolves tdsvarso-calledoft
low-momenturNN interactionV,q k. Notice that such low-momentum interactions are sometimissa-
kenly said to be phenomenological interactions or regasdegh alternative to EFT interactions. Rather they
constitute an entire class of potentials associated withiial Hamiltonian.

Although the NN potential changes withh NN observable are invariant by construction. As discugsed
connection with Eq. 37 and as exemplifies by Fig. 26 in the oati®e CD Bonn potential [205], phase shifts
5€ST(k) belowA are preserved by the RG evolution in all partial waves. Cemgintarily, the energy of the
only bound two-nucleon state, i.e. the deuteron, remawvaiant as\ is lowered as illustrated in Tab. 11l

TaB. lll: Deuteron binding energy computed from AV18 and the dm@mentum interaction evolved from
it. Taken from Ref. [206].
VN Edeut.[MeV]

AVI8 22247
Viowk(2.1) —2.2247

An interesting question relates to the dependence of lomemium interactions on the initial condition
of the flowVNN(Ainit). As illustrated by Fig. 27 foPS; partial-wave Mok interactions generated from dif-
ferent potentiaIsVNN(Ahigh) are found to be quantitatively similar féx ~ 2.1 fm—1. One talks about the
universalityof Viowk in the sense that the resulting low-momentum charactesiatie largely independent on
the high-momentum details encoded in the initial potestiak. the model dependence of the latter has been
screened outSuch a collapse to universal low-momentum interactioradtigbuted to the long-range pion
physics common to all initial potentials and to their simitescription of low-energy NN observable up to
the resolution scale.
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FiG. 26: (Color online) S-wave (singlet and triplet with mixipgrameter) and P-wave phase shift¥gf«
for a cutoffA = 2.1 fm~1 compared to the input CD Bonn potential [78]. Results of thétirenergy phase
shift analysis (PWA93) of the Nijmegen group are also sha?@4]. Taken from Ref. [198].
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FIG. 27: (Color online) The collapse of the diagonal momentyraeg matrix elements &,k as the cutoff
is lowered toA = 2.1 fm~ in the 'S, partial wave. Taken from Ref. [206]

K ()

FiG. 28: (Color online) Momentum-space matrix element¥ 81 (A) in the'S, partial-wave obtained from
the SRG evolution of the initial RLO (500) Chiral potential [196] down t& = 10.0 fm~* (left), 3.0 fm~1
(middle) and 20 fm~1 (right). Taken from Ref. [207].
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FIG. 29: (Color online) Momentum-space matrix elements in*epartial-wave. Top : Argonne V18 [1]
potential. Bottom left : potential evolved from Argonne VitBough SRG down to the resolution scale of
2.0 fm~1. Bottom right : G-matrix computed from Argonne V18. The dtadive features of the G matrix do

not depend on the particular choice of starting energy athvhiis computed. Adapted from Ref. [90].

A similar universal behavior and decoupling is found for km-momentum part of interactions evolved
through theunitary SRG method rather than through the non-unitégyyx approach. The result of such a SRG
evolution is displayed in Fig. 28 for tH&, partial-wave of the initial RLO (500) Chiral potential [196]. The
low-momentum part of the resulting potential is essenti@lentical toViowk. The only difference with the
latter resides in the appearance of a diagonal band of narrzatrix elements at higk~ k' that is necessary
to maintain unitarity over the original two-body Hilbertae, e.g. to keep phase-shi&&T(k) unchanged
atall k. Most importantly, the decoupling of high- and Idamodes is also achieved with the SRG approach
as is clearly seen in Fig. 28.

To terminate the brief introduction of low-momentum inigtfans, let us mention that RG methods discus-
sed here to renormalize the short-range/high-momentursiphgrenotto be confused with the Brueckner
G-matrix approach [139, 208]. WhiM,k denotes a class @nergy-independent vacuunteractions, the
G-matrix corresponds to amnergy-dependent in-mediurartex. Most importantly, and as shown in Fig. 29,
while Viowk achieves a decoupling between high- and lomodes, the G-matrix does not as it still displays
large positive off-diagonal matrix elements that couplelsmodes. As a matter of fact, the G-matrix re-
mains "hard" enough that the many-body energy cannot benebgukin powers of it, i.e. one must rely on the
non-perturbative hole-line expansion [209-211].

C. Advantagesfor light-nuclei calculations

Given that observable IikéLJST(k) andEgeyt. remain invariant under the RG flow, one may wonder about
the utility of such a procedure. Beside providing a deepeleustanding of the (non-absolute) nature of the
nuclear Hamiltonian, RG methods exploit the scale deperwleinon-observable quantities, e.g. correlations
in the wave function, to provide technically simpler marydig calculations o$cale-independewnbservable.
This is achieved by working with a convenient/physicalbusd resolution scaldqy,. Although the intro-
duction of RG transformations may seem formal at first, tpeimer interest is actually of very practical
nature.

More specifically, the evolution of phenomenological orahEFT interactions to lower resolution and the
associated decoupling of high- and ldwnodes are beneficial as they weaken or largely eliminatecesur
of non-perturbative behavior coming from the strong sharnge central repulsion and the strong short-range
tensor force. Eventually, lower cutoffs require smallesdsin many-body calculations, leading to improved
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FiG. 31: (Color online) Ground-state energy of the triton asrecfion of hQ at four different values of the
SRG scale®, 3, 2, 1.5 fm1). The initial potential is the 500 MeV HLO NN-only potential from
Ref. [196]. The different lines correspond to results ai#diusing various (many-body) basis sizes, i.e.
from Nmax = 2 to Nmax = 12. The dotted lines show fully converged energies frompedelentNmyax = 48
calculations using a code from Ref. [213]. Taken from Ref4R

convergence for finite-nuclei investigations. Given that plane-wave basis is not the most convenient basis
to work with when computing finite-nuclei properties, Fi@ @emonstrates for two different partial-waves
that lowering the resolution scale from 5 to 2 ffndoes also eliminate the coupling between low-lying and
high-lying configurations of a harmonic oscillator basis.

The above statements are now exemplified through no-cotiensbeel calculations of the tritoAH. Fi-
gure 31 provides the convergence of the triton binding gneegnputed from a RLO chiral potential and
the SRG interaction evolved from it at variodiszalues. The binding energy is displayed as a function of the
harmonic oscillator parametBf for different (many-body) basis sizeNax). One sees that the calculation
is converged for a much smaller basis wheis decreased. Eventually, this leads to the promise of cdingu
heavier nuclei more easily. Looking closer at Fig. 31 thoumte notices that converged valueskaf, are
actually different in the various calculations. One may de@nwhether this contradicts the fact that physical
observable should be scale dependent? We address thigoqueshe following subsection.
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D. Low-momentum interactionsin the 3N sector

The key point is that an observable such (88 (A)[H(A)|WA(A)) of the A-body system is scale in-
dependent only if (i) many-body forcas™,..., VAN that are originally present or generated through the
RG evolution are kept in the A-body calculation and if (iietl-body problem is solved exactly. In other
words, any scale dependence of an observablegdg(§(A)|H (A)|W(A)) # 0, signals the omission of non-
negligible many-body forces and/or an incomplete manyylmadculation.

In the previous example, the convergence of the NSCM cdloul@an be considered as achieved such
that the origin of the scale dependencdgj; can be traced back to the omissionvdf¥ induced by the RG
evolution'3. Indeed, it is essential to understand that any RG transftiomnecessarily generates many-body
forces, even though one starts from a Hamiltortig\;t) that contains a NN interaction only. Such a fact
is well known from Lee-Suzuki effective-interaction thgdiWhenever the system of interest contains a finite
number of A bodies, up to A-body forces are picked out throtighevolution while higher-body forces
project out to zero.

The fact that a RG evolution induces many-body forces is raasily seen from the SRG method [215].
The SRG performs a pre-diagonalization of the Hamiltonraa thosen basis, i.e. the plane-wave basis, by
means of a series of infinitesimal unitary evolution$loparameterized by that takes the form of a double
commutator

PN & [rin] o]
0 [[Seey dlled. 5 cleled]
0 ...+ZCTC31():;((1:ycc+... , (38)

such that many-body forces are naturally induced from amiMiN interaction. One may wonder if the
generation of a whole series of many-body forces is problienas handling them is likely to make the
many-body problem untractable and requires to track thepticitky through the RG evolution. To answer
such a question, one must first remember that up to A-bodg$are a priori present H(Ajyit) anyway such
that one might as well develop the (S)RG machinery to maken thaft. Of course, one aims in practice at
dropping as many of such (induced) many-body forces aslgesse. keep only those that are not negligible
in the regime ofA\ values one is interested in. Eventually, the problem posedduced many-body forces
will be tractable as long as (i) they remain of "natural sjsef. they followy-EFT power counting built in the
initial Chiral Hamiltonian, such that only up to a-body fescwith a<A need to be kept and (ii) tracking the
RG evolution of those a-body forces is computationally fdas Eventually, the\-dependence of computed
observable can be used to assess the effect of omitted naatyyfdrces (given that the many-body calculation
is sufficiently converged).

As shown below, the current situation is that 3N interacioannot be avoided at arlywhile 4N inter-
actions (and beyond) are likely to be negligible. Given thatmachinery to evolve the 3N interaction along
with the NN one through SRG method has recently been deve[@i€], the prospect to use low momentum
interactions in finite-nuclei calculations look promisiagthis point. Let us now illustrate the situation in
three- and four-body systems.

Figure 32 displayss,, versusEs,, obtained for different\ values through NCSM calculations when
omitting multi-body forces beyondNN(A). Both binding energies depend @nand correlates along the
so-called Tjon line. Such a feature suggests that 3N andhppsEN interactions cannot be omitted. To
confirm this, Fig. 33 isolateEsy as a function of\. The observed variation &Es ~ 0.6 MeV over the
interval A € [2,00[. This is non negligible but remains much smaller that theepii&l energy contribution
fromVNN(A) such that the omitted many-forces seem to remain of natizeabser such an interval af.

Thus, the next step consists of evolving the induced 3Naatesn along with/NN(A) and including it in
the NCSM calculation ofH [216]. Figure 33 demonstrates that the inclusion of theigedi 3N interaction
makesEs,, scale independent as expected, whether the 3N interacésemt initially inH (Ainit) is included
along with the induced one or not. Incorporating the formdy ehanges the overall result by a constant such
that it moves closer to experiment. This is due to the facBtigart ofH (Ajnit) was fitted to provide a good

13 As discussed below, the initial NN interaction should itbel accompanied by a 3N interaction. However, since theeptesalculation
starts from the NN part of the Chiral Hamiltonian only, thesetved scale dependence relates only tarteced3N interaction.
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only the NN interaction is kept (circles). When the initialdsinduced 3N interactions are included, the
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FiG. 33: (Color online) NCSM calculation of the ground-statergy of3H as a function of the SRG
evolution parameter. Taken from Ref. [216].

account ofes,,. Comparing the two sets of calculations demonstratesthiegidtential energy contribution of
the induced 3N force is not unnaturally large compared tmtieof the 3N interaction originally tailored in
H (Ainit). Eventually, the huge benefit of evolving the Hamiltoniatower scale is that the net resulting 3N
interaction is much softer than the initial one such thatNISM calculation converges faster.

Figure 32 shows that the inclusion\6fY (A) allows the result to break away from the Tjon line and move
closer to experiment. The remaining scale dependené&g,pfdue to the omission of *N(A) seems to be
small as the insert shows. To confirm the last pdiat,, is displayed in Fig. 34 as a function of the RG
scale. Although the induced 4N interaction is omitted, asesshat the energy is nearly scale independent.
The slight variation ofEs,, at low cut-off together with the difference with experimendicate that the
inducedv®N(A) could be responsible for about 200 keV at most. Before diegjahatv N (A) can be safely
neglected, it must however be monitored in heavier nuclei.

E. Summary

To close the section on low-momentum interactions, we nsiastbme of the key points we have encoun-
tered and learnt from RG and EFT ideas. In addition, we brafljine the strategy that can be followed next
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FIG. 34: (Color online) NCSM calculation of the ground-statergy of*He as a function of the SRG
evolution parameter. Taken from Ref. [216].

to build non-empirical parameterizations of the nucleaFED

1. Low-momentum interactions provide a new paradigm folisganuclear interactions
(a) The "hard core" is not an absolute featurélgf\) but a scale-dependent one
(b) H(Anigh) contains highly non-perturbative vertices

(c) Lowering the resolutiom\ through RG transformations suppresses the main sourcesmsf n
perturbativeness

(d) RG transformations necessarily induce many-body force

2. Use ofH (Ajow) for low-energy studies
(a) One must keepi, ke < Ajow < Agatato leave the encoded long-range physics untouched
(b) The convergence of ab-initio calculations of light-taiés greatly improved

(c) TheA-dependence afbservablesignals missing many-body forces and/or incomplete caicul
tions

(d) Inducedv®N(A) must be tracked but 3N interactions are unavoidable anyway
(e) VAN(A) seems to be negligible tHe but must be monitored in heavier nuclei

3. What about the link to nuclear EDF calculations ?
(a) Investigate perturbative calculations of infinite raagimatter from low-momentum interactions
(b) Investigate perturbative calculations of doubly-neagiclei from low-momentum interactions
(c) Build the energy functional from many-body perturbatibeory

(d) Approximate the still-too-complicated resulting ERFdonstrain Skyrme- or Gogny-like energy
functionals

IV. TOWARDSNON-EMPIRICAL ENERGY DENSITY FUNCTIONALS
A. Generalities

In Sec. Il, we have outlined key features of nuclear EDF mestamd elaborated on some of the challenges
they currently face. In particular, the possibility to exfily link the EDF kernel to underlying vacuum NN
and 3N interactions was envisioned. Within such a contextrascopically-educated energy functionals
are to be derived through analytical approximations of tfeeigd-state energy computed from an ab-initio
method of reference. As summarized in Fig. 35, the complefisuch a task depends on the nuclear Ha-
miltonian model and the ab-initio many-body method oneastaom. Indeed, not all ab-initio methods offer
a natural matching, even through a set of controlled apprations, to energy density functionals that are
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phenomenology. Left : questions relevant to this endeavor.

close to the form of standard quasi-local (Skyrme, relstiwipoint coupling...) or non-local (Gogny, effec-
tive meson-exchange Lagrangian...) variants. As discussthe introduction, ab-initio methods that are
amenable to such a mapping must share certain key featuteE@F methods, the most important of which
being the concept of spontaneous symmetry breaking (attiefurestoration).

An ab-initio method that fulfills such requirements is paed by many-body perturbation theory (MBPT)
performed on top of a (potentially) symmetry-breaking waouAlthough it is possible to consider an elabo-
rate Dyson (Gorkov) self-consistent green’s function th§s9, 217], we restrict presently ourselves to Gold-
stone many-body perturbation theory for simplicity [1409R An interesting point is that any conventional
list of available nuclear ab-initio methodswill miss out on a perturbative approach. The reason relates
the conventional wisdom that the non-perturbative shamge central repulsion and tensor force are absolute
features of the NN interaction. As discussed in Sec. Il & paradigm set by low-momentum interactions
is modifying such a picture. In particular, the in-mediumiliterg eigenvalue analysis [95] indicates that
the nuclear many-body problem may become perturbative wbemed in terms of a low resolution-scale
Hamiltonian.

As a matter of fact, recent calculations discussed beloweics SIV C 1 and IV C 2 confirm the (essen-
tially) perturbative nature of infinite nuclear matter ammullly-magic nuclei when expressed in terms of
low-momentum NN and 3N interactions. Many-body perturdratheory becoming a reliable, if not totally
guantitative, starting point to compute nuclear systenusdarive microscopically-educated energy functio-
nals through analytical approximations of the (itself apgmate) ab-initio ground-state energy. Doing so
requires specific approximation methods that are present8dcs. IVD 2 and IV E, where it is explained
that available methods are incomplete as of today. Befarerggpto that, we first introduce basic elements of
Goldstone MBPT.

B. Elementsof time-ordered many-body perturbation theory
1. Unperturbed vacuum of reference

Although it was argued in the introduction that the ab-mitiethod of reference must be formulated wi-
thin a symmetry-breaking framework, we restrict oursefegsimplicity to a MBPT that preserves patrticle

14 Refer to the Denis Lacroix’s introductory lecture [37].
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number, i.e. which does not explicitly incorporate pairgwgrelations through the breaking of gauge inva-
riance. Consequently, the MBPT presented below is not géarough to eventually constrain all parts of the
nuclear EDF. In addition, formulae are written #8MN(A) only although it is to be understood thatN(A)
must be taken into account as well.

The unperturbed vacuum of reference takes the form of ar@laterminant

N
=[]a o). (39)

whose one-body density matrix in the associated bagig$/\) = d4i dgi- As a convention, greek indices
{a,B,...} denote arbitrary single-particle basis states while romdices{i, j,...}/{a,b,...} denote occu-
pied/empty ("hole/particle™) single-particle basis stain the unperturbed vacuum. Next are defined Slater
determinanté,qbﬁt_’;j(/\)) obtained through particle-hole excitations on top of thparturbed vacuum, e.g.
2p-2h states of the form

|PP(N) = ag (N)ag (N)aj(N)ai(A)|P(A)) - (40)
The vacuum is actually defined once the single-particlesbgaj /@y } has been specified. The present

choice is to use the Hartree-Fock basis whose elementslatioss of the eigenvalue problem™ (A) @y =
&qa (M) Yq, where the Hartree-Fock field is expressed in an arbitrasistzes

hHF —tay+z BV5 p5ﬁ ) (41)

Antisymmetrized matrix elements ¥NN(A) are defined throug\N ((A) = (1:a;2: BIVNN(A)|1:y;2:

apByd
3) andV AN 5 (A) = VAR 5 () = VaRS (1.

Using Wick’s theorem with respect t&(A)), the HamiltoniarH (A) is put under normal-ordered form
HA) = EHF(/\)+§SO,( ragag +4 z apys(N) ‘agagasdy (42)

from which the Hartree-Fock energy
" () = @(NHNIO() = S+ 5 S VA (43)

the unperturbed Hamiltonian

Ho(A) = EMF(A)+ S (M) afaq : , (44)
a
and the residual interaction
1
Vies(A) = 7 S Vapys (M) agajasay (45)
apyd

can be defined. In the above set of equations, all quantitipeated to depend on the resolution scale
have been labeled by it. In particular, and even if the coteptéamiltonianH (A) were used, quantities
associated with aapproximatemany-body calculation, e.g®(A)), E"F (A) or hiF (A), are expected to
be scale dependent. Only fully converged observable sutheaactual ground state ener§yare scale
independent. Having said that, the labeis omitted in the following for simplicity, unless statechetwise.

Using the above definitions, it is straightforward to dentats that

Ho|®2°) = B3> (@3- ) (46)

with E3°- = ERF 4 (ea+ &p+... — & — &) —...) and that{®|Vied D) = (P|Vied P2) = 0, which shows that the
residual interaction does not couple the unperturbed vadoltself or to unperturbed 1p-1h configurations
when using Eq. 44 as a definition .
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2. Correlation energy and the perturbative expansion

Given the unperturbed reference state and energy, one si¢fiaecorrelation energgE"F (A) through
E = E"F(A) + AEMF(A). The correlation energy obviously depends on the choseertunped state of
reference and one aspect of MBPT consists of minimiZi§'F through an a priori optimal choice of the
unperturbed vacuum, e.g. by exploiting symmetry breakmthe spirit of the SR-EDF method. Still, it is
usually not sufficient and part, if not all, of the correlatienergy beyond HF must be computed explicitly.
The idea of time-ordered (Goldstone) MBPT is to expA#ti'™ in powers olVes Starting from Gell-Man-
Low’s theorem [218], Goldstone demonstrated [140] that

1 n
AEHF = Zo@Mes(m Vres) |P) connected: (47)
n—=

where "connected" means tHdt) cannot appear as an intermediate state (see below).

Summing all terms in Eq. 47 provides the exact many-body mpieatate energy. However, the practical
use of the perturbative expansion resides in the posgiltditruncate it, i.e. in the fact that a meaningful
and accurate enough result can be obtained from a finite nuofiberms, which usually requires that contri-
butions decrease asincreases. In order to speed up the convergence of the batitte series, it might be
necessary to optimize the unperturbed Hamiltonian/vacHgi®) by modifying the content of the one-
body fieldh that defines the single-particle bagsg! / (q } (see Sec. IV D 2). Sometimes however, modifying
the content of in a perturbative manner is not sufficient such that expangiobreaks down. It is precisely
the case when forcing the unperturbed vacuum to fulfill a sgtnynwhen it would choose to spontaneously
break it if offered to do so. For instance, the Cooper paitainidity associated with strong pairing correla-
tions necessitates to expand around a Bogoliubov vacuurerrétan a Slater determinant. As mentioned
above, we do not consider this possibility here for simpliglthough most of nuclear systems encoun-
ter such an instability®. Another source of non-perturbative character arises ed@rone chooses to work
with H(Anign) that contains a strong coupling between low- and high-mdomemodes. As demonstrated by
Brueckner [139, 208, 219], such a coupling necessitatesoi@anize expansion 47 by summing up so-called
particle-particle ladder diagranpsior to truncating it. This leads to introducing the Bruecknem@trix as
a basic two-nucleon kernel. Still, the many-body energycabe expanded in powers of the G-matrix such
that one relies on the non-perturbative hole-line expamisidhis case [209-211].

The main benefit of starting froid (Aow) rather than fronH (Anigh) is precisely that the purely perturba-
tive expansion 47 is meaningful, as exemplified in Secs. IVaBd IV C 2, which tremendously simplifies
our view on the nuclear many-body problem.

3. Computation

We briefly present the method to compute contributions tod#qup to the truncation ord@,ax. We use
a pedestrian approach, which is only convenient to compw®lders and only mention at the end the more
practical diagrammatic approach. We exemplify the methoddmputing the simplest, i.e. the second order
contribution o= 1).

The procedure consists of first inserting the (quasi) cotapkss relationship on the N-body Hilbert space
JA

2 2
In— @) (D] = Y [OF) (D} + (3) ;|¢ﬁb><¢ﬁb| + (%) )] | DER (DR + (48)
a N 5M,
i ai'j éi‘.j.kc
in between each pair of operators appearing in Eq. 47. TheHatthe vacuum contribution has been sub-
tracted from the completeness relationship in Eq. 48 relaighe fact that only "connected" terms must

appear in Eq. 47 [140]. In all contributions thus generaézth resolvent operatoEH" — Hg)~! can be
trivially applied onto unperturbed Slater determinamg'?;;-). According to Eq. 46, it results into the energy

denominatofea + &+ ... — & — & —...) "L times the statdatbﬁ’_’;;), which eventually selects the same Slater

15 Only doubly-magic nuclei do not encounter the Cooper paitaibility.
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FIG. 36: (Color online) Hugenholtz diagram for the second-oodatribution to the ground-state binding
energy from the NN interaction.

determinant from the (quasi) completeness relationsisigried to the left of the resolvent operator as a result
of the scalar product oz At that point, one is left with computing matrix elemem@'ﬂ‘f_:- [Vied P3RC-)
between a variety of unperturbed multi-particle multidn8later determinants.

Let us exemplify the above procedure by calculating the sgemrder contributionr(= 1)

1
AE;F = <CD|VresEHF7_HO Vred @) connected- (49)

We first insert the (quasi) completeness relationship 48edeft and the right of the resolvent operator in
Eq. 49. Before proceeding further, we note that the two-bedydual interactioives can only couple the
unperturbed vacuum to 2p-2h states, i.e. in addition torttaiP|Vied @) = (P|Vied P?) = 0, one can use Wi-
ck’s theorem to prove tha(tD|Vres|dJﬁb> = Viz'\la’\l; and that<CD|Vres|¢f}Eﬁj> = 0 for 3p-3h, 4h-4h... This reduces
tremendously the number of non-zero terms resulting froenatove insertion of the (quasi) completeness
relationship. As a result, and following the steps outliabdve, the second-order contribution finally reads

AEHF _ 1 |<(D|Vre5|q’ié}b>|2
? 4 ijal ERF — Eiajlb
1 [Vijanl® (50)
4iJa E+€&—Ea—&

which is necessarily negative, i.e. it lowers the grouradesenergy compared &F. Anticipating the dis-
cussion of Sec. IVD 2, it is worth noting that restricted sumasr hole and particle states in Eq. 50 can be
replaced by unrestricted sums over the complete singlécleaibasis at the price of inserting a facmy, for
hole states and a factor-lp, 4 for particle states; i.e. Eq. 50 can be rewritten as

/NN |2
pESF -~ 1§ _Napel oo (1 )1 pse) (51)
4aﬁy5ea+£ﬁ—£y—£5

The computation oAES'T is instructive but hides the rising algebraic complexityths ordern in-
creases. Many more terms are non-zero and necessitate dhet@n of matrix elements of the form
<¢f}/j9](‘f;:-|vres|¢ﬁﬁ?;-) that are cumbersome to compute. Analyzing the outcome gbeldestrian procedure
presented above, a more systematic approach can be desgroedpute contributions to Eq. 47. This consti-
tutes the so-called diagrammatic technique [220] thag¢sedin a set of rules to draw and compute diagrams
representing all possible contributions to a given otdef'™. For example, the second order contribution
is represented in Fig. 36 using so-called Hugenholtz dragr&xpression 50 can be easily recovered from
such a drawing by applying the set of diagrammatic rulesh@lgh we do not discuss such rules here, they
can be found in many textbooks dealing with the quantum ni@dy problem, e.g. in Ref. [220].
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FiG. 37: (Color online) Hugenholtz diagrams for the unpertdrbi@etic energy and the first-order
contributions to the ground-state binding energy from NH 8N interactions.
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FiG. 38: (Color online) Complete set of second-order Hugertdiigrams from NN and 3N interactions.

C. Many-body perturbation theory calculation of nuclear systems
1. Infinite nuclear matter

The present section briefly discusses recent computatfdhe equation of state (EOS) of infinite nuclear
matter (INM) through MBPT [87, 88]. In that respect, somedependent) questions of interest are

1. Isinfinite nuclear matter perturbative ?
2. What is the role of/3N ?

3. What is the saturation mechanism ?

4. Can phenomenology be accounted for ?

To answer such questions, the computation is performedsataind second order in MBPT. First-order
diagrams, together with the unperturbed kinetic-energgidim, are displayed in Fig. 37 while the complete
set of second-order diagrams are shown in Fig. 38. The agionluse®/NN(A) from RG methods together
with the Chiral 3N interaction at NLO. The two unknown low-energy constarits, cg ) entering the Chiral
3N interaction at RLO are fitted, consistently witfNN(A), on Es,; and the charge radius 6He [88]. In
other words)zy is not evolved through the similarity RG as done in Ref. [246§ discussed in Sec. Il D
but (cp,ce) are rather adjusted for ea¢hon light-nuclei data along witk/NN(A). Still, the 3N interaction
thus produced is not used as such in MBPT calculations of INktead, an averaging over the third particle
is performed to approximatésy by a density-dependent NN vert®n ). Such a procedure relates in
particular to omitting the last diagram among all secondieoones displayed in Fig. 38. Last but not least,
single-particle energies entering energy denominaters@mputed from the HF (i.e. first-order self-energy)
field including both NN and 3N contributions.

Traditionally, i.e. using conventional potentials, nuglenatter is believed to be non perturbative. This is
visible in Fig. 39 displaying the EOS of symmetric matter tstfisecond and third order using AV18 or
Viowk(2.1) but omitting any 3N force. With AV18, the first-, second- ahitd-ordet® contributions to the
EOS are large, of alternative sign and do not display any sfgronvergence. The Hartree-Fock energy in
particular is large and positive due to the strongly repelsharacter of AV18's S-waves such that symmetric
nuclear matter is not bound at first order. Such patterng/areai of a non-perturbative problem and require
that the energy is expanded in a different fashion as exgdkim Sec. IV B. Contrarily withjoy k(2.1) sym-
metric nuclear matter is bound at first order and higher+ordetributions are quickly decreasing in absolute

16 Only the third-order ladder diagram is computed here.
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FiG. 39: (Color online) Particle-particle contributions t@tBOS of symmetric nuclear matter for Argonne
AV18 potential [1] (thick lines) and the low-momentum iraetionVioyk evolved from it down to
A = 2.1 fm~1 (thin lines). Taken from Ref. [87].
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FIG. 40: (Color online) Symmetric nuclear matter energy-pettiple as a function of Fermi momentuag.
The computation is based on evolve®LXD NN potentials and 3N forces fifs,; and the charge radius of
4He [88]. Results are shown at the HF level (left), includirgand-order contribution (middle) or
particle-particle-ladder contributions to all ordergli). Taken from Ref. [88].

value such that the expansion seems to display a gentle mpngeharacter. Such patterns are typical of a
perturbative problem. The present results shed a new ligtiteonuclear many-body problem by showing
that its perturbative or non-perturbative nature dependb@resolution scale used, although the result of the
complete calculation does not. This constitutes a new [igmadf nuclear theory that can be used to reduce
the intrinsic difficulty to solve the associated many-bodytplem.

Although the expansion in terms &f(Ajqw) Seems to be perturbative, the EOS shown in Fig. 39 does
not saturate. To reach a satisfactory description, one takestthe 3N interaction into account as is visible
from Fig. 40. From the left panel, one sees that symmetrideananatter already saturates at first order
when doing so, although away from the empirical point. Initid, a significant residuah dependence is
observed. As visible from the central panel of Fig. 40, trewse-order contribution brings additional binding
such that the EOS saturates very close to the empirical pathipresents a reasonable, though slightly too
low, compressibility. The various curves in each panelespond to calculations performed for different
values of NN RG scalédyy. In addition, the 3N scale is allowed to vary independentithe NN one. The
shaded regions in Fig. 40 show the range of results for 2:0 f#\sy < 2.5 fm? at fixedAny = 2.0 fmr L,
Overall, the significant dependence on the RG scales at thiewFis largely suppressed at second-order,
which is an indication that convergence might be reacheis. isHurther confirmed in the right panel where,
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FIG. 41: (Color online) Nuclear matter energy per particle Bigpd in Fig. 40 at the
particle-particle-ladders level compared to NN-only tesfor two representative NN cutoffs and a fixed 3N
cutoff. Taken from Ref. [88].

except for rather low density, the summation of particletipke ladders to all orders is not modifying the
EOS. Still, the convergence pattern in the particle-hobnciel has not been investigated so far.

As further illustrated by Fig. 41, the saturation of symnueatuclear matter is driven by the 3N force when
using a resolution scale in the perturbative regime fromtd.8 fm—. At the same time, the Coester line
problem is solved by the inclusion of the 3N force such thatémpirical saturation point is satisfactorily
reproduced. For similar EOS calculations of pure neutrotienave refer the reader to Ref. [89].

2. Doubly-magic nuclei

The present section briefly discusses recent computatiodsubly-magic nuclei through MBPT [138,
221]. In that respect, somA{dependent) questions of interest are

1. Are bulk properties of doubly-magic nuclei perturbafive
2. What is the role of/3N ?
3. Is phenomenology accounted for ?

Besides their numerical tractability, MBPT calculatiorigloubly-magic nuclei allows one to disentangle
bulk correlations from those brought in through the spoatas breaking oN,Z andJ and the associa-
ted collective fluctuations (see discussion in Sec. |l Fe Tdsults provided in Fig. 42 have been obtained
through first and second-order MBPT calculations. They atg indicative given that (i) the NN interaction
S-UCOM(SRG) is only renormalized in the S waves, (i) the BMiaction used is a schematic (regularized)
contact force and (iii) second-order calculations are woiverged as a function of the single-particle har-
monic oscillator basis size, especially for heavy nucl88]L Still, such results provide valuable information
on the interplay between realistic two-body and phenoregioal three-body interactions as well as on how
well systematics of masses and charge radii systematicsudilg-closed shell nuclei can be reproduced at
this level of calculations.

The strength of the 3N contact interaction has been fixedimokice the systematics of charge radii at the
HF level. Indeed, it is possible to track such a systematicsean in Fig. 42, which is a non trivial result by
itself. Perturbative corrections to charge radii are venak [221] and will not affect the general agreement.
As for binding energies, HF provides the correct trend withuAunderbinds significantly. Itis to be reminded
however that nuclei are not even be bound at the HF level witiventionaH (Anigh) Hamiltonians. The 3N
intzeorglction is responsible for a repulsive contributioatttanges from 1.5 MeV/A in light nuclei to 3 MeV/A
in <“°Pb.
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FIG. 42: (color online) Binding energies per nucleon and chaagé of selected closed-shell nuclei
resulting from HF (filled symbols) and second-order MBPTgogymbols) calculations. The
S-UCOM(SRG) NN interaction witlr = 0.16 fm?* is used together with a 3N contact interaction
characterized by the couplif@gy = 2200 MeV fnf. The basis size i8nax= 14,Imax = 10. Adapted
from [138].

As shown in Fig. 42, low-order MBPT, i.e. second order, pdegia good account of missing bulk correla-
tions such that binding energy systematics are correctigatted for. The extrapolation of the present results
with the basis sizemax — ® shows that the agreement with data is qualitatively and-sprantitatively good.
Except for light nuclei, the second-order contributiomfrthe 3N interaction is negligible [138] such that it is
omitted from the results shown in Fig. 42. Although it is nebwn in Fig. 42, the second-order contribution
reduces, although not completely, in particular for heassteams, the scale dependence of the results [138].

D. Mapping many-body perturbation theory onto the SR-EDF method
1. Generalities

As discussed in the previous section, first MBPT calculatiaith low-momentum interactions have de-
monstrated that the 3N interaction plays an important rakk that second-order contributions provide the
correct systematics of bulk correlations—8 MeV/A in doubly-magic nuclei. Still, results are quoted in
energy per particle and can only be viewed as indicativergilie much higher accuracy that is eventually
needed. Such calculations pave the way towards more gaargiab-initio studies of doubly-magic nuclei
that must employ realistic 3N interactions and more advaneany-body schemes, i.e. that re-sum correla-
tions in a non-perturbative fashion with an explicit inéursof collective fluctuations, e.g. through MR-like
methods.

The ab-initio description of singly and doubly open-sheitlei is even more challenging. Correlations
that vary rapidly with the filling of a major shell are hardergrasp and require MR techniques, if not the
explicit breaking of particle number (singly open-shelthai) and angular momentum (doubly open-shell
nuclei). In the latter case in particular, MBPT must be perfed with respect to a deformed unperturbed
vacuum that ultimately corresponds to handling much lasgeyle-particle bases than for doubly-closed shell
nuclei. Given that second-order MBPT scalesk\lﬁ%is this becomes quickly prohibitive computationally as
Aincreases.

Despite such numerical difficulties, ab-initio calculaigoof heavier and more challenging nuclei must
be pursued in order to provide theoretical benchmarks. taligh one must identify shortcuts to profit by
the best of both low-order MBPT, i.e. its explicit link to wamm low-momentum interactions, and of the
SR-EDF method, i.e. the breaking of various symmetriesughsvay that one can address doubly open-
shell nuclei in a systematic fashion while avoiding the jilndlve computational scaling. In other words, one
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wishes to design controlled approximations allowing thepiag of (second-order) MBPT onto a (genera-
lized) Skyrme-like EDF. Such a program is meant to provijlaria posteriori understanding of the success
of phenomenological energy functionals, (ii) an educateelsg for extended functional forms and (iii) an
estimate of the couplings of such a generalized EDF, inolydincertainties associated with their RG scale
dependence. Eventually, the needed accuracy could banebttirough a controlled refit of the "educated"
couplings within their uncertainties, together with thelisidn for MR correlations associated with collective
fluctuations.

2. Comparing Skyrme-EDF and MBPT energy expressions

Mapping MBPT onto SR-EDF does not strike as an natural angl taak at first. As already mentioned,
MBPT fulfills the first basic requirement for such a mapping, it naturally incorporates the symmetry-
breaking concept by allowing the unperturbed vacuum ofresfee to break them. Still, it remains to be
seen how various MBPT contributions can be approximatecutite form of a quasi-local Skyrme-like
EDF. To simplify the discussion, we omit the possibility teelk particle number and thus to address the
corresponding part of the nuclear EDF, i.e. its dependendb@anomalous tensar. Doing so requires to
extend standard MBPT introduced in Sec. IV B to incorporat@aalous propagators, which is beyond the
scope of the present lectures.

To simplify the discussion further, we consider the Skyrraesmetrization defined in Eq. 20 in the limit
where spin is omitted and where the coupling consfé’@tdepends linearly on the local density such that it
generates the simplest possible trilinear contributiorerfually, the coordinate-space expression of such a
simplified Skyrme EDF reads

o] = / df’% o Z [ 20 pa(7) P () +Che pa(T) B (T) +Che pa(F) T () + CHEF p2(F) pyr (F)
(52)
In the canonical basis whepg g = paa 94, all local densities at play can be expressed under the form
M) =Y Waa(fd) Paa - (53)
a
with f € {p,7,Ap} and
Wea (Ta) = @ (Ta) Yia (Fa) | (54)
Wiq(Fa) = Oy (fa)-Oa(ra) , (55)
W (Fa) = A[wh(ra) ga(r)] (56)
such that the trilinear Skyrme EDF given in Eq. 52 can be rigtewras [158]
1 1
51} = Y laaPoat5 3 VapapPuc Pop G 3 egiapy Pac Pop Py (57)
a apy
where matrix elements of the effective vertices are defihealigh
. ﬁZ
tya = / dr 2 Wia(ra) (58)
VA / dr 2 ;c” W (F) W () (59)
VR sy = [ r 6CHREWE () Why () Wi () (60)

Expression 57 demonstrates that any quasi-local Skyrme ¢&zDFbe seen as a particular functional of the
density matrixp,g. This makes the connection with MBPT easier. Indeed, andtiogv/ 3N second-order

contribution for simplicity’, the second-order MBPT energy reads in the canonical bagie anperturbed

17 As discussed in Ref. [138], such a contribution is smalleast for schematic 3N forces.
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state
HE 1N 1 < 7N
E = ztaapaa-f—izvagagpaapﬁﬁ‘f'é ZVaByaByPaaPﬁﬁPyya (61)
a ap apy
1 |\7NN5|2
AESF = 25— 5 ppg (1 pyy) (L Pss) (62)
2 4 heat st B (1= Pyy)(1— Pss)

which defines a non-empirical, generalized, nuclear EDFofBestressing the differences with the Skyrme
EDF, one can formally rewrite Eqs. 61 and 62 to make theirmédance with Eq. 57 even more apparent.
Doing so, the second-order MBPT ground-state energy reads

1
pi{ea}] ztwpaa+ ZZ aﬁaﬁ Paa Ppp+ & z a:ﬁya:ﬁypomfpﬂﬂpw+21r Bz(s"‘_’g{z%aﬁycspaapﬁﬂf’vvmﬁ?’)
aBy:

with up to four-body effective vertices defined as

pPp _ ’ an5 pp vaN ppp p WPPPP
V\_’gBVMBW 650 +&5— & — €5 VVZBVGBV GBVGBV Z"ngﬁvéaﬁvé ' V\_’gﬁaﬁ - BGB T 122 aBydaByd (64)

The functionaE;[p;{&q }] thus obtained generalizes the Skyrme EDF in several respect(i) it is of fourth
order in the density matrix, (ii) it is not only a functiondltbe density matrix but also of single-particle ener-
gies and, as extensively discussed below, (iii) its co@tirspace expression is significantly more involved.
The first of these extensions would be further enhanced bydirg VSN second-order contribution or by
going to higher orders in MBPT. In itself though, it does nietdutside the frame of existing quasi-local
Skyrme parameterizations that could handle higher-orepeddencies on the density matrix. Contrarily, the
explicit functional dependence on single-particle eress{ji, } lies outside the frame of existing nuclear EDF
parameterizations. It is worth noting that such functisreae however known awbital-dependent energy
functionals[222] within the frame of electronic systems’ density fuonal theory (DFT). The dependence
on single-particle energies relates to the time non-lgcatisociated with nucleonic in-medium propagations.
It remains to be seen in the future whether an explicit deproe on single-particle energies is necessary and
tractable in the nuclear context or whether it can be safediycnsistently recast into a simpler form, e.g. an
effective dependence on the density matrix.

The EDF form of Eq. 63 may naively suggest, just as Eq. 57, ithasults from the average value, in
the unperturbed vacuuf®), of an (hypothetical) effective Hamilton operator contagntwo-body (second
term), three-body (third term), four-body (fourth termpieces. However, Eq. 64, that provides microscopic
expressions for the matrix elementsv8f, vPPP. .., demonstrates that re-extracting an (effective) Hemil
operator from the energy density has no founddfi@md can at best be the result of approximations.

One further possible difference between the SR-EDF methivpdduced in Sec. Il and MBPT described
in Sec. IV B relates to the choice of self-eneyy from which single-particle energigs, } are extracted.
Indeed, the freedom exist in MBPT as to hbyg =ty + Z4p, i.€. Ho and the unperturbed vacuu), is
chosen. Let us discuss three possible choices

1. In Sec. IV B, the HF self-energy

Zap = > Vaypy T 22 ovsays Pes | Py (65)

= ; VBVPW ’

was used independently on the ordggy of the ground-state energy expansion. In such a case, single
particle energie$e, } have no particular meaning. Equation 65 provides the éffegertexvP” to first
order.

18 Note for instance that symmetry propertlesvﬁffI

andvﬁﬁ,ﬂﬁ, under the exchange of fermionic indices aat as expected
from two-, three- and four-body operators.

|Jk|mn
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2. A choice made to design non-empirical DFT consists ofegtitng the local and multiplicative optimi-
zed effective potential (OEP) from the correlated manyybenkergy
O[E—T]
SOEPR) = 2| 66
M = 5w (66)
whereT is the unperturbed kinetic energy. In such a case, the ergergy the last occupied orbital
approximates the one-nucleon separation energy with thengrstate of the neighboring system.

3. The choice leading to a natural mapping with the nucleaE®IR method, as it is traditionally imple-
mented, consists of computing the energy-dependentsetiyg

O[E—T]
EDF _
ZC{B - 6pﬁg ) (67)

from the correlated binding energy and of extracting itssheHl quasi-particle part to defirtg,g.
Consequently, and similarly to Eq. 65, the on-shell parzgag': provides thedresseckffective vertex

vPh (similarly to Eq. 6). In such a case, single-particle eresdk, } approximate the quasi-particle
component of one-nucleon separation energies with thénhering systems.

Let us finally discuss the coordinate-space representafitie first and second-order contributions to
the many-body ground-state energy. In order to make it pramesnt, we further simplify the analysis (i)
by neglecting entirely the 3N force, (ii) by choosivg'N as purely central and local, as well as (i) by
omitting spin and isospin degrees of freedom. For a more éetmgdiscussion, we refer the interested reader
to Refs. [149, 152, 223]

The second term of Eq. 61 contains two contributions, i.e.Hlartree (direct) and the Fock (exchange)
terms. By inserting two completeness relationships onwieetiody Hilbert space?, the Fock contribution
reads

E7 O [ faradr; V(= T2l) e P, (68)

which is a non-local functional of theon-localdensity matrixpr,7,. Conversely, the Hartree contribution
obtained from a local interaction is a non-local functioofhelocal part oy, of the density matrix. Even-
tually, the first-order HF contribution displays a more itwaal coordinate-space expression than the local
Skyrme functional. However, and as discussed in the nexibsecthe fact that it is aexplicit functional of
the coordinate-space density matrix makes it amenablestdehsity matrix expansion.

Inserting four completeness relationships#h, one typical second-order energy contribution reads

ses* e [ff 6?1234[%5 Wa (PO W5 (F2)VNN(TL — P Wy (P W5 (72)
Paa Ppp (1= Pyy) (1 —Pss)

X Wy (F2) Wy (Fa)VNN(|73 — Fa| ) Yo (T3) W5 (Ta) Ex €5 — & — 5

and thus contains four triple integrals. The energy becaa@ighly non-local functional that will be even
more so when (i) starting from a non-local NN interactioi),ificluding the contribution fronv3N and/or
(iii) going beyond second order, i.e. to larggtax. An additional key difference witk"F is thatAE}F is not
an explicit functional of the coordinate-space densityrimand static potentials.

E. Thedensity matrix expansion
1. Basic features

Let us first present the basic idea of the density matrix esioan The objective is to map finite-range
physics associated with vacuum NN and 3N interactions imoform of a Skyme-like EDF with density-
dependent couplings. To do so, the studied contributiort take the form of an explicit functional of the
one-body density matrix of the auxiliary stdt®). As discussed in the previous section, this is indeed the
case of the HF contribution to the binding energy. Contyattie fact thaﬂEzHF is not an explicit functional
of the coordinate-space density matrix makes it unamenakiee DME in its standard formulation. As a
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matter of fact, one is still missing as of today a generabredf such an expansion technique to approximate
contributions beyond the HF ones under a Skyrme-like forsd]2lt is a challenge for the future to formulate
such an extension. For now, we thus focus on approximatmdith contribution to the binding energy. The
present discussion is again simplified by omittind)' as well as spin and isospin degrees of freedom, unless
stated otherwise.

The DME technique comes back to Negele and Vautherin [145],. Z2ven that the energy is an explicit
functional of the non-local density matrix, the centraldde to expand the latter into a finite sum of terms
that are separable in relative= 1, — > and center of maR = (f1+T2)/2 coordinates

Prr, ~ Zﬂ?(kr) f(R), (69)

wheref (R) represents a set of local one-body densities. Typicallyfasf € {p, 7,Ap}, which corresponds
to expanding the HF density matrix with up to two derivativese arbitrary parametdrin Eq. 69 has the
dimension of the inverse of a distance and is to be equatéttmtal Fermi momentutik = kp(ﬁ), or to
a similar function. Inserting expansion 69 back into Eq.t68,Fock contribution to the energy reads

—

E" D'/dﬁ[c"”(*)p@p(ﬁ)+C”Ap(ﬁ>p(ﬁ)Ap(ﬁ)+cpf( )p(ﬁ)r(ﬁ)} , (70)

which is nothing but a generalized local Skyrme-EDF expmréss terms of non-empirical, position/density
dependent couplinga’ "' (R), e.g.

CPP(R) E47T/r2drVNN(r) N5 (ke (R)r) NM& (ke (R)r) . (71)

Equation 71 makes clear that the density/position deperedefithe couplings is a direct consequence of the
finite-range of the NN interaction. Given thalt couplings acquire a density dependence through the DME,
Eq. 70 is indeed more general than any existing empiricatr8kyEDF. Starting from a realistic vacuum
Hamiltonian containing a 3N force, as one should, a richeF Eizluding a wealth of trilinear terms is ob-
tained [223] that generalize the single trilinear termugd for illustration purposes in Eq. 52. We note in
passing that it is important to differentiajenuinedensity dependencies associated with original dependen-
cies on the density matrix, as discussed in Sec. IV D 2 in camorewith MBPT, from those resulting from
the application of the DME. Indeed, both types of densityatelencies do not carry the same physics. Last
but not least, treating explicitly spin and isospin degiafdseedom also leads to a richer functional than the
one displayed in Eq. 70. Including all those terms is evdhjt@ssential to any realistic application of the
DME [152, 223].

Equation 70 is to be complemented with the Hartree coniohuhat can either be put under the form of
a Skyrme-like EDF [153] or treated exactly. RegardlessBB€& thus obtained only contains the HF physics
such that correlations associated with higher-order dmrttons must be added to produce any reasonable
description of nuclei. Such a point is further discusseddn. $v E 4.

2. Negele and Vautherin DME

So far, Eqg. 69 provides a formal expansion of the one-bodgitlematrix. It remains to be seen how such
an expansion can actually be obtained in practice, i.e. hmmtitativel'l? functions are determined. Several
DME variants applicable to the HF energy have been developéie past [143, 226-228]. They mainly
differ regarding (i) the choice made to fix the momentum séaléi) the path followed to obtain actual
expressions of th? functions (see below) and (iii) the set of local densitiest thccur in the expansion.

The original DME expansion of Negele and Vautherin [143ja®bn a truncated Bessel expansion of the

non-locality operatoe%?ml*DZ) that leads to analytically-derivela’;’( functions. The expansion presents
the advantage to be exact in symmetric nuclear matter f reduces to one term that provides the exact HF
density matrix and energy. However, Negele and Vauthenafs-trivial DME is only formulated for spin-
saturated nuclei where the spin degree can essentially ieednWe refer the reader to Ref. [143] for details
concerning the original DME approach.

19 The local Fermi momentum relates to the isoscalar dengiouthks (R) = (672 0p(R) /st)%/3, where s=2 (1) and t=2 (1) when spin
and isospin degrees of freedom are (not) taken into account.
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3. Novel DME approach based on phase-space-averaging itpots

Given that the overwhelming majority of nuclei are spin-atusated, an extension of the original DME is
necessary. Recently, such a task was taken up and a new elpjpased on so-callgzhase-space averaging
techniquesvas proposed to design an analytical DME in the general chspim-unsaturated nuclei [149,
152]. After accuracy tests were performed in Ref. [149],nb&s expansion method was applied to realistic
chiral NN and 3N potentials in Refs. [152] and [223], resjuety.

Let us thus present this novel phase-space-averaging DISB-(PME) in some details. To do so, we
re-introduce the spin degree of freedom but still omit theesjsn one for simplicity. For a more complete
discussion, we refer the reader to Ref. [152]. The approachat approximating both the scalar pa(t1,72)
and the vector pag(r, ) of the one-body density matrix defined in an arbitrary sifugeticle basis through

p(M,T2) = 5 p(M101,T202)(02[1]01) = > ¢/ (F201) $;(F101) pji (72)
0102 [l
§r.r2) = 5 p(M01,T202)(02[Gl01) = 5 5 ¢/ (1202) (02|G|01) ¢ (F101) pji (73)
0102 0102 1]

where the former is nothing by, used previously when omitting the spin degree of freedonthén
approximation that the single-particle wave-functionsmih-orbit partners are identical, it can be shown that
§(r1,T>2) is zero in spin-saturated nuclei.

Consideringp(1,T2) ands(r'y,T2) as the first and last three components of a four-vemir,, 1), respec-
tively, one starts with the formal identity

L 0,0y
pulfuts) = drkd [z ZI¢| (F202) 9i(1101) (G2| 04| G1) )
r1=rp=R
O1—02 o 0 -0 ) A
~ ér'k[l”' (712 2"k)+§(f'-< P ") ] 3 911200 i (1011y) (Gololon) | (74)
r=rp=R

with u € {0,1,2,3}, while g corresponds to the two-by-two identity matrix aoig 3 = oxy,. The vector
kis a yet-to-be-determined momentum scale whose choice Ipeudtiven by the optimization of the trun-
cated expansion in Eq. 74. Physicaﬁy,ypically represents an averaged relative momentum in tictens.
Assuming a model local momentum distributig(R, k) and defining

. dk €™ (7. K)"g(R k
M) = 2 (FK) Rk (75)
Jdkg(Rk)
. s [ -
jan® = —5 (68 -0 purar)| (76)
F1=F>=R
Taou(R) = 08 0 pu(rera) B (77)
F1=r=R

with a,b € {x,y,z}, the phase-space averaging of Eq. (74) is performed ovemtiael space defined by
g(R k) to obtain

I R o Mo/, Di—p\2 Ny | 0p — O
pu(?l,?z) ~ [ﬂo—kl‘lor- > —|I'I1+7(F’- > ) —7—”_]1 r- >

A
x Zld’i* (F202T2) $i(1101T1) (2|0 |01)
i

?1:r2:ﬁ

Q

Mo 2] ) +[Mo—i M| 5 rajas(R) + 52 3 raro | 0aCopu ()~ T AT

where local densities are as defined previously. Among theseanote that, whilq’ao(a) R) denotes the so-far
unspecified current density(R), densitiesy ; Taao(R) andjal( R) match, at the price of adding an isospin

index, the kinetic density(R) and the spin-current tensdy (R) defined in Egs. 16 and 17, respectively. Even
without specifying the chosen model momentum distribytibis clear that the PSA-DME of the scalar and
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vector parts are treated on equal footing. In other wordsPBA leads to a channel-independent DME with
identicall'l’]? andn$ functions for the scalar part and the vector part of the dgnsatrix, respectively.

As discussed in Ref. [149], the PSA-DME is well-suited todrporate effects of the diffuseness and the
anisotropy of the local momentum distribution at the sugfatfinite nuclei. Presently, we take a simplified
approach that consists of using the phase space of symmatiear matter to perform the averaging, i.e.
g(R k) = ©(ke —K). As a result, one obtains in Eq. 78

no(kFr) = 3J1|((|:'|:'r) ~ 1+ﬁ(kFr)25 (79)
Mulker) = —i3jo(ker) +i9 jlli‘jr” ~ ("FS”Z +i0(ken)®, (80)
Mo(ker) = 15jo(ker) — 6“2:”) 3cogker) ~ (kFSr)2+ﬁ(kFr)4. (81)

While Mg starts with 114 andl, start withﬁ(k,:r)z. Using a weak ordering that couris and a gradient
on the same ground, Eqg. (78) can be rearranged as

.

Pu(r1,T2) ~ Mopy( )—l—lﬂo%l’aja’u(R — %fafb[lﬂaﬂbpu( R)— Tab,u(ﬁ) 5ab/\ @:F)

al

wherei M4 Ea Fajau( ) was neglected as it that turns out to be a third-order caorecthe functiom\(kgr)
appearing in Eq. 82 is defined as

i2M 3 (ker) + Ma(ker)

NA(ker) = -5 ~1+0 2 83
(ker) k’Z:rZHO(kFr) + (kFr) ) (83)
such that, approximating it by its leading term, one finds
I'Io 1 - . K .
pu(T1,T2) ~ nOPu( +iMg Z raJau 7 Zy Falp ZDanPu(R) — Tapu(R) + 5abgpu(R) 84)
a,

The last step consists of performing an angle averagingtbeasrientation of’. Using the identity

L [ Ry B) = CA-B (85)

and noting that the current densft@) vanishes in time-reversal invariant systems, one finaltpiolk

2
pULT2) = Mollen)p(R)-+ 5 Molker)| 300(R) TR+ SEp(R)| (86)
and
Sy (F1,F2) ~ iMo(ker) fr,,a,,v(ﬁ) . (87)
H=X

It is then trivial to reorder terms in order to generate thgassion in the form of Eq. 69, i.e. obtainifty,
Map andl; in terms offo. It is worth noting that, just like the original Negele andutaerin’s DME, the
PSA-DME is exact in the symmetric nuclear matter limit. InffH&54], it was shown that the PSA-DME is
the most accurate DME to second order in gradients. In the stady, a DME approach based on a (phe-
nomenologically) damped Taylor expansion was proposedshodn to display the most optimal accuracy
among existing variants when expanding the one-body demsitrix up to sixth order in derivatives.

4. On-going developments

In Refs. [152] and [223], the PSA-DME was applied to the nocal Fock energy obtained from chiral
EFT NN and 3N interactions atiO. The input chiral interaction separates into finite-rapipn-exchange
interactions and scale-dependent contact terms, e.g.Nhgiéte can be decomposed according to

VN = VRN L yEIN(A) (88)
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As aresult, DME couplmg@ o (from NN) andCfd » (from 3N) appearing in the local EDF decompose into
a cutoff-dependent coupllng constant arising from zergeacontact interactions and a cutoff-independent
coupling function of the density arising from universaldprange pion exchanges, e.g.

Coy = Cou (A VEN) +Co (R VM) (89)
This implies that (i) the part of the resulting EDF assodatéth qu (N VRN andC(;;:,,” (N V3N) is of the
same form as the one obtained from a density independemtrtekyertex and that (ii) the novel density-

dependencies entern@éd R, VAN) andcéét;,, (R V3N) come from the best-understood parts of the under-
lying nuclear interactions. Restricting to time-reversahriant systems, analytical expressions of all DME
couplings were derived. The corresponding expression®arkengthy to be reported here and we refer the
reader to Refs. [152] and [223]. Still, all couplings can betten in a systematic way using a “skeleton
form”. For example, each coupling coming from the NN intéi@tis given by the sum of the LOh(= 0),

NLO (n= 1), and NLO (n = 2) contributions

ff' ff/
Z)ch (), (90)

with u = ke /my; and the generic expressions

C(;g,o(u) = a(;f,(qd,u)+alff,(qd,u) Iog(1+4u2)+asz/(qd,u) arctarf2u) ,

2
Cioa(w = By (ad.u)+B{" (ad.u) [Iog(1+2u2+2ux/1+u2)] + B8 (ad,u) V1T WPlog(1+ 202+ 2uy/1+ 12) |

Coy2W = %' (ad,w+y " (ad,u) log(1+u?) +y;' (qd,U) arctarfu) ,

where (lengthy) rational polynomials in i.e. a (qd u), B (qd u) andy (qd u), factorize functions
exhibiting non-analytic behavior in or|g|nat|ng from the flnlte -range of the NN interaction.

The resulting dependence of the couplings on the isoscalasity is rather significant over the interval
of interest for all couplings, which is at variance with stard phenomenological Skyrme parameterizations,
whose only density-dependent couplings €§§ Without going into details, such a feature is visible in
Fig. 43 that compares the density dependence of two paticauplings with those obtained from standard
Skyrme parameterizations. We refer the reader to Refs] |ri®[223] for a more extensive analysis.

In the long term, investigating the impact of such non-aiwi-medium dependencies generated by pion
exchanges is one key objective. For such a study to be based entirely non-empirical EDF, a gene-
ralized DME method applicable to perturbative contribniidoeyond HF remains to be invented [224]. In
the meantime, one can use a semi-empirical approach basadricroscopically-guided Skyrme pheno-
menology [229] where the density-dependent couplingscéestsal with pion-exchanges from NN and 3N
interactions at the HF level are added to density-indepetrfleyrme parameters subsequently refit to data.
This semi-phenomenological approach is motivated by trsefation that the EFT contact terms can in
principle be fixed to any low-energy quantities.

Even within such a semi-empirical approach, the inclusibohiral EFT one- and two-pion-exchange
interactions are expected, through their rich spin andpisodependence, to provide valuable microscopic
constraints on the poorly-understood isovector propewiethe EDF. Dramatic changes of bulk nuclear
properties are not envisioned compared to simpler emppeE@meterizations due to the tendency of pions
to average outin spin and isospin sums. However, integgstinsequences can be expected for single-particle
properties (which phenomenology tells us are sensitivegsof the tensor force) and systematics along long
isotopic chains. In particular, two very different micropéc origins of spin-orbit properties (i.e., short-range
NN and long-range 3N spin-orbit interactions) are treateégqual footing and can thus be investigated. This
is in contrast to empirical Skyrme and Gogny functionalseretthe zero-range spin-orbit interaction has no
obvious connection with the sub-leading (but quantitdyigggnificant) 3N sources of spin-orbit splittings.
Overall, probing the impact of microscopic 3N forces on ttracture of medium- and heavy-mass nuclei is
one current frontier of low-energy nuclear theory.

V. SUMMARY

The present lectures outline the starting efforts that areeatly being made towards the building of so-
callednon-empiricalenergy density functionals that are explicitly rooted ilmow-momentum interactions
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FiG. 43: (Color online) Density dependence of the Fock DME iateC3’ and isovecto€]” couplings
augmented with a "natural" Skyrme-like contribution (sed.RRL52]) and compared to the corresponding
couplings obtained from a representative set of Skyrmenpeterizations. Taken from Ref. [152].

generated from renormalization group methods. The goalicii &n endeavor is two (re)connect two sub-
fields of low-energy nuclear theory, i.e. so-called abiérénd energy density functional approaches, which
have been rather disconnect over the last three decadasuBllg the objective is to gain predictive power
in the computation of heavy-nuclei properties, in pargécin view of studying the unknown territory of very
neutron-rich nuclei.
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