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ABSTRACT 
We describe the technique of fixed target parity-violating electron scattering, in which 
weak neutral current amplitudes between electrons and target nuclei are measured in 
order to probe novel properties of nuclear matter. We focus on two modern applications: 
as a sensitive probe of the strange quark content of the nucleon and as a precise 
measurement of the neutron RMS radius of a heavy nucleus. 
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1 Introduction

In order to understand the physics of parity-violating electron scattering, it is useful to begin by
reviewing the symmetries of the electroweak interaction, which in turn have been firmly established
over the last few decades via precision measurements of electromagnetic, weak charged current
and weak neutral current interactions among elementary particles.

Symmetries have played a major role in our understanding of fundamental interactions in Na-
ture since the dawn of subatomic physics in the 1890s. As our understanding of subatomic struc-
ture developed rapidly with the birth of quantum mechanics and the incorporation of special rela-
tivity, it was realized that exact symmetries of nature are deeply interconnected with fundamental
conservation laws. In physics, a symmetry implies that the Lagrangian or Hamiltonian describing
the system under study is invariant under the transformation of a generalized coordinate. An exact
symmetry of the Lagrangian is related to the conservation of an observable. For example, transla-
tional symmetry implies linear momentum conservation and rotational symmetry implies angular
momentum conservation.

The concept of internal symmetries of the Lagrangian of elementary particles has given us a
fundamental understanding of the origin of strong, weak and electromagnetic interactions. In these
lectures, we show how we exploit our precise knowledge of the electroweak interactions of leptons
and quarks to probe nucleons and nuclei in novel ways. The basic technique is the use polarized
electron scattering off fixed targets to measure parity-violating asymmetries, thus accessing the
neutral weak interaction amplitude between electrons and target particles.

We begin with a brief introduction to the symmetries of the electroweak Lagrangian that allows
us to derive the electroweak charges of leptons and quarks. We then describe the formalism
of probing nuclear and nucleon structure using fixed-target electron scattering, with particular
emphasis on parity-violation. This is followed by an introduction to the experimental technique of
parity-violating electron scattering to measure weak neutral current amplitudes. We then focus on
the two main applications, which are the search for strangeness in nucleons and the measurement
of the neutron rms radius in a heavy nucleus. We finally conclude with a summary of the current
status of the subfield and an outlook to the future.

2 The Symmetries of the Electroweak Interaction

The electroweak interaction arises from the imposition of local gauge invariance to the free par-
ticle Lagrangian, which contains left-handed fermions in weak isospin doublets and right-handed
fermions in iso-singlets. The specific gauge group that is chosen is SU(2)L×U(1)Y , which results
in the emergence of 4 electroweak gauge bosons, two charged and two neutral, that mediate the
electroweak interaction. The charged bosons (W±) mediate the charged weak interactions which
have the well-known V −A structure. We then require that one of the neutral gauge bosons must
be the massless photon with the known electromagnetic couplings to various fermions. In addi-
tion, we now impose spontaneous breakdown of the gauge symmetry via the HIggs mechanism
and we are led to the second neutral boson (Z0), with specific predictions for the weak neutral
couplings to various fermions as well as a prediction for the Z0 boson mass with respect to that of
the W boson in terms of a single new parameter: the electroweak mixing angle θW .

The resulting neutral electroweak charges of the light quarks and leptons are given in Table 1.
Both left- and right- handed particles have weak neutral current charges, which can in turn be
expressed as vector and axial-vector charges. The weak neutral current interaction has been ex-
tensively studied in high energy collider experiments and the electroweak charges listed in Table 1



Parity-Violating Electron Scattering p. 2

Table 1: Electromagnetic and neutral weak charges of the electron and light quarks. The helicity
charges are given by gR = gV + gA and gL = gV − gA.

Particle qem gV gA

e− −1 −1
4 + sin2 θW

1
4

u 2
3

1
4 −

2
3 sin2 θW −1

4

d, s −1
3 −1

4 + 1
3 sin2 θW

1
4

have been extensively tested. The value of the weak mixing angle is known to very high preci-
sion: the world average value, extrapolated to the energy scale of the mass of the Z boson, is
0.23116 ± 0.00013 [1]. As we shall see in following sections, the weak neutral current interaction
provides complementary information to the electromagnetic interaction due to the fact that the ratio
of weak charges is different from the corresponding ratio of electromagnetic charges.

3 Parity-Violating Electron Scattering

3.1 Introduction

Since the weak neutral charge of electrons and light quarks are different for left- and right-handed
particles, the parity symmetry is violated in the scattering of polarized electrons off unpolarized
targets. In this section, we introduce the formalism for a quantitative discussion of parity violating
electron scattering, following the discussion in an early review of the topic ??. We begin with
the case of potential scattering, where the theory is most transparent. Potential scattering is a
reasonable approximation for the practical case of scattering from a spinless, isoscalar target
such as 12C or 4He.

We will then discuss elastic scattering from the proton. The results are more complicated
because the non-zero proton spin gives rise to several form factors as opposed to the single form
factor required to describe isoscalar, spinless nuclei. Finally, we will discuss elastic scattering off
a heavy nucleus to measure the neutron rms distribution.

3.2 Potential Scattering

We start with potential scattering in the Born approximation. The target is a spinless potential
distribution fixed in space while the electron is treated ultra-relativistically. To fix our notation, we
first discuss purely electromagnetic scattering. Consider an electron of energy E scattered by an
angle θ with momentum transfer q = 2E sin(θ/2). The potential corresponds to a spatial charge
distribution ρ(r) which is the Fourier transform of the electromagnetic form factor

F (q) =

∫
d3rρ(r) exp[iq · r]. (1)

The cross section is given by
dσ

dΩ
= |f(θ)|2 cos2(θ/2) (2)
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where the scattering amplitude f(θ) may be written

f(θ) =
2α

q2
F (q). (3)

The scattering amplitude has two factors. The first is the form factor F (q) which describes the
spatial distribution of the charge. The second is 2α/q2 which is the amplitude for scattering from a
point distribution characterized by the following potential:

V (r) =
e2

4πr
. (4)

In order to include weak scattering, the potential must be generalized as follows:

V (r) = ke2gBgT
exp[−Mr]

4πr
(5)

where gB is the charge of the incident beam particle and gT is the charge of the target particle
in units of the electron charge e. Also k is the strength of the coupling and M is the mass of the
exchanged particle: M = 0 for the electromagnetic interaction and M = MZ for the neutral weak
current. The constant k = 1 for electromagnetism and k = (sin θW cos θW )2 for weak scattering.

One central feature of longitudinally polarized electron scattering is that the weak charge of
a relativistic electron depends on its helicity. Thus gR 6= gL, where gR(gL) is the charge of an
electron with right(left) helicity. In discussing neutral weak amplitudes, it is more convenient to
discuss vector and axial-vector weak charges, which are just linear combinations of the left- and
right-handed weak charges: gR = gV + gA and gL = gV − gA. The weak and electromagnetic
charges of the electrons and relevant quarks are given in Table 1.

The other key feature of Table 1 is that the relative sizes of the weak and electromagnetic
charges of the the quarks are different. Since we are averaging over target particle spin, the
vector charge gV is the relevant weak charge. The up quark has the strongest electromagnetic
charge whereas the down and strange quarks have the strongest weak vector charge. The net
result is that the charge distribution in an extended potential as seen by an electromagnetic probe
might be quite different from the charge distribution seen by a weak probe of the same extended
potential.

A convenient way to describe the various charge distributions is to use a number density ρi(r)
for each quark flavor i and a corresponding form factor

Fi(q) =

∫
d3rρi(r) exp[iq · r]. (6)

Then all electromagnetic and weak scattering from a given potential may be described by the
same three Fi. The scattering amplitude f(q) is given by the general form:

f(q) = − 1

2π

∫
V (r) exp[iq · r]d3r =

(2kαgBgT )

(q2 +M2)
F (q). (7)

As in the electromagnetic case, each scattering amplitude factors into two pieces, a form factor
describing the spatial distribution of the quarks and a piece describing the point-like interaction.
The cross section is given by the coherent sum of all scattering amplitudes fi(q)

dσ

dΩ
=
∑
|fi(θ)|2 cos2(θ/2) (8)
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The sum of amplitudes includes all quarks contributing to the potential and both weak and electro-
magnetic interactions.

For ordinary electromagnetic scattering, q � MZ , the weak interaction is negligible, and only
one combination of the quark form factors survives:

Fγ =
∑

gemi Fi =
2

3
Fu −

1

3
(Fd + Fs) (9)

To experimentally isolate the contribution from each of the three flavors, measurements of weak
scattering amplitudes are required, which we discuss next.

3.3 Parity Violation

The most practical way to measure the weak amplitude in electron scattering is to measure the
asymmetry

APV =
dσR − dσL
dσR + dσL

(10)

If APV is non-zero, it constitutes parity violation and is dominated by the interference between the
weak and electromagnetic amplitudes.

The cross section is proportional to the square of the scattering amplitudes:

fR = fγ + fRZ , fL = fγ + fLZ (11)

where

fγ(θ) = −2α

q2

∑
qemj Fj(q); f

L(R)
Z (θ) =

2αkZg
L(R)

M2
Z

∑
gVj Fj(q) (12)

Here, gL(R) is the weak charge of the electron, gVi is the vector charge of the ith quark flavor, and
kZ = (sin θW cos θW )−2. The asymmetry is

APV =
|fR|2 − |fL|2

|fR|2 + |fL|2
'
fγ(fRZ − fLZ )

f2γ
=
fRZ − fLZ

fγ
(13)

This equation gives the essence of the parity-violating asymmetry. The weak-electromagnetic
interference gives rise to a ratio of amplitudes rather than the ratio of the squares of the amplitudes.
Since gR − gL = 2gA = 1/2, we have

fRZ − fLZ =
αkZ
M2
Z

∑
gVj Fj(q). (14)

When the weak and electromagnetic charges for the quarks are included, we get:

APV = −kZq
2

2M2
Z

∑
gVj Fj∑
qjFj

= −kZq
2

2M2
Z

(14 −
2
3 sin2 θW )Fu + (−1

4 + 1
3 sin2 θW )(Fd + Fs)

2
3Fu −

1
3(Fd + Fs)

(15)

A measurement of APV thus provides one more combination of form factors such as that in Eqn.
9.
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To isolate Fs, one more equation is needed. For a spinless I = 0 nucleus such as 4He or 12C,
the distribution of up and down quarks must be identical. For these cases, we have the equation

Fu = Fd ≡ F (16)

By combining this with Eqn. 15, we obtain:

APV = −kZq
2

2M2
Z

(−1
3 sin2 θW (F − Fs)− 1

4Fs
1
3(F − Fs)

)
=

kZq
2

2M2
Z

(
sin2 θW +

Fs
4Fγ

)
(17)

where Fγ is defined in Eqn. 9. This is a very important formula. On the one hand, if the Q of the
reaction is small enough such that Fs can be neglected, the asymmetry is independent of hadronic
structure and APV can be used to precisely test the assumptions of the standard model. On the
other hand at larger values of q, the asymmetry provides a clean measure of Fs.

3.4 Nucleon Scattering

Extending the above method to relativistic nucleons is straightforward. Instead of the three-
momentum transfer q, we use the four-momentum transfer squared Q2. The most general possible
current for elastic electron nucleon scattering assuming current conservation, Lorentz invariance,
and time reversal is

jaµ(proton) = 〈p(k′, s′)|jaµ|p(k, s)〉 =

u(k′, s′)
[
F a1 (Q2)γµ +

i

2M
F a2 (Q2)σµνq

ν + F aA(Q2)γµγ
5 + F aP (Q2)γ5qµ

]
u(k, s) (18)

where the F a
′
s are real Dirac form factors that depend only upon Q2. There are four currents since

the target particle can be a proton or a neutron and the current can be electromagnetic or weak.
The index a shall be used to denote both characteristics.

Formulas for cross sections and asymmetries are usually expressed in terms of the Sachs form
factors defined by:

GaE ≡ F a1 − τF a2 ; GaM ≡ F a1 + F a2 (19)

where τ = Q2/4M. The differential cross section for electron scattering from the proton is then

dσ

dΩ

∣∣∣∣
lab

=

(
α2

4E2 sin4 θ
2

)
E′

E

{
(GpγE )2 + τ(GpγM )2

1 + τ
cos2

θ

2
+ 2τ(GpγM )2 sin2 θ

2

}
. (20)

The neutron cross section is given by changing the superscript p to n.
The parity-violating asymmetry is given by

APV =
σR − σL
σR + σL

=

[
−GFQ2

πα
√

2

]
(21)

×
εGpγE G

pZ
E + τGpγMG

pZ
M −

1
2(1− 4 sin2 θW )ε′GpγMG

pZ
A

ε(GpγE )2 + τ(GpγM )2

where ε = [1 + 2(1 + τ) tan2(θ/2)]−1 is the transverse polarization of the virtual photon exchanged
and ε′ =

√
τ(1 + τ)(1− ε2). An important feature of this result is that the asymmetry at backward
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angles involves the axial form factor GpZA even though the target is unpolarized. The reason is that
helicity is conserved, so that the relevant coupling at backward angles is gRb g

R
t (gLb g

L
t ) for right(left)

handed electrons. Then the difference between the couplings of right- and left-handed electron
gRb g

R
t − gLb gLt = −2(gVb g

A
t + gAb g

V
t ). This introduces an axial term and, as discussed below, the

radiative corrections of this term are quite significant.
The above results involve many form factors. However, as for the case of potential scattering

discussed above, we can relate all of the form factors to a few flavor form factors as follows:

〈p|jaµ|p〉 = 〈p|
∑

gV ai uiγµui|p〉+ 〈p|
∑

gAai uiγµγ5ui|p〉

= up
∑[

gV ai
(
F i1γµ +

i

2M
F i2σµνq

ν
)

+ gAai F iAγµγ5

]
up (22)

where gai is the coupling of the current by boson a to quark i. The spinor of the proton is denoted
up and the spinors of the quarks are denoted ui. Thus the flavor form factors are defined:

〈p|uiγµui|p〉 = up
(
F i1γµ +

i

2M
F i2σµνq

ν
)
up

〈p|uiγµγ5ui|p〉 = upF
i
Aγµγ

5up (23)

There are a total of nine flavor form factors since there are three flavors times three Lorentz
invariants:

F u1 , F u2 , F uA

F d1 , F d2 , F dA

F s1 , F s2 , F sA (24)

To include neutron scattering with the same set of form factors, we invoke charge symmetry:

p→ n ⇒ u→ d, d→ u, s→ s. (25)

This implies the analog of Eqn. 16:

F u1 ≡ F
pu
1 = Fnd1 ; F d1 ≡ F

pd
1 = Fnu1 ; F s1 ≡ F

ps
1 = Fns1 (26)

This is the analog of setting Fu = Fd for the I = 0 case given above.
The weak and electromagnetic currents may be expressed in terms of these flavor form factors

for the proton as follows. The electromagnetic current in term of quarks is

jγµ =
2

3
uγµu−

1

3
dγµd+

2

3
cγµc−

1

3
sγµs+ · · · .

Thus by Eqns. 22 and 22

F pγi =
2

3
F ui −

1

3
F di −

1

3
F si ; Fnγi =

2

3
F di −

1

3
F ui −

1

3
F si . (27)

Similarly for the weak current

jZµ = (
1

4
− 2

3
sin2 θW )uγµu− (

1

4
− 1

3
sin2 θW )dγµd

+ (
1

4
− 2

3
sin2 θW )cγµc− (

1

4
− 1

3
sin2 θW )sγµs

− 1

4
uγµγ5u+

1

4
dγµγ5d−

1

4
cγµγ5c+

1

4
sγµγ5s (28)
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Consequently:

F pZi = (
1

4
− 2

3
sin2 θW )F ui − (

1

4
− 1

3
sin2 θW )(F di + F si ) (29)

With Eqns. 27 and 29 elastic electron, neutrino, and antineutrino scattering and parity-violating
electron scattering from either the proton and neutron can be described by the same set of form
factors.

Any non-singular linear combination of the F ui , F
d
i , and F si may be used for expressing cross

sections and asymmetries. The best known form factors are GγE and GγM for the proton and
neutron. Thus it is traditional to use GpγE,M , GnγE,M , and GsE,M as the independent form factors. In
terms of these quantities,

GpZE,M =
1

4
(GpγE,M −G

nγ
E,M )− sin2 θWG

pγ
E,M −

1

4
GsE,M (30)

There is a firm prediction for APV if strangeness is neglected. Any deviation of the measured
asymmetry from the prediction could then be attributable to non-zero strange form factors. The
equation for extracting strange form factors fromAPV and electromagnetic scattering data, is given
by

APV =

[
−GFM2

p τ

πα
√

2

]{
(1− 4 sin2 θW )− (31)

[εGpγE (GnγE +GsE) + τGpγM (GnγM +GsM )]

ε(GpγE )2 + τ(GpγM )2
−

(1− 4 sin2 θW )
√
τ(1 + τ)

√
1− ε2GpγM (−G(1)

A + 1
2F

s
A)

ε(GpγE )2 + τ(GpγM )2

}

3.5 Scattering off 208Pb

In this section we illustrate how parity violating electron scattering measures the neutron density,
mirroring the discussion in Ref. [2]. For simplicity, this section uses the plane-wave Born approx-
imation and neglects nucleon form factors. These are necessary for a quantitative analysis but
they do not invalidate the simple qualitative picture presented here.

One difference between the exchange of the photon and the Z0 is the couplings to both the
electron and the nucleons. The photon has purely vector couplings, and couples only to protons
at Q2 = 0. We note that for the spinless nuclei considered here, the magnetic moments cannot
contribute. Even though the Z0 has both vector and axial vector couplings, the nuclei being con-
sidered are spinless, the net axial coupling to the nucleus is absent. In contrast to the case for
photons, the Z0 has a much larger coupling to the neutron than the proton. In addition, the Z0 has
a large axial coupling to the electron that results in a parity-violating amplitude.

The implication of the above is that the potential between an electron and a nucleus to a good
approximation may be written

V̂ (r) = V (r) + γ5A(r) (32)

where the usual electromagnetic vector potential is

V (r) =

∫
d3r′Zρ(r′)/|~r − ~r ′| (33)
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and where the charge density ρ(r) is closely related to the point proton density ρp(r) given by

Zρp(r) =
∑
p

〈ψ†p(r)ψp(r)〉. (34)

The axial potential A(r) depends also on the neutron density:

Nρn(r) =
∑
p

〈ψ†n(r)ψn(r)〉. (35)

It is given by

A(r) =
GF
23/2

[(1− 4sin2θW )Zρp(r)−Nρn(r)] (36)

The axial potential has two important features:

1. It is much smaller than the vector potential, so it is best observed by measuring parity viola-
tion. It is of order one eV while V (r) is of order MeV.

2. Since sin2 θW ∼ 0.23, (1 − 4 sin2 θW ) is small and A(r) depends mainly on the neutron
distribution ρn(r).

As before, the electromagnetic cross section for scattering electrons with momentum transfer
q = (Q2)1/2 is given by

dσ

dΩ
=
dσ

dΩMott
|Fp(Q2)|2 (37)

where
Fp(Q

2) =
1

4π

∫
d3rj0(qr)ρp(r) (38)

is the form factor for protons, where j0 is the zero’th spherical Bessel function. From Fp(Q
2), one

may determine Rp. Note, we use the convention Q2 = −qµ2 > 0. One can also define a form
factor for neutrons

Fn(Q2) =
1

4π

∫
d3rj0(qr)ρn(r) (39)

Thus Rn may be determined if Fn(Q2) is known.
In Born approximation the parity-violating asymmetry involves the interference between V (r)

and A(r). It is,

ALR =
GFQ

2

4πα
√

2

[
4 sin2 θW − 1 +

Fn(Q2)

Fp(Q2)

]
(40)

The asymmetry is proportional to Q2/M2
Z (since GF ∝ M−2Z ) which is just the ratio of the propa-

gators. Since 1-4sin2θW is small and Fp(Q2) is known we see that ALR directly measures Fn(Q2).
Therefore, ALR provides a practical method to cleanly measure the neutron form factor and hence
Rn.

4 The Experimental Technique

In parity violating electron scattering experiments, one measures the helicity dependent left-right
asymmetry in the scattering of longitudinally polarized relativistic electrons from unpolarized nu-
clear targets. The resulting asymmetries are small, requiring measurements with statistical and
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Figure 1: Schematic overview of the HAPPEX experiment at Jefferson Laboratory.

systematic errors substantially less than 1 part per million (ppm). This requirement leads to two
overriding themes in the experimental technique; see Ref. [3] for a comprehensive discussion.

In the following, we briefly review salient features. First, the physical properties of the incident
beam on target and the experimental environment as a whole must be identical for the left- and
right-handed beams to a very high degree so as to minimize spurious asymmetries. Second,
innovative flux counting techniques must be used in order to accumulate sufficient statistics.

Indeed, all successful experiments to date have used a GaAs photocathode to produce polar-
ized electrons, with the ability to rapidly and randomly flip the sign of the electron beam polariza-
tion. The asymmetry is extracted by generating the incident electron beam as a pseudorandom
time sequence of helicity ”windows” and then measuring the fractional difference in the integrated
scattered flux over window pairs of opposite helicity. Due to the high rates, the integrated scattered
flux is typically obtained by flux counting, where the response of a charged particle detector that
intercepts the scattered electrons is integrated over the duration of each helicity window.

The flux counting technique implies that spectrometers must be chosen that guide the scat-
tered electrons of interest into a region that is otherwise free of background and detectors must
be chosen whose response is dominated by the scattered electrons. Further, the electronics that
record the detector signals must have sufficient resolution and be insensitive to electronic pickup.
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Finally, it is important that random fluctuations from sources such as beam jitter, target density
fluctuations and electronics noise are minimized.

Apart from random jitter, an important class of potential false asymmetries arise from helicity-
correlated fluctuations in the physical properties of the beam, such as intensity, energy and trajec-
tory. These properties are therefore monitored with high precision. The sensitivity of the scattered
flux to fluctuations in the beam parameters are evaluated continuously and accurately.

To extract the physics asymmetry from the measured experimental raw asymmetry, one needs
to measure the longitudinal polarization of the incident electron beam accurately. Electron beam
polarimetry has matured over the past two decades. There are two main techniques: Compton
polarimetry and Møller polarimetry each of which have advantages and disadvantages.

Figure 1 shows a schematic diagram of the important components of the HAPPEX experi-
ment, as a specific example of the all the important components of a parity violation experiment,
a detailed description of which can be found in Ref. [4]. Over the past 20 years, the experimental
techniques employed to measure these tiny left-right asymmetries have been steadily refined such
that statistical and systematic errors better than 1 part per billion (ppb) are possible [3]. Depend-
ing on the choice of target and kinematic variables, this has facilitated measurements in several
important physics topics, such as many-body nuclear physics, nucleon structure and searches for
physics beyond the standard model at the TeV scale.

5 Strangeness in Nucleons

5.1 Physics Motivation

One of the goals of modern nuclear physics is to incorporate sea quarks and gluons in a compre-
hensive description of nucleon substructure and to explore the connections of such a description
with QCD. It has been known now for more than two decades with increasing precision that the
quark spins are not the dominant contribution to the spin of the nucleon [5]. This prompted exper-
imental and theoretical scrutiny of the role of sea quarks, especially strange quarks in describing
the observables that characterize the bulk properties of the nucleon. One important way to cleanly
isolate the effects of strange quarks is in the extraction of the vector strange matrix elements 〈sγµs〉
in semi-leptonic neutral weak scattering [6].

An understanding of the role of strange quarks in the nucleon continues to have broad im-
plications. The range of uncertainty in the strange-quark condensate 〈ss〉 leads to an order of
magnitude uncertainty in spin-independent scattering rates of dark matter candidates, while spin-
dependent rates are uncertain to a factor of two given the range of uncertainty in the strange-quark
contribution to nucleon spin, ∆s [7]. The strange-sea asymmetry s − s is important for the inter-
pretation of the NuTeV experiment [8, 9].

After it was realized that PVES can measure neutral weak form factors and extract 〈sγµs〉 [10],
several experiments were carried out, some of which presented evidence for non-zero strange
form factors, albeit with marginal significance [11, 12, 13]. In contrast, the HAPPEX collaboration
emphasized high statistical accuracy and small systematic uncertainties at a single value of Q2 at
a time, and has found results consistent with zero strangeness in each of several measurements
at various values of Q2 [4, 14].

The exact calculation of the strange form factors from QCD is challenging since it involves
nonperturbative dynamics of sea quarks. Various model approaches have been used, such as
chiral perturbation theory, quark models, lattice gauge theory, Skyrme models and dispersion
relations [15, 16]. More recently, new predictions have become available from lattice calcula-
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tions [17, 18]. It was determined that, in order to comprehensively probe for non-zero strange
quark effects in the vector form factors, measurements over the range 0.1 < Q2 < 1 (GeV/c)2, as
well as forward and backward angle measurements off 1H, 2H and 4He targets, are required.

The final measurement in the HAPPEX series known as HAPPEXIII was carried out in Fall
2009. The kinematics of HAPPEXIII were chosen to be particularly sensitive to the apparent ef-
fects reported in Ref. [11]. The experimental technique was similar to previous HAPPEX measure-
ments [4]. A 100 µA continuous electron beam of longitudinally polarized electrons at 3.481 GeV
was incident on a 25 cm long liquid hydrogen target. The twin Hall A High Resolution Spectrom-
eters (HRS) [19] each accepted scattered electrons over a solid angle of 5 msr with an averaged
polar angle of 〈θ〉 ∼ 13.7◦. Elastically scattered electrons from target protons were focused onto
a calorimeter in each spectrometer; electrons from inelastic processes were not transported to
the focal plane. Each calorimeter was composed of alternating layers of lead and lucite, with
Čerenkov light from the electromagnetic shower collected by a photomultiplier tube. The physics
run lasted about two months in late 2009 and sufficient statistics were accumulated to measure
the raw asymmetry to better than 3.5%.

5.2 Physics Result and Implications

The final results were reported in a seminar at Jefferson Laboratory in February 2011 and has
recently been submitted for publication in Physical Review Letters [20]. After all corrections and
normalizations, the result was APV = −23.80±0.78 (stat)±0.36 (syst) ppm atQ2 = 0.624 (GeV/c)2.
If strange quarks did not contribute to the vector form factors, the asymmetry at thatQ2 is estimated
to be ANS = −24.062 ± 0.734 ppm. Comparing the latter with the former, the specific combina-
tion of strange-quark electric and magnetic form factors are determined to be GsE + 0.517 GsM =
0.003± 0.010± 0.004± 0.009, where the error bars correspond to statistical, systematic, and elec-
tromagnetic form factor uncertainties, respectively.
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Figure 2: Constraints on GsE and GsM at Q2 ∼
0.62 (GeV/c)2 from HAPPEXIII and G0 [11, 21].
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The constraints on the 2-D space spanned by GsE and GsM from all measurements near Q2 ∼
0.62 (GeV/c)2 are shown in Fig. 2. The experimental constraints at 1σ are represented by the
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shaded bands indicating the combined statistical and experimental systematic error bars. The
contours, representing the 68% and 95% uncertainty boundaries as indicated, combine all three
measurements and also account for the uncertainties inANS . The independently separated values
resulting from this fit areGsE = 0.047±0.034 andGsM = −0.070±0.067, with a correlation coefficient
of −0.93. The combined constraint is consistent with GsE = GsM = 0.

Figure 3 shows all published data on the net strangeness contribution GsE + ηGsM in forward-
angle scattering measurements from the proton versus Q2. Here, η = τGpM/(εG

p
E), and is approx-

imately numerically equal to Q2 over the range of the plot. Data from the HAPPEX [4, 14], G0 [11],
and A4 [12, 13] collaborations are shown. On each data point, the error bars indicate both the
statistical error and the quadrature sum of statistical and uncorrelated systematic error. For the
G0 data, some systematic uncertainties are correlated between points with a magnitude indicated
by the shaded region at the bottom of the plot. A shaded region around the zero-net-strangeness
line represents the uncertainties in ANS at 1σ; this uncertainty is not also included in the individual
data points.

The cross-hatched region displays the 1σ region allowed by a leading-order fit in which GsM
is taken to be constant and GsE is proportional to Q2. The confidence level of the fit is 33%,
demonstrating the reasonable self-consistency of the data. In contrast to the situation prior to this
work, the HAPPEX-III point constrains the cross-hatched fit into significant overlap with the band
corresponding to the uncertainty in ANS , and just over 1σ from zero. Thus, the new result rules out
large contributions from strange vector form factors with Q2 behavior similar to that of the nucleon
electromagnetic form factors.

6 The Neutron Skin of a Heavy Nucleus

While nuclear charge densities have been accurately measured with electron scattering, our
knowledge of neutron densities comes primarily from hadron scattering experiments whose in-
terpretations are model-dependent because of uncertainties in the strong interactions. PVES
provides an independent probe of neutron densities that is free of most strong interaction uncer-
tainties because the weak charge of the neutron is much larger than that of the proton [22]. The
asymmetry APV in elastic electron scattering off a heavy spinless nucleus is proportional to the
weak form factor, which in turn is very close to the Fourier transform of the neutron density. How-
ever, the Born approximation is not valid for a heavy nucleus and coulomb distortions must be
accurately calculated to facilitate a robust extraction [23] .

A model-independent measurement of the radius of the neutron Rn to a fractional accuracy of
1% has important implications for many subfields. A number of models based on relativistic mean
field theory have been developed to agree with the world data on nuclear charge distributions
and other properties, but predict Rn values between 0.0 and 0.4 fm larger than Rp [24]. There
is a strong correlation between Rn and the pressure of neutron matter at ∼2/3rd nuclear density,
constraining the equation state EOS (pressure as a function of density) of neutron matter [25].
The correlation between Rn and the radius of a neutron star is also interesting [26]. The EOS of
neutron matter is closely related to the symmetry energy S. There is a strong correlation between
Rn and the density dependence of the symmetry energy dS/dρ (ρ is the baryon density). The
symmetry energy S helps determine the composition of a neutron star; the transition density from
solid crust to the liquid interior is strongly correlated to Rn − Rp [27]. Finally, atomic parity viola-
tion (APV) measurements are sensitive to Rn [28, 29]. A future low energy test of the standard
model may involve the combination of a precise APV measurement along with PVES to constrain



Parity-Violating Electron Scattering p. 13

Rn. Alternatively, measuring APV over a range of isotopes can provide additional information on
neutron densities [30].

Many details of a practical PVES experiment to measure neutron densities were spelled
out [2], and formed the basis of the PREX proposal that took first data in Spring 2010. A 50
to 75 µA CW beam of longitudinally polarized 1 GeV electrons was incident on a 0.55 mm thick
isotopically pure 208Pb target. The optimum figure-of-merit requires that APV be measured with
elastically scattered electrons in the range from 4 to 7 degrees, at a rate of more than 1 GHz,
spatially separated from inelastic events from the first excited state at 2.5 MeV. The solution is
to use a pair of septum magnets that bend the electrons into the acceptance of the high resolu-
tion spectrometers, whose minimum angle is 12.5◦ and whose hardware momentum resolution is
0.1%. The relative flux of the electrons over each 8.33 ms beam window of opposite longitudinal
polarization was measured by directing the Cherenkov light from the quartz onto a photomultiplier
tube and integrating the output using precision 18-bit ADCs. The magnitude of APV at the requi-
site low Q2 of 0.01 (GeV/c)2 is ∼ 700 ppb and a 3% measurement is required in order to determine
Rn to 1%.

6.1 The PREXI Physics Run and Result

The first run of the PREX experiment took place between mid-March and late June 2010. The
physics result was released in April 2011 and a publication is being prepared for submission to
Physical Review Letters. The PREX design presented several technical challenges that needed
to build on previous PVES experiments. The bulk of these issues were resolved during the run,
and systematic control at the 10 ppb level and normalization control at the 1.5% level was demon-
strated. The important technical achievements were:

• A new room temperature septum magnet was constructed and commissioned to bend scat-
tered electrons in the range 4 to 7 degrees into the acceptance of the Hall A high resolution
spectrometers.

• A new “double Wien filter” was installed, commissioned and tested during production run-
ning. This device provides a powerful new way to reverse the sign of the longitudinal polar-
ization of the electron beam. All future parity experiments will make important use of this
new innovation.

• The vector analyzing power for elastic scattering off 208Pb was measured to be less than 0.5
ppm, which alleviates an important source of systematic error in the main APV measure-
ment.

• A new ”high-field” Møller polarimeter and a new green laser as the target for the Compton
polarimeter were commissioned. The combined systematic error on the beam polarization
was better than 1%, a record for a 1 GeV electron beam.

• A high power Pb target was commissioned and demonstrated to withstand a beam current of
70 µA for a period of a week. This is a major technical achievement, especially for carrying
out a high flux parity-violation measurement given that the target becomes non-uniform and
a subtle synchronization trick is needed to avoid increasing the statistical fluctuations.

• The detectors and electronics worked to the design specifications and achieved a noise floor
that allowed the measurement of the 1 GHz flux to be “shot-noise limited”.
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Figure 5: Toy geometry for the PREx II setup.
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large sphere which surrounds the entire geom-
etry.

After corrections for beam fluctuations in the raw asymmetry analysis, the grand average
was found to be 593 ± 50 parts per billion (ppb). After normalizing to the beam polarization and
subtracting background, the PREX result is APV = 657±60 (stat)±13 (syst) ppb. The implications
for Rn is demonstrated in Fig. 4. The measured result corresponds to a value for the neutron skin
of Rn − Rp = +0.34+0.15

−0.17 fm. The result demonstrates that the neutron RMS radius is 2σ larger
than that of the protons. The result is consistent with all the models shown. In a future run, we
plan to reduce the error bar by a factor of 3 to be able to discriminate between models and make
predictions relevant to neutron stars. We discuss this followup proposal next.

6.2 The PREXII Proposal

While the PREX run was a technical success, only about 15% of the total statistics required for
a 1% Rn determination was accumulated. In July 2012, the PREX collaboration submitted a new
proposal to the Jefferson Laboratory Program Advisory Committee for an additional 25 days of
beam time to complete the measurement to the desired level of precision. Several key improve-
ments will be made to enhance the robustness of the apparatus and to achieve high data collection
efficiency.

The proposal was approved with the highest rating. It is envisioned that the run would take
place in calendar 2014. JLab is due to start commissioning the 12 GeV beams in 2013. In 2014,
the nominal schedule calls for continued commissioning of the beams into Halls A and D. We
propose to use the end of the commissioning period in Hall A in 2014 to complete the PREX data
collection, which will require a period of two calendar months. It must be pointed out that this is
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the only target of opportunity, since the beam energy cannot be lowered to 1 GeV once 12 GeV
physics running begins in earnest in calendar 2015, when Halls B and C are scheduled to come
on line.

7 Conclusions and Outlook

The twenty year search for strange quark vector form factors is coming to a close. While earlier
measurements had suggested non-zero strange form factors, the new HAPPEX results leave little
room for strangeness dynamics at low Q2, a notion supported recent lattice gauge theory calcu-
lations [17, 18]. The A4 experiment plans to collect data at backward angles on both 1H and 2H
targets at Q2 of 0.1. They have already collected data at 0.6 GeV2, and plan to release it soon.
Both theoretically and experimentally, it has now become clear that strange form factors are no
more than a few percent of the ordinary electromagnetic form factors.

For measurements of the neutron skin in heavy nuclei on the other hand, the future looks
bright. The motivation to obtain a robust and model-independent determination of Rn over a range
of nuclei will remain compelling for years to come. The PREX collaboration’s followup proposal
to obtain the remaining statistics required for a 1% Rn measurement at Jefferson Laboratory has
been approved. Two other attractive nuclei to explore Rn measurements are 48Ca and 120/124Sn.
In general low Z nuclei tend to have a higher figure of merit due to the fact that the optimum Q2 at
which one must make the APV measurement tends to increase, and the figure of merit rises with
the square of the asymmetry times the count rate [24].

48Ca is particularly interesting because microscopic calculations may soon be feasible, which
would allow Rn to be related to poorly studied 3-neutron forces. Sn isotopes are also interesting,
since many of them have been used in heavy ion collisions to probe the density dependence of
the symmetry energy, which has been shown to be related to Rn. It turns out that 48Ca is an ideal
measurement at Jefferson Laboratory with a similar configuration to that used for PREX, except
that the beam energy would be raised to 2.2 GeV. This is one of the beam energies that would be
possible to run simultaneously with a 11 GeV beam in another Hall.

It is interesting to consider measurements of Pb and Sn at Mainz in the future, adapting the
apparatus that would be required for a high precision proton weak charge measurement. The
loss in rate due to the lower beam energy is roughly compensated by the larger available solid
angle. The momentum resolution that would be required is about 1%, and a system of baffles
could be used to isolate elastic events while rejecting background from inelastics as well as from
neutrals [31]. It will be very important to verify measurements of the same isotope in two different
laboratories and also obtain consistent results on Rn from three different isotopes.
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