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Résumé

Dans ce cours, on introduit la notion de facteur spectroscopique

dans le contexte du modèle en couches du noyau. On donne aussi une

introduction aux développements récents des calculs à grande échelle

du Modèle en Couches en Interaction. Finalement, les facteurs spec-

troscopiques et les fragmentations des états sont discutés pour des

noyaux sphériques proches des fermetures de couches mágiques ainsi

que pour des noyaux deformés.

Abstract

In these lectures, I introduce the notion of spectroscopic factor in

the shell model context. A brief review is given of the present status

of the large scale applications of the Interacting Shell Model. The

spectroscopic factors and the spectroscopic strength are discussed for

nuclei in the vicinity of magic closures and for deformed nuclei.
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1 Introduction

The basic idea of the Independent Particle Model (IPM) is to assume that,
at zeroth order, the result of the complicated two body interactions among
the nucleons is to produce an average self-binding potential. Mayer and
Jensen (1949) [1] proposed an spherical mean field consisting in an isotropic
harmonic oscillator plus a strongly attractive spin-orbit potential and an
orbit-orbit term. Later, other functional forms were adopted, e.g. the Woods-
Saxon well. The usual procedure to generate a mean field in a system of N
interacting fermions, starting from their free interaction, is the Hartree-Fock
approximation, extremely successful in atomic physics. Whatever the origin
of the mean field, the eigenstates of the N-body problem are Slater deter-
minants i.e. anti-symmetrized products of N single particle wave functions.
In the nucleus, there is a catch, because the very strong short range repul-
sion and the tensor force make the HF approximation based upon the bare
nucleon-nucleon force impracticable. However, at low energy, the nucleus do
manifest itself as a system of independent particles in many cases, and when
it does not, it is due to the medium range correlations that produce strong
configuration mixing and not to the short range repulsion.

Does the success of the shell model really “prove” that nucleons move
independently in a fully occupied Fermi sea as assumed in HF approaches? In
fact, the single particle motion can persist at low energies in fermion systems
due to the suppression of collisions by Pauli exclusion (Pandharipande et al.,
[2]).
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Brueckner theory takes advantage of the Pauli blocking to regularize the
bare nucleon- nucleon interaction, in the form of density dependent effective
interactions of use in HF calculations or G-matrices for large scale shell model
calculations.

The wave function of the ground state of a nucleus in the IPM is the
product of an Slater determinant for the Z protons that occupy the Z lowest
states in the mean field and another Slater determinant for the N neutrons
in the N lowest states of the mean field. In second quantization, this state
can be written as:

|N〉 · |Z〉 with: (1)

|N〉 = n†
1n

†
2 . . . n†

N |0〉 (2)

|Z〉 = z†1z
†
2 . . . z†Z |0〉 (3)

It is obvious that the occupied states have occupation number 1 and the
empty ones occupation number 0.

1.1 Spectroscopic factors.

Lets denote the nucleon creation and annihilation operators by a† and a, and
consider the ground states of the systems of A-1, A, and A+1 nucleons, then,

|A〉 = a†
1a

†
2 . . . a†

A|0〉 and, trivially (4)

〈A + 1|a†
A+1|A〉 = 1 ; 〈A + 1|a†

6=A+1)|A〉 = 0 (5)

〈A − 1|aA−1|A〉 = 1 ; 〈A − 1|a 6=A−1)|A〉 = 0. (6)

The expectation values of the operators a† and a between the states of the
nuclei with A+1 and A, and A-1 and A, give the spectroscopic amplitudes
for stripping and pick-up reactions. The spectroscopic factors are the squares
of this amplitudes with some angular momentum coefficients. When corre-
lations are included, the spectroscopic amplitudes depart from their 0 or 1
values. The knowledge of the spectroscopic factors make it possible to learn
about the structure of the mean field and the role of correlations.
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1.2 Spectroscopic Factors and the Meaning of the Shell
Model.

The nuclear correlations modify the IPM picture. In Figure 1 we show the
results of the Correlated Basis Function calculation of Fantoni and Pandhari-
pande [3] for nuclear matter. If we had a system of non interacting fermions,
the figure would be just a step function corresponding to occupation 1 below
the Fermi level and occupation 0 above.

Figure 1: Dilution of the Spectroscopic strength by the bare N-N interaction.
Results for nuclear matter. Figure borrowed from ref. [2]

In spite of that, the nuclear quasi-particles resemble extraordinarily to the
mean field solutions of the IPM, as can be seen in the classical example of the
charge density difference between 206Pb and 205Tl, measured in the electron
scattering experiments of Cavedon et al [4] (Fig. 2) The shape of the 3s1/2

orbit is very well given by the mean field calculation. To make the agreement
quantitative the density has to be calculated with the occupation numbers
scaled down by a factor ∼0.7. To know more, read the article “ Independent
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particle motion and correlations in fermion systems” V. R. Pandharipande,
I. Sick and P. K. A. deWitt Huberts, [2].

Figure 2: Charge density difference between 206Pb and 205Tl. Experiment
vs. mean field calculation. Figure borrowed from ref. [2]

2 The Interacting Shell Model (ISM)

The ISM is an approximation to the exact solution of the nuclear A-body
problem using effective interactions in restricted valence spaces. The effec-
tive interactions are obtained from the bare nucleon-nucleon interaction by
means of a regularization procedure aimed to soften the short range repul-
sion. In other words, using effective interactions we can treat the A-nucleon
system in a basis of independent quasi-particles. A Shell Model calculation
amounts to diagonalizing the nuclear hamiltonian in the basis of all the Slater
determinants that can be built distributing the valence particles in a set of
orbits which is called valence space. The orbits that are always full form
the core. The three pillars of the shell model are the effective interactions,
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the valence spaces, and the algorithms and codes that make it possible to
solve the secular problem. For a recent review of the ISM see; E. Caurier, G.
Mart́ınez-Pinedo, F. Nowacki, A. Poves and A. P. Zuker. “The Shell Model
as a Unified View of Nuclear Structure”, [5].

2.1 Making the Effective Interaction Simple.

The effective shell model interactions appear sometimes as a long list of
meanigless numbers; the two body matrix elements of the Hamiltonian.
Without loosing the simplicity of the Fock space representation, we can re-
cast these numbers in a way full of physical insight, following Dufour-Zuker
rules: Any effective interaction can be split in two parts: H = Hm(monopole)
+ HM(multipole). Hm contains all the terms that are affected by a spher-
ical Hartree-Fock variation, hence it is responsible for the global saturation
properties and for the evolution of the spherical single particle energies [6].

The Monopole Hamiltonian can be written as:

Hm = Hsp +
∑

[

1

(1 + δij)
aij ni(nj − δij) (7)

+
1

2
bij

(

Ti · Tj −
3ni

4
δij

)]

.

The coefficients a and b are defined in terms of the centröıds:

V T
ij =

∑

J V JT
ijij [J ]

∑

J [J ]
(8)

as: aij = 1
4
(3V 1

ij + V 0
ij), bij = V 1

ij − V 0
ij, the sums run over Pauli allowed

values.
The evolution of effective spherical single particle energies with the num-

ber of particles in the valence space is dictated by Hm. In the case of identical
particles the expression reads:

εj(n) = εj(n = 1) +
∑

i

V 1
ijni (9)

The monopole hamiltonian Hm also governs the relative position of the
various T-values in the same nucleus, via the terms:

bij Ti · Tj (10)

Even small defects in the centroids can produce large changes in the
relative position of the different configurations due to the appearance of
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Figure 3: Effective single particle energies for the N=20 isotones from Oxygen
to Calcium

quadratic terms involving the number of particles in the different orbits.
These quadratic terms make it possible that deformed or superdeformed
states of n-particles n-holes nature could appear at very low excitation energy
in doubly magic nuclei as 16O or 40Ca.

The drift of the effective single particle energies is illustrated in Figure 3
for the N=20 isotones from Oxygen to Calcium. It is seen that, as we move
far from stability, the effective gap between the sd and pf shells diminishes,
and the 0f7/2 and 1p3/2 orbits change their ordering. Both facts contribute
to the appearance of a region of deformation around 31Na.

2.2 The Multipole Hamiltonian.

HM can be written in two representations, particle-particle and particle-hole:

HM =
∑

r≤s,t≤u,Γ

W Γ
rstuZ

+
rsΓ · ZtuΓ, (11)

HM =
∑

rstuΓ

[γ]1/2 (1 + δrs)
1/2(1 + δtu)

1/2

4
ωγ

rtsu(S
γ
rtS

γ
su)

0, (12)

where Z+
Γ ( ZΓ) is the coupled product of two creation (annihilation)
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operators and Sγ is the coupled product of one creation and one annihilation
operator.

Z+
rsΓ = [a†

ra
†
s]

Γ (13)

Sγ
rs = [a†

ras]
γ (14)

The W and ω matrix elements are related by a Racah transformation:

ωγ
rtsu =

∑

Γ

(−)s+t−γ−Γ

{

r s Γ
u t γ

}

W Γ
rstu[Γ], (15)

W Γ
rstu =

∑

γ

(−)s+t−γ−Γ

{

r s Γ
u t γ

}

ωγ
rtsu[γ]. (16)

The operators Sγ=0
rr are just the number operators for orbits r and Sγ=0

rr′

the spherical HF particle hole vertices. Both must have null coefficients if
the monopole hamiltonian satisfies HF self-consistency. The operator Z+

rrΓ=0

creates a pair of particles coupled to J=0 (or coupled to L=0 and S=0, or in a
state of zero total momentum). Therefore the terms, Z+

rrΓ=0 ·ZssΓ=0 represent
different pairing hamiltonians, whose specificities determine the values of the
matrix elements W Γ=0

rrss .
The operators Sγ

rs are typical multipole vertices of multipolarity γ. For in-
stance, r = s, γ=(L=0,S=1) produces a (~σ ·~σ) term which is the main compo-
nent of the residual interaction in He-3 droplets. The terms Sγ

rs γ=(J=2,T=0),
which appear in the (Q · Q) interaction that is responsible for the existence
of deformed nuclei, are specially large and attractive when jr − js=2 and
lr − ls=2.

A detailed analysis of the effective nucleon-nucleon interaction in the
nucleus, using the techniques of ref. [6] reveals that the multipole hamiltonian
is universal and dominated by BCS-like isovector and isoscalar pairing plus
quadrupole-quadrupole and octupole-octupole terms of very simple nature
(rλYλ · r

λYλ), as can be seen in table I.
In summary, the key aspects of the effective interaction(s) are: a) The

evolution of the spherical mean field in the valence spaces. In order to repro-
duce the experimental behavior, the present two body effective interactions,
probably require to be complemented by three body forces whose need seems
already well established by the Green Function Monte Carlo calculations [7]
and No Core Shell model Calculations [8]. Some claim that they could be
reducible to simple monopole forms, a kind of density dependence, or more
precisely, occupation number dependence. and, b) The multipole hamilto-
nian – which drives the correlations – and which does not seem to demand
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Table 1: Dominant terms of the multipole Hamiltonian for several pf -shell
effective interactions
Interaction particle-particle particle-hole

JT=01 JT=10 λτ=20 λτ=40 λτ=11
KB3 -4.75 -4.46 -2.79 -1.39 +2.46
FPD6 -5.06 -5.08 -3.11 -1.67 +3.17

GOGNY -4.07 -5.74 -3.23 -1.77 +2.46
GXPF1 -4.18 -5.07 -2.92 -1.39 +2.47
BONNC -4.20 -5.60 -3.33 -1.29 +2.70

major changes with respect to the one derived from the realistic nucleon-
nucleon potentials.

2.3 Collectivity in Nuclei.

The widespread presence of nuclei with deformed shapes is a conspicuous
manifestation of the importance of the quadrupole-quadrupole terms in the
nuclear multipole hamiltonian. Nuclear superfluidity (and the shift of the
mass parabolas in even isobaric multiplets, and many other effects) signal
also the importance of the pairing terms. For a given interaction, a many
body system would or would not display coherent features at low energy
depending on the structure of the mean field around the Fermi level. An
attractive pairing interaction in an electron gas at T=0 produces the su-
perconducting phase transition. The quadrupole-quadrupole interaction left
alone –i.e.– if the monopole hamiltonian is negligible, would produce nuclear
needles. Magic nuclei are spherical despite the strong quadrupole-quadrupole
interaction, because the large gaps in the nuclear mean field at the Fermi sur-
face block the quadrupole correlations. The isotropic harmonic oscillator has
SU(3) symmetry. The quadrupole operators are generators of this group and
the Casimir of the group contains the quadrupole-quadrupole interactions.
Therefore the states of lower energy are those with maximal deformation
compatible with the Pauli principle. The spin orbit interaction breaks the
SU(3) symmetry, but other SU3 variants emerge when there are favorable
orbits around the Fermi level, like Pseudo-SU3 or Quasi-SU3.

3 Spectroscopic factors

The spectroscopic factors are defined as:
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S(j, tz) =
〈JfTfTzf ||a

†
jtz
||JiTiTzi〉

2

2Jf + 1
(17)

where the matrix element is reduced in angular momentum only; j and tz

refer to the total angular momentum and third isospin component of the
stripped nucleon. Imagine we start on doubly magic 48Ca. The states

|rjtz〉 = a†
jtz
|48Ca gs〉 (18)

are not, except in the non-interacting case, eigenstates of the Hamiltonian for
49Sc or 49Ca. The stronger the correlations, the farther they are. Therefore,
to calculate S(j, tz) we overlap |r〉 with the physical states in the final nucleus.
In practice, we just take |r〉 as starting vector for a sequence of Lanczos
iterations. The total spectroscopic factor is the norm of the state |r〉. The
excitation energies of the starting vectors, er = 〈r|H|r〉 − 〈f |H|f〉:

ep3/2
= 4.54 MeV ep1/2

= 5.99 MeV ef5/2
= 5.76 MeV

are almost identical to the monopole prediction:

εp3/2
= 4.58 MeV εp1/2

= 5.99 MeV εf5/2
= 5.66 MeV

a result readily explained by the weakness of the ground state correlations
in 48Ca. By the same token the sum rules for (2j + 1)S(j, tz) are very close
to their theoretical maximum, (2j + 1). Indeed, the sum rule is actually
quenched by a factor of about 0.7 because of the short range correlations
that take part of the wave function out of the model space.

3.1 Stripping on 48Ca → 49Sc

We have compared the experimentally available information with large scale
shell model calculations in the full pf -shell using the interaction KB3 in
ref. [9]. The spectroscopic factors for f7/2 in Fig. 4, show little fragmentation.

For p3/2, Fig. 5 seems to indicate a discrepancy between theory—that
produces substantial fragmentation—and experiment, that falls quite short
of the sum rule, by detecting basically only two peaks. Note that the higher,
at around 11.5 MeV, corresponds to the IAS of the ground state of 49Ca.

The discrepancy is explained when we consider Fig. 6 for the p1/2 strength:
now the too numerous experimental fragments abundantly exceed the sum
rule. What seems to be happening is that the method chosen to analyse
the data does not distinguish among the L = 1 peaks those with J = 1/2
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Figure 4: Stripping on 48Ca → 49Sc. 0f7/2 spectroscopic strength.
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Figure 5: Stripping on 48Ca → 49Sc. 1p3/2 spectroscopic strength.
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Figure 6: Stripping on 48Ca → 49Sc. 1p1/2 spectroscopic strength.
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Figure 7: Stripping on 48Ca → 49Sc. 0f5/2 spectroscopic strength.
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from those with J = 3/2, unduly favouring the former. Note that the lowest
calculated state is a bit too high in Fig. 6. (The higher states are again
isobaric analogues.)

The situation becomes truly satisfactory for the f5/2 strength in Fig. 7.
The four lowest theoretical peaks may demand a slight downward shift but
they have nearly perfect counterparts in experiment, where a fifth state also
shows—a probable intruder. Higher up the agreement remains quite good,
especially if we remember that, at 60 iterations, the spikes beyond 7 MeV do
not represent converged eigenstates but doorways, subject to further frag-
mentation. Note that it is the second of the two IAS levels slightly above
15 MeV that carries most of the strength.

3.2 Spectroscopic factors and correlations; 48Ca vs 46Ar

The correlations act in two ways: Shifting strength from the particle to the
hole channel and fragmenting the strength into many states. For the neutron
stripping on 48Ca and 46Ar [11] the situation is as follows:

• orbit strength

• f7/2 0.025(Ca) 0.136(Ar)

• p3/2 0.982(Ca) 0.793(Ar)

• p1/2 0.987(Ca) 0.966(Ar)

• f5/2 0.984(Ca) 0.969(Ar)

In the presence of correlations, when the single particle strength is frag-
mented, one can still have an idea of the bearings of the underlying mean
field, constructing equivalent single particle energies [10].

εj =

∑

n(E0 − E−
n )S−

n +
∑

m(2j + 1)(E0 − E+
m)S+

m

(2j + 1)
(19)

∑

n

S−
n + (2j + 1)

∑

m

S+
m = 2j + 1 (20)

A recent discussion on this issue can be found in references [12, 13].
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3.3 Deformed nuclei; Stripping on 48Cr → 49Cr

In deformed nuclei, much of the particle strength goes to the hole channel.
We have made full pf -shell calculations with the KB3 interactions for the
the spectroscopic factors of the stripping reaction 48Cr → 49Cr. Both nuclei
are deformed with β ∼0.3. For instance in 48Cr we have only 0.585 of 0f7/2

strength instead of 1.0 in the single particle limit. In addition the particle
strength is fragmented among several states as can be seen in Fig.8. The
lowest 7/2− state in the figure belongs to the K=5/2 ground state band of
49Cr and is located at ∼300 keV of excitation energy.
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40

60

80
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Figure 8: Stripping on 48Cr → 49Cr; 0f7/2 spectroscopic strength.

Most of the 0f5/2 strength (0.96) remains in the particle channel. But
now the fragmentation, shown in Fig.9 is much stronger. It is interesting
to realize that the ground state Jπ= 5/2− does not have any 0f5/2 strength.
This is an extreme –and very illustrative– example of a physical situation
in which the correlations wash out completely the connection between the
quantum numbers of one state and its spectroscopic strength for the orbit
carrying the same quantum numbers.
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Figure 9: Stripping on 48Cr → 49Cr; 0f5/2 spectroscopic strength.
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