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Abstract. An overview of the more popular models used for the analysis of direct reaction data
is given, concentrating on practical aspects. As a concrete example, the 12C(d,p)13C reaction at an
incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated
models. The effect of the choice of reaction model on the spectroscopic information extracted from
the data is investigated and other sources of uncertainty in the derived spectroscopic factors are
discussed.

Résumé. En nous focalisant sur les aspects pratiques, nous effectuons une revue des mod-
èles les plus couramment utilisés pour l’analyse des données de réactions directes. Nous utilisons
comme illustration la réaction 12C(d,p)13C, avec un deuton incident de 30 MeV, en l’analysant avec
des modèles physiquement de plus en plus complexes. Les conséquences du modèle de réaction
choisi sur l’information spectroscopique extraite des données sont mises en évidence. Les autres
sources d’incertitude sur les facteurs spectroscopiques extraits sont également discutées.

SCOPE OF THE LECTURES

These lectures are intended to give a brief overview of some of the more commonly used
direct reaction models, concentrating on their use in practice to extract spectroscopic
factors from angular distribution data. They will not present details of the formalism
underlying these models which are given in a number of text books; two that I have found
particularly useful are those by Hodgson [1] and Satchler [2]. A number of practical
examples will be presented where the same data are analysed by progressively more
sophisticated reaction models and the sources of uncertainty in the derived spectroscopic
quantities are discussed. The ultimate aim of these lectures is to present the reader with
sufficient information to enable analyses of direct reaction data in the literature to be
assessed critically — in the best sense of the term — according to the following criteria:

1. Is the reaction model used appropriate to the circumstances?
2. What are the likely uncertainties in the derived spectroscopic quantities?
3. Are the conclusions drawn fully justified by the analysis?



FIGURE 1. Proton spectrum for the 208Pb(d,p)209Pb reaction at an incident deuteron energy of 20 MeV.
The two shaded peaks represent reactions from Carbon and Oxygen contaminants in the target. Taken from
Ref. [3].

INTRODUCTION: DIRECT REACTIONS AS A SPECTROSCOPIC
TOOL

Direct reactions are particularly useful as a spectroscopic tool due to their selectivity –
they favour the population of single particle (or hole) levels, see Fig. 1. Spectroscopic
information concerning the single-particle nature of the observed levels may then be
compared with the results of structure model calculations. Such measurements are par-
ticularly useful if it is possible to locate and identify all the states in a given nucleus that
have appreciable single particle strength. If this can be done one may, for example, de-
termine the extent to which each shell model orbital is filled in the target nucleus. Apart
from the excitation energies of the states, directly obtainable from energy-calibrated
spectra, how does one obtain the desired information — spin, parity, spectroscopic fac-
tor — from the direct reaction data?

It was first demonstrated by Butler [4] that the measured angular distributions of the
differential cross section (dσ /dΩ) of the AZ(d,p)A+1Z transfer reaction depend sensi-
tively on L, the angular momentum of the transferred neutron with respect to the “core”
nucleus AZ, thus enabling L to be determined by a comparison of the measured angular
distribution with one calculated by a suitable model of the reaction, see Fig. 2. This L
dependence is not restricted to the (d,p) process and is a general feature of transfer reac-
tions. If we know L we may determine the parity of the residual state via the relation:

πTπR = (−1)L (1)

where πT and πR are the parities of the target and residual states. However, the total spin
of the residual state, JR, is not in general unambiguously determined, being given by the



FIGURE 2. Cross section measurement (points) and DWBA calculations (curves) for 52Cr(d,p)53Cr
illustrating the dependence of the peak position on L. Taken from Ref. [5].

vectorial relation:
JR = JT +L+ s (2)

where JT is the total spin of the target state and s is the intrinsic spin of the transferred
particle. In the case of a (d,p) reaction on an even-even target where s = 1/2 and JT = 0
this reduces to:

JR = L±1/2. (3)
The general case is considerably more complicated, and a state of given JR may have
contributions from two or more different L values or, conversely, a given L may couple
with a non-zero JT to give several states with different JR values. Thus a measurement of
the differential cross section alone is not usually sufficient to determine JR completely.

Although a systematic J-dependence of the cross section angular distribution at large
angles has been noted for L = 1 (d,p) reactions [6] the principal means of determining
JR is by measurement of the vector analysing power iT11 [7] in an experiment with a
polarised deuteron beam or target. The vector analysing power may be defined as:

iT11 =
1

2
√

3
σUP −σDOWN

σ0
(4)

where σUP and σDOWN refer to the cross section measured with a deuteron beam that
is fully polarised parallel (UP) or antiparallel (DOWN) to ŷ, where the y-axis is chosen
to be perpendicular to the reaction plane (see Fig. 3). The quantity σ0 denotes the cross
section for an unpolarised beam.

Figure 4 shows some typical results for L = 1 transitions in the 52Cr(d,p)53Cr reaction.
Note that while the form of the cross section angular distributions is essentially identical
for all three transitions that of the analysing power is characteristic of the JR value;
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FIGURE 3. Coordinate system for the calculation of iT11, adapted from [5].

FIGURE 4. Cross section and vector analysing power measurements for three L = 1 52Cr(d,p)53Cr
transitions illustrating the dependence of analysing power on JR. Taken from Ref. [5].

the two JR = 3/2 transitions have similar vector analysing powers whereas iT11 for the
JR = 1/2 transition has the opposite sign.

Such measurements require either a polarised deuteron beam (in conventional kine-
matics for stable target nuclei) or a polarised deuteron target for radioactive beam ex-
periments carried out in inverse kinematics. While polarised deuteron targets are under
serious consideration for a number of current and proposed radioactive beam facilities



their practical application is still several years in the future, therefore we shall not con-
sider this aspect in detail. Knutson and Haeberli [5] give a useful review of polarisation
effects in transfer reactions for those who wish to pursue this subject.

The final quantity that we wish to determine is the spectroscopic factor, SJL. It is a
direct measure of the single-particle purity of the final, i.e. residual (or initial, i.e. target)
state. In its most basic form SJL is defined by the following relation:

dσ(θ ,E)/dΩ = SJLFJL(θ ,E) (5)

where dσ(θ ,E)/dΩ is the differential cross section and FJL(θ ,E) is a factor that
depends on the reaction mechanism and contains all the angular and energy dependence.
A measurement of the transfer cross section combined with the calculation of FJL(θ ,E)
by a suitable reaction model enables the spectroscopic factor to be determined, provided
that the quantum numbers J and L are known. Depending on the precise definition, SJL
often includes the isospin Clebsch-Gordan coefficient, C, and is therefore sometimes
written as C2S. Also, in practice SJL is the product of two spectroscopic factors, one
for the projectile overlap and one for the target overlap; in the case of the AZ(d,p)A+1Z
reaction the d = n + p and the A+1Z = AZ + n overlaps, respectively. The spectroscopic
factor for the projectile overlap is usually determined by other means, often a nuclear
structure calculation.

It is apparent from the foregoing that a model of the reaction process is essential if we
wish to obtain nuclear structure information from direct reaction data. In the remainder
of these lecture notes we shall concern ourselves with four of the most popular of these
models viz., in order of increasing sophistication:

1. The Distorted Wave Born Approximation (DWBA). The simplest useful reaction
model, which assumes a direct, one-step transfer process where the transfers to
specific states are individually weak and may be treated using perturbation theory.

2. The adiabatic model. A modification of the DWBA specific to (d,p), (d,n), (p,d) and
(n,d) reactions that takes effects due to breakup of the weakly-bound deuteron into
account in an approximate way.

3. The Coupled Channels Born Approximation (CCBA). Used when the assumption
of a one-step transfer process breaks down, it allows for two-step transfer paths
including inelastic excitation of the target, projectile or residual nucleus. The strong
inelastic excitations are modelled using the coupled channels technique while the
DWBA is retained for the weak transfer step.

4. Coupled Reaction Channels (CRC). The most sophisticated readily available model
of the transfer process. It does not assume that the transfer is either one-step or weak
and all reaction processes are treated on an equal footing. Complex rearrangements
of flux between channels are possible, sometimes leading to surprising results.

THE DISTORTED WAVE BORN APPROXIMATION

Despite its simplicity and longevity — it was first developed approximately fifty years
ago — the DWBA is still widely used today. What, then, are the basic “ingredients” of
a typical DWBA calculation? They fall under two main headings: firstly, we require, at



least in principle, optical model potentials that describe the appropriate elastic scattering
in the entrance and exit channels. These potentials are used to provide the distorted
waves that give the model its name. However, appropriate elastic scattering data are
often unavailable and one is constrained to use global parameterizations, an often far
from ideal expedient. Secondly, potentials that bind the transferred particle to the light
and heavy “core” nuclei — e.g. for the 12C(d,p)13C reaction the proton is the light and
the 12C the heavy “core” nucleus for the transferred neutron — and the internal wave
functions of the composite nuclei thus formed derived from these binding potentials are
required. The internal wave functions are usually calculated by binding the transferred
particle in a Woods-Saxon potential well of fixed “geometry”, i.e. radius and diffuseness,
with a depth adjusted to give the known binding energy of the state in question. This
is sometimes referred to as the “well-depth prescription” and obviously needs to be
reconsidered if transfer to an unbound resonant state is under consideration.

Some further details are needed to calculate the internal wave functions. In what
follows we tacitly assume for the sake of simplicity a (d,p)-type reaction on an even-
even target. The necessary information consists of:

1. The spin-parity (Jπ
R ) of the state of the residual or “composite” nucleus.

2. The angular momentum (L) of the transferred particle relative to the “core” nucleus.
3. The number of nodes (N) in the radial wave function.

These quantities are known for the light interacting partner (the deuteron in a (d,p)
reaction, for example) and are sometimes obtained from a theoretical potential, e.g. the
Reid soft-core N-N interaction [8] for the d = n + p wave function. For the heavy partner
they form part of the spectroscopic information we wish to determine; as we have seen,
in general only L is unambiguously determined by the data.

To obtain L from the data we also have to assume a definite J in our calculation,
plus a value for N. This is normally done by consulting a shell model scheme or, if
possible, a nuclear structure calculation and picking a level that seems to correspond to
that observed; N is then the principal quantum number of the selected state (there are
complications for the transfer of composite particles such as d, 3He, 4He etc. which are
covered in the book by Satchler [2]). Two typical radial wave functions obtained using
the well-depth prescription are shown in Fig. 5.

After assembling our ingredients we may obtain the spectroscopic factor for each
state by normalising our DWBA calculations to the measured angular distributions,
having first obtained the correct L values by a careful comparison of the forms of
the calculated angular distributions with the measured ones. However, the reality is
not quite so simple, as there are a number of ambiguities and traps for the unwary.
Firstly, there are ambiguities in the empirical optical model potentials used to calculate
the distorted waves in the entrance and exit channels; several different “families” of
potentials will often be found that fit the elastic scattering data equally well and the
choice of potential will affect both the value obtained for the spectroscopic factor and
the shape of the transfer angular distribution. Secondly, the geometry parameters of the
binding potentials are rather arbitrary as there is a wide range of “reasonable” values.
As the cross section scales with the choice of radius parameter the derived spectroscopic
factor can vary by up to 30 % depending on the chosen value. Finally, check the
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FIGURE 5. Radial wave functions for the 1p1/2 1/2− ground state and 2s1/2 1/2+ first excited state
of 13C, calculated using the well-depth prescription and binding the neutron to the 12C core in a Woods-
Saxon well of radius 1.25×121/3 fm and diffuseness 0.65 fm.

definition of N in the code you use — some codes start from N = 1, equivalent to
counting the node in the radial wave function at r = 0 but not that at r = ∞, others
from N = 0, equivalent to not counting either the node at r = 0 or r = ∞. Again, the
cross section scales with the value of N so that an error here will affect the extracted
spectroscopic factor.

THE ADIABATIC MODEL

Apart from the effect of ambiguities in the optical model potentials and the binding
potential geometry, the DWBA is unable to provide a satisfactory description of the data
for many (d,p) and (p,d) reactions for incident energies of around 20 MeV and higher [9].
This problem has been found to be caused by effects due to breakup of the weakly bound
deuteron. The adiabatic model [9, 10] takes these effects into account in an approximate
way by a redefinition of the incident (for (d,p) reactions) or exit (for (p,d) reactions)
deuteron distorted wave — it still describes the motion of the centre of mass of the
neutron and proton but they are now no longer necessarily propagating in the form of a
bound deuteron. This is achieved in practice by introducing an adiabatic potential into
a standard DWBA code in place of the usual deuteron optical model potential.

The crucial difference between the DWBA and the adiabatic model is therefore
contained in the use of the adiabatic potential, which is formally defined as:

V (~R) = D−1
0

∫

d~r
[

Vn

(

~R+
1
2~r

)

+Vp

(

~R−
1
2~r

)]

Vnp φd(r) (6)

where:
D0 =

∫

d~r Vnp φd(r) (7)



FIGURE 6. Coordinate scheme for calculating the adiabatic potential.

and Vp and Vn are the proton and neutron plus target optical potentials at half the incident
deuteron kinetic energy, Vnp and φd are the neutron-proton interaction and deuteron
internal wave function and ~R and~r are the radius vectors of the deuteron centre of mass
relative to the target and the neutron relative to the proton, see Fig. 6. Approximate
relations have been worked out for standard forms of Vp and Vn and the results found to
give excellent agreement with those calculated using equation 6, see e.g. Ref. [10].

The use of the adiabatic model can lead to significant improvement in the description
of data, see Fig.7, although it should be noted that in this form the adiabatic model
will not describe the deuteron elastic scattering data — remember that the “deuteron”
distorted wave was redefined — although this is possible within the adiabatic model
framework [9]. Apart from the substitution of the adiabatic potential for the deuteron
optical potential the ingredients of an adiabatic model calculation are the same as for
standard DWBA.

THE COUPLED CHANNELS BORN APPROXIMATION

A CCBA calculation proceeds in the same way as for the DWBA with the same ingredi-
ents, apart from the following additions: firstly, the inelastic scattering is now modelled
explicitly using the coupled channels formalism (see the books by Hodgson [1] and
Satchler [2] for details) and requires a Coulomb, B(Eλ ), and a nuclear, βλ (deformation
parameter, dimensionless) or δλ (deformation length, dimensions of length, usually in
units of fm), coupling strength where λ is the multipolarity of the inelastic excitation.
Secondly, the spectroscopic factors are replaced by spectroscopic amplitudes, the square
roots of the spectroscopic factors which can have a positive or negative sign — interfer-
ence effects between two routes to the same final state are now possible. Note that as the
inelastic scattering is now explicitly taken into account one must readjust the parameters
of the entrance channel optical potential to recover the fit to the elastic scattering data.



FIGURE 7. Data for the 54Fe(d,p)55Fe reaction at 23 MeV compared to standard DWBA (Conventional)
and two adiabatic model calculations (Adiabatic Z.R. and F.R). Taken from Ref. [10].

COUPLED REACTION CHANNELS

A coupled reaction channels calculation proceeds as for the CCBA and with the same
basic ingredients. However, the transfer couplings will now have an effect on the elastic
scattering too — they are no longer modelled using the DWBA — hence further ad-
justment of the entrance channel optical potential will in general be necessary. There is
a further complication, shared with the CCBA, in that for a given state of the residual
nucleus there may now be several spectroscopic amplitudes (with their relative signs) to
be determined from the same data set in place of the single spectroscopic factor of the
DWBA. In practice, one often has to be guided by a nuclear structure calculation of these
quantities. Care should be taken to check the “phase convention” between the signs of
different bound-state wave functions used in nuclear structure calculations and the direct
reaction code used for the analysis. Some reaction codes employ the convention that all
radial wave functions are at first positive as r is increased from zero; this is not always
the case in nuclear structure calculations and will affect the relative signs between spec-
troscopic amplitudes. Finally, with CRC one must take account of the non-orthogonality
of the entrance and exit channels. This should be corrected for and the correction is often
important.



A PRACTICAL EXAMPLE

To illustrate how the above models work in practice we shall take the 12C(d,p)13C
reaction, known as a deuteron stripping reaction as the neutron is “stripped” from the
deuteron and transferred to the 12C target, at an incident deuteron energy of 30 MeV.
These data will be analysed in turn with progressively more physically sophisticated
reaction models and the effect on the extracted spectroscopic factors noted. We shall
also illustrate some of the sources of ambiguity in any analysis of direct reaction data,
such as choice of distorting optical model potentials and binding potential geometry.
The 12C(d,p)13C transfer data are taken from Ohnuma et al. [11], the 12C(d,d)12C elastic
scattering data from Perrin et al. [12], the 12C(d,d′)12C inelastic scattering data to the 4.4
MeV 2+ state of 12C from Lind et al. [13] and finally, the 13C(p,p)13C elastic scattering
data from Greaves et al. [14].

We begin with two DWBA analyses with fitted and global optical model potentials.
Before we start, our first requirement is a reaction model code. There are many available
for DWBA calculations, two popular choices being DWUCK4 and DWUCK5 [15].
However, we shall use the code FRESCO [16], a flexible universal nuclear reaction code
which may also be used for CCBA and CRC calculations and which was employed for
all the calculations presented here.

Standard DWBA Analyses With Fitted and Global Optical Model
Potentials

We present in this section two parallel DWBA analyses of the same 12C(d,p)13C data
set, one employing empirical optical model distorting potentials obtained from fits to the
relevant 12C(d,d)12C and 13C(p,p)13C elastic scattering data and one employing global
deuteron and proton optical model parameter sets. The interest in this comparison arises
from the fact that one is often constrained to use global parameter sets when analysing
radioactive beam data due to the lack of suitable elastic scattering measurements. As we
shall see, even for stable nuclei where the global parameter sets should work reasonably
well, this can lead to important differences in the extracted spectroscopic factors.

The fitted optical model potentials for d + 12C and p + 13C were taken from Perrin
et al. [12] and a fit to the data of Greaves et al. [14], respectively. The global deuteron
potential was that of An and Cai [17] while the global proton potential was that of
Watson et al. [18]. The rest of the basic ingredients were identical for the two sets of
calculations. The deuteron internal wave function was calculated using the Reid soft
core potential [8] while the 13C internal wave functions were calculated in the well-
depth prescription, with the neutron bound to the 12C core in a Woods-Saxon well of
radius 1.25× 121/3 fm and diffuseness 0.65 fm, the well depth being adjusted to give
the correct binding energy, plus a spin-orbit potential of the same geometry with a fixed
well depth of 6 MeV.

In Figs. 8 and 9 we compare the measured d + 12C and p + 13C elastic scattering
angular distributions with both sets of calculations. While the global parameters give
a rather good description of the deuteron elastic scattering, the description of the exit
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FIGURE 8. Data for 30 MeV 12C(d,d)12C elastic scattering [12] compared to the optical model calcu-
lations using fitted (solid curve) and global (dashed curve) parameters.

channel proton scattering is poor; although the form of the angular distribution is good
the absolute magnitude is too large. The description of the vector analysing powers by
the global potentials is reasonable for both data sets. We therefore see that the use of a
global parameter set violates one of the basic tenets of the DWBA, i.e. that the distorting
potentials should reproduce the appropriate elastic scattering, as far as the exit channel
is concerned. The effect of this will become apparent when we compare the two sets of
calculations for the (d,p) transfer.

The (d,p) transfer data to the 0.0 MeV 1/2−, 3.09 MeV 1/2+ and 3.85 MeV 5/2+

states in 13C are compared to the two sets of calculations in Figs. 10-12. For the
purposes of this example transfers to states of known spin-parity are considered. Taking
each transfer in turn, we see that for the 0.0 MeV 1/2− state both calculations produce
cross section angular distributions of similar form, that employing the global potentials
giving a slightly better overall description of the data. However, neither calculation can
be said to provide a satisfactory fit to the data as they both fall off much too rapidly with
scattering angle compared to the measured angular distribution. For the transfer leading
to the 3.09 MeV 1/2+ state, although both calculated angular distributions exhibit the
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FIGURE 9. Data for 30 MeV 13C(p,p)13C elastic scattering [14] compared to the optical model calcu-
lations using fitted (solid curve) and global (dashed curve) parameters.

characteristic form of an L = 0 transfer neither provides a satisfactory description of
the data. There is a significant angle phase error in the position of the first minimum
of the angular distribution for both calculations, worst for the global potentials. This
phase error is also characteristic of many L = 0 DWBA calculations! The magnitude of
the second peak in the angular distribution relative to that at 0◦ is also too large in the
calculations compared to the data, the calculation using the global potentials again being
much worse in this respect. Finally, for transfer leading to the 3.85 MeV 5/2+ state both
calculations give identical angular distributions, providing a good description of the data
out to about 30◦. Thereafter the calculated cross sections are too large compared to the
data. Although there are no data available, calculated vector analysing power angular
distributions are also given in Figs. 10-12 for the sake of completeness. The results of
the two calculations are not significantly different.

The spectroscopic factors extracted from the two sets of calculations are given in
Table 1. Spectroscopic factors were obtained by normalising the calculated angular
distributions to the most forward angle data points, in general good practice as it is in
this angular region that the DWBA hypothesis of a direct, one-step transfer mechanism
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FIGURE 10. Data for the 30 MeV 12C(d,p)13C transfer to the 0.0 MeV 1/2− state in 13C [11] compared
to DWBA calculations using fitted (solid curve) and global (dashed curve) parameters.

TABLE 1. Spectroscopic factors obtained
from the two DWBA analyses.

1/2− 1/2+ 5/2+

Fitted potentials 0.76 1.00 0.77
Global potentials 0.62 1.69 0.69

is expected to be most realistic. The spectroscopic factors from the DWBA analysis
using global potentials are about 20 % smaller, 70 % larger and 10 % smaller than those
obtained from the analysis using fitted potentials for the 1/2−, 1/2+ and 5/2+ states,
respectively. The much larger discrepancy for the 1/2+ state is due to the significant
phase error in the calculated versus measured angular distribution which complicates
the normalisation of theory to data.

In summary, the agreement of either set of calculations with the data is poor. Using
different fitted optical model potentials does not change this. In addition, it is apparent
that the use of global optical model parameter sets, even for stable nuclei, can lead to
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FIGURE 11. Data for the 30 MeV 12C(d,p)13C transfer to the 3.09 MeV 1/2+ state in 13C [11]
compared to DWBA calculations using fitted (solid curve) and global (dashed curve) parameters.

important differences in the extracted spectroscopic factors. The poor agreement with
the data suggests that the DWBA, with its underlying assumptions that the individual
transfers are weak and thus possible to treat within the framework of perturbation theory
and proceed in a single step, is not an adequate model of the reaction process in this
case.

As 12C has a strongly coupled first excited state, the 4.4 MeV 2+, could a CCBA
calculation including transfer paths where the stripped neutron is attached to the 12C
core in its excited state as well as the ground state improve the description of the data?
This possibility will be investigated in the next section.

CCBA Analysis

As the DWBA has proved inadequate to describe these data we now present a CCBA
analysis where coupling to the 12C 4.4 MeV 2+ state is explicitly taken into account,
allowing additional transfer paths via this state. As stated above, Coulomb and nuclear
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FIGURE 12. Data for the 30 MeV 12C(d,p)13C transfer to the 3.85 MeV 5/2+ state in 13C [11]
compared to DWBA calculations using fitted (solid curve) and global (dashed curve) parameters.

coupling strengths are required for the inelastic scattering. For the Coulomb coupling
strength we took the recommended value for the B(E2;0+ → 2+) from the compilation
of Raman et al. [19]. The nuclear coupling strength, in this case the deformation length
δ2, was extracted from the B(E2) value assuming the collective model; this simplifying
assumption will obviously need to be re-examined for exotic nuclei where the neutron
and proton densities may be very different. The fitted optical model potentials used in
the DWBA analysis were retained but the parameters of the entrance channel deuteron
potential were readjusted to recover the fit to the elastic scattering data.

In Figs. 13 and 14 the calculated deuteron elastic and inelastic scattering angular
distributions are compared with the data. Apart from a slight deterioration in the
description of the analysing power (the spin-orbit component of the deuteron optical
potential was not adjusted) the agreement with the elastic scattering data is as good as
for the optical model fit. The agreement with the inelastic scattering data, while not
perfect, is acceptable.

The CCBA does not significantly improve the agreement with the transfer data, except
for transfer to the 3.09 MeV 1/2+ state. The angular distributions for both cross section
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FIGURE 13. Data for 30 MeV 12C(d,d)12C elastic scattering [12] compared to the CCBA calculation
(solid curve). The optical model calculation with fitted potential parameters is also given for comparison
(dashed curve).

and vector analysing power for transfer to the 0.0 MeV 1/2− and 3.85 MeV 5/2+ states
are identical to those obtained with the DWBA and will not be shown here. However,
the extra transfer path via the 12C 4.4 MeV 2+ state does significantly improve the fit to
the 1/2+ state data, moving the first minimum to match the data, see Fig. 15.

The main effect of the additional transfer paths available within the CCBA framework
is to change the spectroscopic factors somewhat compared to the DWBA analysis. The
CCBA analysis yields spectroscopic amplitudes rather than factors, as stated above, but
these are merely the square roots of the spectroscopic factors. The values obtained in the
current analysis are given in Table 2; the symbol “⊗” denotes “is coupled to.” Squaring
the values given in the first row of Table 2 we obtain the following spectroscopic factors
for the transferred neutron coupled to the 12C core in its ground state: 0.90, 0.83 and 0.81
for transfer to the 13C 1/2−, 1/2+ and 5/2+ states, respectively. These may be directly
compared to the values obtained in the DWBA analysis using fitted potentials: 0.76, 1.0
and 0.77, showing an increase of about 18 %, a decrease of about 17 % and an increase
of about 5 %, respectively for the CCBA over the DWBA values.
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FIGURE 14. Data for 30 MeV 12C(d,d′)12C inelastic scattering to the 4.4 MeV 2+ state [13] compared
to the CCBA calculation (solid curve).

TABLE 2. Spectroscopic amplitudes deter-
mined from the CCBA analysis. The left-hand
column denotes the 12C core spin and the `, j
quantum numbers of the transferred neutron.

Configuration 1
2
− 1

2
+ 5

2
+

0⊗ j 0.95 0.91 0.90
2⊗ s1/2 — — 0.70
2⊗ p3/2 −0.40 — —
2⊗d5/2 — −0.40 −0.30

In summary, with the exception of transfer to the 3.09 MeV 1/2+ state, CCBA does
not improve the agreement between calculations and data. Nevertheless, even though
the angular distributions for transfer to the 0.0 MeV 1/2− and 3.85 MeV 5/2+ state
calculated with the CCBA are essentially identical to those calculated with the DWBA
the extracted spectroscopic factors can be significantly different. The main success of
the CCBA over the DWBA in this case is that it can eliminate the angle phase error
in the calculated angular distribution for the 1/2+ state, considerably improving the
description of the data. It should be noted, however, that in general the spectroscopic
amplitudes for the two-step transfer paths via the 12C 2+ excited state are not well
determined by the data. Transfer to the 1/2+ state again forms an exception, as the
position of the first minimum in the angular distribution enables the 12C(2+)⊗ p3/2
spectroscopic amplitude to be rather accurately fixed. Overall, we see that the CCBA
does not solve all our problems and that we must consider other influences such as the
effect due to breakup of the deuteron. These will be investigated in the next two sections,
firstly using the approximate adiabatic model then using a more sophisticated coupled-
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FIGURE 15. Data for the 30 MeV 12C(d,p)13C transfer to the 3.09 MeV 1/2+ state in 13C [11]
compared to the CCBA calculation (solid curve). The DWBA calculation with fitted potential parameters
is also given for comparison (dashed curve).

channels based model.

Breakup Effects (1): The Adiabatic Model

We shall first consider the influence of deuteron breakup on the 12C(d,p)13C transfer
reaction by employing the adiabatic model, discussed previously. This model has not
yet been formulated to allow inelastic excitation of the target to be taken into account
consistently so we shall only consider one-step transfer, as in the DWBA. The potentials
Vp and Vn, required to calculate the adiabatic deuteron potential, were taken from optical
model fits to p + 12C [20] and n + 12C [21] elastic scattering data at an incident energy
of 15 MeV. All other details were as for the DWBA calculation using fitted optical
potentials.

We present the results of the transfer calculations using the adiabatic model in Figs.
16-18 (it will be recalled that a comparison with the deuteron elastic scattering is not
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FIGURE 16. Data for the 30 MeV 12C(d,p)13C transfer to the 0.0 MeV 1/2− state in 13C [11] compared
to the adiabatic model calculation (solid curve) with the DWBA calculation using fitted parameters given
for comparison (dashed curve).

relevant for the adiabatic model in this form). Taking each transfer in turn, we see that
for transfer leading to the 0.0 MeV 1/2− state in 13C the adiabatic model description
is considerably improved compared to that of the DWBA, providing a good fit over
almost the entire angular range of the data. Note also the significant effect on the vector
analysing power. For transfer leading to the 3.09 MeV 1/2+ state in 13C the adiabatic
model fit is perhaps slightly better overall than that of the DWBA, although the position
of the first minimum in the angular distribution is now shifted to slightly too large an
angle. Again, note the significant effect on the analysing power. Finally, for transfer
leading to the 3.85 MeV 5/2+ state the overall fit to the data is better than for the
DWBA, although at angles θ < 30◦ the slope of the adiabatic model calculation is not
steep enough compared to the data, unlike the DWBA result. The effect on the analysing
power is much less marked than for the two other transfers.

The most important effect of the adiabatic model is, however, on the spectroscopic
factors. These are: 0.38, 0.41 and 0.52 for transfer to the 1/2−, 1/2+ and 5/2+ states of
13C, respectively and correspond to reductions of about 50 %, 59 % and 32 % compared
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FIGURE 17. Data for the 30 MeV 12C(d,p)13C transfer to the 3.09 MeV 1/2+ state in 13C [11] com-
pared to the adiabatic model calculation (solid curve) with the DWBA calculation using fitted parameters
given for comparison (dashed curve).

to the values obtained with the DWBA using fitted potentials.
In summary, it is apparent that the adiabatic model gives much improved overall

agreement with the transfer data compared to either the DWBA or CCBA analyses.
The most striking improvement is in the fit to the data for transfer leading to the
0.0 MeV 1/2− state in 13C. There are also important effects on the vector analysing
powers, although the most dramatic influence is on the spectroscopic factors which are
substantially reduced compared to those obtained using the DWBA.

Breakup Effects (2): CDCC/CRC calculations

As stated above, the adiabatic model is an approximate treatment of the effects due
to deuteron breakup in (d,p) and (p,d) reactions. A more sophisticated approach known
as the coupled discretised continuum channels (CDCC) method [22] is available and
may be combined with CRC, used to model the transfer steps, to give the most complete



10-1

100

101

dσ
/d

Ω
 (m

b/
sr

)

Adia
DWBA

0 20 40 60 80 100
θc.m. (deg)

-1.0

-0.5

0.0

0.5
iT

11

FIGURE 18. Data for the 30 MeV 12C(d,p)13C transfer to the 3.85 MeV 5/2+ state in 13C [11] com-
pared to the adiabatic model calculation (solid curve) with the DWBA calculation using fitted parameters
given for comparison (dashed curve).

calculation of such reactions that we are able to perform at the present time. We shall
not give details of the method here as it is beyond the scope of these lectures and will
merely present the results. Couplings to deuteron breakup, inelastic excitation of the
12C 4.4 MeV 2+ state and transfer paths via both the 0+ ground and 2+ excited states
of 12C were included in the calculation that follows. The correction due to the non-
orthogonality of the wave functions in the entrance and exit channels was also included.

In Figs. 19 and 20 the calculated deuteron elastic and inelastic scattering angular
distributions are compared with the data. The description of the elastic scattering cross
section data is comparable to that of the optical model fit; the poor description of the
vector analysing power is due to the absence of a static spin-orbit potential, known to
dominate iT11 for deuteron elastic scattering, due to limitations in the code FRESCO.
It is not significant for the fit to the transfer data, as will be seen below. The inelastic
scattering to the 12C 4.4 MeV 2+ state is well described.

The results of the transfer calculations using the CDCC/CRC model are compared
with the data in Figs. 21-23 Agreement between calculation and experiment is now very
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FIGURE 19. Data for 30 MeV 12C(d,d)12C elastic scattering [12] compared to the CDCC/CRC calcu-
lation (solid curve).

TABLE 3. Spectroscopic amplitudes
obtained in the CDCC/CRC analysis. The
left-hand column denotes the 12C core
spin and the `, j quantum numbers of the
transferred neutron.

Configuration 1
2
− 1

2
+ 5

2
+

0⊗ j 0.81 0.77 0.85
2⊗ s1/2 — — 0.80
2⊗ p3/2 0.60 — —
2⊗d5/2 — −0.35 0.70

good for the 0.0 MeV 1/2− and 3.09 MeV 1/2+ states; the description of the transfer to
the 3.85 MeV 5/2+ state is similar to that obtained with the DWBA or CCBA. Effects on
the calculated vector analysing powers are only important for the 0.0 MeV 1/2− state.
The spectroscopic amplitudes obtained are given in Table 3.

In summary, we find that the CDCC/CRC combination provides by far the best overall
description of the data, much better than either the DWBA or CCBA. Nevertheless, it
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FIGURE 20. Data for 30 MeV 12C(d,d′)12C inelastic scattering to the 4.4 MeV 2+ state [13] compared
to the CDCC/CRC calculation (solid curve).

does not solve the problem of the relatively poor description of the 3.85 MeV 5/2+

data. We have also seen how the choice of reaction model can have a significant effect
on the shape of the calculated angular distribution, particularly so in this case for the 0.0
MeV 1/2− state. Based on the DWBA or CCBA calculations this state would probably
have been given an L = 2 assignment rather than L = 1 if the actual spin-parity were
unknown. It was necessary to take effects due to breakup of the deuteron into account
in the analysis, either approximately via the adiabatic model or explicitly through the
CDCC formalism to obtain a good description of this state with the correct spin-parity
assignment.

Squaring the values given in the first row of Table 3, as was done for the CCBA
analysis, we may compare the spectroscopic factors obtained from the CDCC/CRC
analysis with those extracted from the DWBA analysis using fitted optical potentials.
We obtain values of C2S = 0.66, 0.59 and 0.72 for the 13C 0.0 MeV 1/2−, 3.09 MeV
1/2+ and 3.85 MeV 5/2+ states, respectively, representing reductions of 13 %, 41 % and
6 %. We therefore find that in this case more accurate modelling of deuteron breakup
effects with the CDCC formalism leads to much smaller reductions in the extracted
spectroscopic factors compared to the DWBA than the approximate treatment of the
adiabatic model.

OTHER INFLUENCES ON EXTRACTED SPECTROSCOPIC
FACTORS

We saw in the previous section that the choice of reaction model can significantly
influence the value obtained for a spectroscopic factor extracted from an analysis of
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FIGURE 21. Data for the 30 MeV 12C(d,p)13C transfer to the 0.0 MeV 1/2− state in 13C [11] compared
to the CDCC/CRC model calculation.

direct reaction angular distribution data. However, the difference between the simplest
useful model (DWBA) and the most sophisticated (CDCC/CRC) was only important for
the L = 0 transfer in our 12C(d,p)13C test case. Perhaps the most important influence on
the extracted spectroscopic factor is the choice of radius for the Woods-Saxon potential
well that binds the transferred particle to the heavy core nucleus (12C in our example).
This is the main weakness of the well-depth prescription.

In all the calculations presented so far we have used the parameters: R0 = 1.25×A1/3

fm, a0 = 0.65 fm, often regarded as “standard”, although with little real justification.
This choice of parameters has a certain sanctity due to its age — it became popular
in the 1960s and is derived from an early global proton scattering optical potential —
but other choices are equally physically reasonable. In this section we present a series
of DWBA calculations for the 12C(d,p)13C transfer to the 0.0 MeV 1/2− state with
different reasonable choices of r0 ranging from 1.1 to 1.4 fm to demonstrate the effect
of this choice on the extracted spectroscopic factor.

In Fig. 24 we present the results of the calculations. Note that the effect on the
calculated vector analysing power is negligible. The effect on the cross section angular
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FIGURE 22. Data for the 30 MeV 12C(d,p)13C transfer to the 3.09 MeV 1/2+ state in 13C [11]
compared to the CDCC/CRC model calculation.

distribution is only significant for angles greater than about 30◦ in the centre of mass
frame, part of the reason why it is good practice to extract the spectroscopic factor by
normalising the calculated angular distribution to the data at forward angles. The most
important effect is on the extracted spectroscopic factor, which varies from C2S = 0.92
for r0 = 1.1 fm to C2S = 0.61 for r0 = 1.4 fm, a reduction of ∼ 34 %. The effect on the
extracted spectroscopic factor is much smaller for the L = 0 transfer to the 3.09 MeV
1/2+ state, C2S ranging from 1.10 for r0 = 1.1 fm to 0.90 for r0 = 1.4 fm, a reduction
of ∼ 18 %. For the L = 2 transfer to the 3.85 MeV 5/2+ state the effect is the same as
for L = 1, C2S ranging from 0.96 for r0 = 1.1 fm to 0.62 for r0 = 1.4 fm, a reduction of
∼ 35 %.

SUMMARY SO FAR

We have seen that both choice of reaction model and binding potential well radius can
have important effects on the spectroscopic factors extracted from analyses of direct
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FIGURE 23. Data for the 30 MeV 12C(d,p)13C transfer to the 3.85 MeV 5/2+ state in 13C [11]
compared to the CDCC/CRC model calculation.

reaction data, with the latter being, in general, more important. All things considered,
an uncertainty of the order of ±30 % in the value of an absolute spectroscopic factor is
not unreasonable — it could be even larger, as this is without taking into consideration
uncertainties in the data. These are often quite large (±20 %) for radioactive beam data.
However, relative spectroscopic factors between states of the same nucleus are usually
rather better determined, i.e. they are less sensitive to the details of the calculation.

Choosing a more sophisticated reaction model will not only lead to different (and
we hope more reliable) spectroscopic factors but will also usually provide a better
description of the shape of the angular distribution, thus facilitating the extraction of
the spectroscopic factor and giving a more reliable determination of the transferred L
value. This is particularly true if the angular coverage of the data is sparse and does not
extend very far towards θ = 0◦, as is often the case with radioactive beam data.
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FIGURE 24. DWBA calculations for the 12C(d,p)13C reaction leading to the 0.0 MeV 1/2− state for
various choices of r0.

CHOICE OF REACTION MODEL: WHEN IS THE DWBA
APPROPRIATE?

We have seen that the DWBA was not adequate to describe the data for the 12C(d,p)13C
reaction at an incident deuteron energy of 30 MeV. However, DWBA remains a useful
analysis tool provided the tenets of the theory are not violated. As a general rule, staying
with (d,p) reactions, the DWBA is an appropriate reaction model for systems with heavy
targets at low incident deuteron energies; exactly what constitutes “heavy” and “low”
is a rather subjective choice. As a concrete example of a system where the DWBA and
the CDCC/CRC method give identical results we take the 124Sn(d,p)125Sn reaction at an
incident deuteron energy of 9 MeV.

The data are taken from Ref. [23] and were actually taken in inverse kinematics with
a 124Sn beam. The original DWBA analysis was repeated and a CDCC/CRC calculation
was then performed, taking care to reproduce the 124Sn(d,d) elastic scattering predicted
by the entrance channel optical potential used in the DWBA analysis. All other input to
the CDCC/CRC calculation was as for the DWBA.
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FIGURE 25. DWBA and CDCC/CRC calculations for the 124Sn(d,p)125Sn reaction at an incident
deuteron energy of 9 MeV. The left-hand plot shows data for a single peak combining the 0.0 MeV
11/2−, 0.028 MeV 3/2+ and 0.215 MeV 1/2+ states of 125Sn while the right-hand plot presents data for
the 2.8 MeV 7/2− state of 125Sn. Note that the calculations presented in the left-hand plot omit the 0.0
MeV 11/2− state which makes a negligible contribution for angles less than 60◦ in the centre of mass
frame. Data taken from Ref. [23].

We compare the DWBA and CDCC/CRC calculations with each other and the data in
Fig. 25. The data consist of angular distributions for two peaks, one combining the 0.0
MeV 11/2−, 0.028 MeV 3/2+ and 0.215 MeV 1/2+ states of 125Sn and one containing
the 2.8 MeV 7/2− state of 125Sn only. In the calculations, transfer to the 0.0 MeV 11/2−
was omitted, as the contribution of this state for angles smaller than 60◦ in the centre of
mass frame is negligible. The left-hand plot in Fig. 25 shows angular distributions for
transfer to the 0.028 MeV 3/2+ state, peaked at approximately 40◦, the 0.215 MeV 1/2+

state, peaked at 0◦, and their sum. The right-hand plot shows angular distributions for
transfer to the 2.8 MeV 7/2− state. We see that the DWBA and CDCC/CRC calculations
give identical results, provided that the CDCC/CRC calculation reproduces the same
entrance channel elastic scattering as the optical model potential used in the DWBA
calculation.

A COUNTER EXAMPLE: A SYSTEM WHERE THE DWBA IS
COMPLETELY UNSUITABLE

We have seen in the previous section that the DWBA is able to provide a reliable
description of direct reaction data when the basic conditions underlying the theory are
fulfilled. However, for systems where one or more of these conditions are violated the
use of the DWBA to extract spectroscopic information can give completely misleading
results. As an example of such a system we take the 8He(p,t)6He reaction.

Data for this reaction are available at two widely spaced incident energies: 15.7
A.MeV [24] and 61.3 A.MeV [25]. The coupling to the intermediate 8He(p,d)7He
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FIGURE 26. Results of the CDCC/CRC calculation for the 8He(p,t)6He reaction at 15.7 A.MeV. The
data are taken from [24].

channel is very strong [26] and thus violates two of the basic assumptions underlying
the DWBA. The CDCC/CRC combination including the two-step mechanism via the
8He(p,d)7He(d,t)6He process is able to provide a coherent picture of all these data;
a DWBA analysis is unable to do so. The results of the CDCC/CRC calculations are
compared with the data in Figs. 26 and 27.

It should be noted that both calculations use exactly the same set of spectroscopic
amplitudes. The description of the whole data set is good, allowing for the relatively poor
quality of the data at 61.3 A.MeV. A DWBA analysis is unable to obtain a consistent
description of both data sets with the same spectroscopic factors at both energies,
illustrating the importance of accurate modelling of the reaction mechanism. In this case
the reaction is no longer a simple direct, one-step transfer.

SUMMARY

We have seen how the choice of reaction model can significantly influence the nuclear
structure information, particularly the spectroscopic factors or amplitudes but occasion-
ally also the spin-parity, that we wish to extract from direct reaction data. It was demon-
strated that the DWBA can fail to give a satisfactory description of transfer data and that
while the use of more physically sophisticated models can rectify many of the deficien-
cies of the DWBA it is not a panacea for all ills — recall the problem with the 5/2+ state
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FIGURE 27. Results of the CDCC/CRC calculation for the 8He(p,t)6He reaction at 61.3 A.MeV. The
data are taken from [25].

in 13C. However, when the tenets of the theory are fulfilled DWBA can work very well
and will yield the same results as the most sophisticated model e.g. the 124Sn(d,p)125Sn
reaction at low incident deuteron energy. When these conditions are violated, as for in-
stance for the 8He(p,t)6He reaction, the DWBA will fail to provide a coherent picture of
data sets at different incident energies and can give misleading results.

There remain a number of important sources of ambiguity in any determination of a
spectroscopic factor from direct reaction data quite apart from the choice of reaction
model and uncertainties in the data. Perhaps the largest single source of ambiguity
derives from the use of the well-depth prescription to calculate the bound-state wave
functions. We have seen that different physically reasonable choices of the binding
potential well radius can lead to large (∼ 30 %) differences in the extracted spectroscopic
factors. One could in principle adopt wave functions directly from structure calculations
(or adjust the potential well parameters to give equivalent wave functions) to avoid this
problem. However, if the structure calculation does not well reproduce the spectrum of
the nucleus in question has one really gained much? It has also been suggested that
the radius of the potential well should be set equal to the r.m.s. radius obtained from
electron scattering on the composite nucleus or that the values of r0 and a0 should be
constrained such that the binding potential gives the correct r.m.s. matter radius [27] —
this is certainly a reasonable possibility for stable nuclei, but at the present time electron
scattering measurements are not available for radioactive beams.

The use of global rather than fitted optical potentials can also lead to important
differences in the extracted spectroscopic factors. Here we have a “simple” remedy:
measure the relevant elastic scattering! However, this is not always practicable (and



of course impossible for exit channels where one of the pair of interacting nuclei is
unbound, an increasingly frequent occurrence in radioactive beam studies) but every
effort should be made to measure at least the entrance channel elastic scattering. With
modern detector arrays such as MUST-2 these measurements may be made at the same
time as those for the transfer reaction.

Finally, there are two further effects that influence the extraction of spectroscopic
factors from direct reaction data which we have not covered in these lecture notes.
These are the Perey effect and “heavy particle stripping”. The Perey effect [28, 29] is
a consequence of replacing an intrinsically non-local potential with its local equivalent.
The wave functions of the non-local potential are systematically smaller in the nuclear
interior than those of the equivalent local potential. This effect can be corrected for in an
approximate way and introduces a 10-20 % effect on the extracted spectroscopic factors.

Heavy particle stripping [30] is only relevant for systems with very light targets, e.g.
in the 4He(d,p)5He reaction the triton pickup 4He(d,5He)p will also contribute; it is the
latter process that is often known as “heavy particle stripping” and its contribution to the
final cross section will, in principle, also influence the extracted spectroscopic factors.
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