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Résumé

Les réactions de dissociation sont un des principaux outils pour l’étude de noyaux
de courte durée de vie. En particulier, la dissociation coulombienne permet d’obtenir
des informations sur les propriétés spectroscopiques des noyaux à halo et sur les fac-
teurs astrophysiques de réactions de capture radiative. Les études les plus simples
sont basées sur la théorie des perturbations et en particulier sur son premier ordre.
Cependant, la validité de l’approximation du premier ordre peut être limitée pour des
systèmes étendus comme les noyaux à halo et ses conditions ne sont pas toujours sa-
tisfaites dans les expériences existantes. Des modèles plus élaborés sont disponibles:
résolution de l’équation de Schrödinger semi-classique dépendant du temps, approxi-
mations eikonale et eikonale dynamique, méthode des voies couplées avec un continu
discrétisé (CDCC). Ces méthodes sont passées en revue et résumées. Leur intérêt et
leurs limitations sont discutés. Les dissociations du 11Be et du 8B sont traitées comme
exemples de ces diverses approximations.

Abstract

Breakup reactions are one of the main tools for the study of exotic nuclei. In partic-
ular, Coulomb breakup is expected to provide information on spectroscopic properties
of halo nuclei and on astrophysical S factors for radiative-capture reactions. The sim-
plest studies are based on perturbation theory and especially on its first order. However
the validity of the first-order approximation may be limited for extended systems such
as halo nuclei and its conditions are not always satisfied in existing experiments. More
elaborate reaction models are available: resolution of the semi-classical time-dependent
Schrödinger equation, eikonal and dynamical eikonal approximations, method of cou-
pled discretized-continuum channels (CDCC). These methods are reviewed and sum-
marized. Their interest and limitations are discussed. The 11Be and 8B breakups are
treated as examples of the various approximations.
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1 Introduction

The short lifetime of exotic nuclei does not allow many techniques of analysis. One
possibility is to study their decay products. Another possibility compatible with their
in-flight production is to collide them with some target nucleus [1-4]. Because of their
fragility due to low binding energies, one of the main decay channels is usually the
breakup channel. Breakup is a dissociation of the projectile into two or more fragments
caused by the interaction with the target nucleus. Here we are interested in breakup
processes where the target state remains unchanged (also called elastic breakup or
diffractive breakup [5]).

The goal of such experiments is to deduce properties of the projectile initial bound
state from the measurement of fragment distributions. Indeed, during the collision
process forces act differently on the constituents of the projectile if it displays some
amount of clusterization, i.e. if it can be considered as containing subentities grouping
several nucleons. The distribution of emitted fragments provides information on this
cluster structure of the projectile. However final-state interactions, i.e. interactions
between the fragments after the breakup has occurred, may make the interpretation
unclear.

An important particular case is Coulomb breakup where the collision can be con-
sidered as distant enough so that the nuclear interactions between projectile and target
can be neglected. This can be realized for the breakup in the Coulomb field of a heavy
nucleus when the scattering angles are small enough. This process is particularly in-
teresting because it provides information on the electromagnetic transition properties
of the projectile into the continuum. Moreover Coulomb breakup provides an indirect
technique of measurement of cross sections for radiative-capture reactions of astrophys-
ical interest [6, 7].

The analysis of experimental data on breakup reactions inevitably requires the use
of some theoretical model [8]. The theoretical description of breakup is difficult because
it is a many-body problem in the continuum, both for the initial and final states. Even
the simplest case that we study in the following involves three particles in the final
channel and thus requires solving a three-body Schrödinger equation in the continuum
in the presence of Coulomb forces. This problem thus also requires approximations in
the treatment of the reaction mechanism. The aim of the present review is to describe
and discuss some of the most efficient reaction descriptions applied in breakup models.

In section 2, we recall some basics of two-body scattering theory and present the
three-body model on which various approximate reaction descriptions will be applied.
Section 3 is devoted to semi-classical approximations. Purely quantal approximations
are described in section 4. Finally, section 5 contains concluding comments.

This text is adapted from Ref. [9].

2 Three-body breakup model

2.1 Two-body bound and scattering states of the projectile

In breakup reactions of loosely bound systems, the projectile is usually broken into very
specific fragments. One can consider that a cluster structure preexists dominantly
in the projectile. Such a structure may be described in a microscopic way where

2



all nucleons are taken into account. However, most present breakup calculations are
based on a much simpler description where the internal structure of the fragments is
neglected. Internal effects are simulated by the phenomenological interactions between
the clusters. The probability of the considered cluster structure in the ground-state
wave function of the projectile is simulated by a phenomenological multiplicative factor
called spectroscopic factor.

Here we assume that the projectile P is made of two structureless clusters. Its two
components will be called the core (c) with mass mc and charge Zce and fragment (f)
with mass mf and charge Zfe. The internal structure of P can thus be described by
the two-body effective potential acting between these clusters. After separation of the
centre-of-mass motion, its Hamiltonian for the internal motion reads

H0 =
p2

2µcf
+ Vcf(r), (2.1)

where r and p are the relative coordinate and momentum and µcf = mcmf/mP is the
core-fragment reduced mass (mP = mc + mf ). The real effective potential potential
Vcf between core and fragment may depend on the orbital momentum of the relative
motion and may contain spin-orbit terms. In the following, we do not consider spin-
orbit effects for simplicity.

At negative energies Enl < 0, bound-state wave functions φnlm verify

H0φnlm(r) = Enlφnlm(r) (2.2)

where n is the radial quantum number, l is the orbital momentum and m is its projec-
tion. They satisfy the orthonormality property

〈φnlm|φn′l′m′〉 = δnn′δll′δmm′ . (2.3)

In spherical coordinates, they factorize as

φnlm(r) = r−1Y m
l (Ω)unl(r) (2.4)

where Ω = (θ, ϕ) represents the angular variables. The radial wave functions unl

decrease asymptotically as

unl(r) −→
r→∞

Nnl exp(−κnlr) (2.5)

where κnl =
√

2µcf |Enl|/h̄ and Nnl is the asymptotic normalization constant (ANC).
At positive energies E > 0, scattering wave functions φklm for a given partial wave

l verify

H0φklm(r) = Eφklm(r) (2.6)

where the wavenumber k is given by E = h̄2k2/2µcf . Scattering states are not square-
integrable but their normalization can be fixed in different ways. Here we choose a
wavenumber normalization defined by

〈φklm|φk′l′m′〉 = δ(k − k′)δll′δmm′ . (2.7)
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These states are orthogonal for k 6= k′ and their normalization is fixed by a Dirac
delta function of k − k′. They are orthogonal to the bound states, 〈φklm|φnl′m′〉 = 0.
Together with the bound states, the partial-wave scattering wave functions verify the
closure relation

∑

nlm

|φnlm〉〈φnlm| +
∑

lm

∫ ∞

0
|φklm〉〈φklm|dk = 1. (2.8)

Partial scattering waves can be factorized as [10]

φklm(r) = r−1Y m
l (Ω)ukl(r). (2.9)

The radial functions ukl are real bounded solutions of the differential equations

(

d2

dr2
− l(l + 1)

r2
− 2µcfVcf(r)

h̄2 + k2

)

ukl(r) = 0 (2.10)

with the initial condition ukl(0) = 0. Except for a normalization factor, these solutions
are unique at given energy. With (2.7), this factor is fixed by

∫ ∞

0
ukl(r)uk′l(r)dr = δ(k − k′). (2.11)

The asymptotic behaviour of the radial scattering waves is

ukl(r) −→
r→∞

√

2

π
[cos δlFl(η, kr) + sin δlGl(η, kr)] (2.12)

−→
r→∞

√

2

π
sin(kr − 1

2
lπ − η ln 2kr + σl + δl) (2.13)

where Fl and Gl are the regular and irregular Coulomb functions [11] depending on the
Sommerfeld parameter η = ZcZfe

2/h̄vcf (vcf is the core-fragment relative velocity).
The energy-dependent phase shift δl is due to the effect of potential Vcf . At very large
distances, the oscillatory behaviour (2.13) of the radial wave function is distorted by
the long-range Coulomb force through the varying phase −η ln 2kr and the Coulomb
phase shift σl = arg Γ(l + 1 + iη). These corrections vanish when the fragment is a
neutron (Zf = 0).

Collision theory requires other types of states, known as the stationary scattering
states [10], which are also bounded solutions of the Schrödinger equation at energy E,

H0φ
(±)

k
(r) = Eφ

(±)

k
(r). (2.14)

The outgoing stationary scattering states φ
(+)

k
present the asymptotic behaviour

φ
(+)

k
(r) −→

r→∞
(2π)−3/2

(

ei(k·r+...) + fk(Ω)
ei(kr+...)

r

)

(2.15)

involving a Coulomb-distorted plane wave corresponding to the initial wavevector k

and an outgoing spherical wave. The dots recall the possible existence of logarithmic
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Coulomb terms. The coefficient fk modulating the outgoing wave is the scattering
amplitude at energy E which provides the elastic cross section

dσ

dΩ
= |fk(Ω)|2. (2.16)

The ingoing stationary scattering states φ
(−)

k
are obtained from the outgoing ones by

the time reversal operation

φ
(−)

k
(r) =

(

φ
(+)

−k
(r)

)∗
. (2.17)

They thus display the asymptotic behaviour

φ
(−)

k
(r) −→

r→∞
(2π)−3/2

(

ei(k·r+...) + f ∗
k (Ω)

e−i(kr+...)

r

)

(2.18)

characterized by an ingoing spherical wave and a plane wave representing a final motion
in direction k. While φ

(+)

k
is associated with initial scattering states, φ

(−)

k
will be useful

to describe final breakup states. Both types of states satisfy the orthogonality and
normalization properties

〈φ(±)

k
|φ(±)

k
′ 〉 = δ(k − k′) (2.19)

with a normalization imposing the factor (2π)−3/2 in Eqs. (2.15) and (2.18). These
states also satisfy closure relations together with the bound states,

∑

nlm

|φnlm〉〈φnlm| +
∫

|φ(±)

k
〉〈φ(±)

k
|dk = 1. (2.20)

The stationary scattering states can not easily be constructed explicitly. It is thus
convenient to expand them in partial waves. Since they are solutions of the same
equation at the same energy, they can be expressed as a function of the φklm defined
with (2.6) and (2.7) according to

φ
(±)

k
(r) = k−1

∑

lm

ilY m∗
l (Ωk)e

±i(σl+δl)φklm(r) (2.21)

where Ωk is the direction of k. Partial waves of φ
(±)

k
can be defined as

φ
(±)
klm(r) = k

∫

Y m
l (Ωk)φ

(±)

k
(r) = ile±i(σl+δl)φklm(r). (2.22)

Their radial parts only differ from the real solutions ukl of Eq. (2.10) by a phase factor,

u
(±)
kl (r) = ile±i(σl+δl)ukl(r). (2.23)

2.2 Three-body Schrödinger equation

The breakup description will take place in a simple three-body model involving three
structureless particles. The projectile P described with the two-body model of section

5



2.1 collides a pointlike target T with mass mT and charge ZT e. The Hamiltonian of
this three-body model reads

H =
p2

f

2mf

+
p2

c

2mc

+
p2

T

2mT

+ Vcf + VfT + VcT (2.24)

where pi is the momentum of particle i and Vij is some interaction between particles
i and j. This equation can describe elastic and inelastic scatterings and breakup but
can not describe many other processes such as excitation of the core or target. In
order to simulate some effects of these missing channels, the core-target interaction
VcT and the fragment-target interaction VfT are chosen as complex optical potentials
[12]. The imaginary parts of these potentials simulate the disparition of flux from the
initial channel.
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Figure 1: Jacobi coordinates.

In order to solve Eq. (2.24), it is convenient to introduce Jacobi coordinates (see
Fig. 1) and their conjugate momenta [13]. In addition to the centre-of-mass coordinate
Rcm and the total momentum P cm, one defines the internal projectile coordinate and
momentum

r = rf − rc, p =
mcpf −mfpc

mP
(2.25)

and the projectile-target relative coordinate and momentum

R =
mfrf +mcrc

mP
− rT , P =

mT (pf + pc) −mP pT

mP +mT
. (2.26)

The corresponding orbital momenta l = r × p and L = R×P allow writing the total
internal orbital momentum of the three-body system as

J = l + L. (2.27)

If spins were taken into account, the total angular momentum would be obtained by
coupling the total internal orbital momentum with the total spin.

After separation of the centre-of-mass motion, the three-body Schrödinger equation
becomes

(

P 2

2µPT

+H0 + VPT (R, r)

)

Ψ(R, r) = EtotΨ(R, r) (2.28)

where µPT is the projectile-target reduced mass and the projectile-target potential is
given by

VPT (R, r) = VcT

(

R − mf

mP
r

)

+ VfT

(

R +
mc

mP
r

)

. (2.29)

The main problem is to approximately solve Eq. (2.28) in the continuum.
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3 Semi-classical approximation

3.1 Time-dependent Schrödinger equation

The semi-classical approximation consists in a quantal description of the internal mo-
tion in the projectile and a classical description of the projectile-target relative motion
[14]. The reference frame can conveniently be chosen at the centre of mass of the
projectile. A trajectory R(t) with an impact parameter b and an initial velocity v is
selected to describe the target motion with respect to the projectile. In order that the
notion of trajectory be valid, the reduced de Broglie wavelength h̄/P = 1/K must be
small with respect to the impact parameter, i.e., Kb ≫ 1. Since energy is conserved on
this trajectory, excitation energies of the projectile should be negligible with respect
to the projectile energy. Because the nuclear interaction is complex in an optical po-
tential, its effect is usually not taken into account in the choice of a trajectory. The
trajectory is thus in general a Rutherford hyperbola due to Coulomb effects only (see
Appendix A), or even a straight line if only small scattering angles are considered.

The target motion induces a time-dependent potential acting on the projectile [15-
26]. If R(t) represents the trajectory of the target with respect to the projectile, the
evolution of the system is given by the time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ(r, t) = [H0 + V (r, t)] Ψ(r, t) (3.1)

where the time-dependent potential V is defined by

V (r, t) = VPT (R(t), r) − (Zc + Zf)ZT e
2

R(t)
. (3.2)

The last term in this expression compensates the fact that the particle follows a
Coulomb trajectory and that a Coulomb potential is already included in the trajectory
definition. As it does not depend on r, its effect is just modifying the phase of the wave
function. It can thus be included or omitted without modifying the physical results.
The solution of Eq. (3.1) can be formally written as

Ψ(r, t) = U(t, t0)Ψ(r, t0) (3.3)

where U is the evolution operator from t0 to t. Operator U is unitary if V is real. The
initial condition is fixed by

Ψ(r, t0) −→
t0→−∞

e−iE0t0/h̄φ0(r) (3.4)

where φ0 is the ground-state wave function of H0 and the phase factor arises from
Eq. (3.1) when V is negligible. The physics of the reaction is deduced from the wave
function at +∞.

3.2 Cross sections

Here and in the following, we assume for simplicity that the system has a single bound
state. The probability that the system remains in its ground state with wave function
φ0 is

P0 = |〈φ0|Ψ(+∞)〉|2 (3.5)
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Hence, the elastic cross section is given by

dσ

dΩ
=
dσR

dΩ
P0(b) (3.6)

where the Rutherford cross section

dσR

dΩ
= |fC(Ω)|2 =

η2

4k2 sin4 1
2
θ

(3.7)

is obtained from the Coulomb scattering amplitude fC [Eq. (4.27)]. To make sense,
Eq. (3.6) must be complemented by a relation between the scattering angle θ and the
impact parameter b, such as relation b = a cot 1

2
θ valid for a Coulomb trajectory, where

a = η/k is half the distance of closest approach in head-on collisions (see Appendix A).
The breakup momentum distribution is given by

dP

dk
=
∣

∣

∣〈φ(−)

k
|Ψ(+∞)〉

∣

∣

∣

2
(3.8)

where φ
(−)

k
is a solution of the Schrödinger equation (2.14) with asymptotic behaviour

defined by (2.18). The corresponding cross section reads

dσ

dk
= 2π

∫ ∞

0
bdb

dP

dk
. (3.9)

The total probability is obtained from the closure relation (2.20) as

P0 +
∫

dP

dk
dk = 〈Ψ(+∞)|Ψ(+∞)〉. (3.10)

If all potentials are real, these probabilities sum up to one. Because of absorption in
VcT and VfT , the norm of Ψ(+∞) and thus the sum are smaller than unity.

Expression (3.8) can be expanded in partial waves with (2.21) as

dP

dk
= k−2

∣

∣

∣

∣

∣

∑

lm

(−i)lY m
l (Ωk)e

i(σl+δl)〈φklm|Ψ(+∞)〉
∣

∣

∣

∣

∣

2

(3.11)

where φklm is defined by (2.9). After integration over the direction Ωk of emission of
the fragments, one obtains the momentum distribution

dP

dk
= k2

∫

dΩk
dP

dk
=
∑

lm

|〈φklm|Ψ(+∞)〉|2 . (3.12)

The energy distribution then reads

dP

dE
=

(

dE

dk

)−1
dP

dk
=

1

h̄vcf

∑

lm

|〈φklm|Ψ(+∞)〉|2 (3.13)

where vcf is the relative velocity between core and fragment. Eq. (3.13) leads to the
differential cross section with respect to the energy of the relative motion between the
projectile fragments

dσ

dE
= 2π

∫ ∞

0
bdb

dP

dE
. (3.14)
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3.3 First-order perturbation theory

The time-dependent Schrödinger equation (TDSE) reads

ih̄
d

dt
Ψ(t) = [H0 + V (t)]Ψ(t). (3.15)

If the potential is small enough, the first-order perturbation approximation Ψ(1)(t) of
the wave function is obtained by replacing Ψ(t) in the right-hand side of (3.15) by
Ψ(−∞) = e−iH0t/h̄φ0 [Eq. (3.4)]. By projecting on |φklm〉, one obtains

eiEt/h̄〈φklm|Ψ(1)(+∞)〉 =
1

ih̄

∫ +∞

−∞
eiωt〈φklm|V (t)|φ0〉dt, (3.16)

with the Bohr frequency ω = (E − E0)/h̄. This approximation can be used in the
probability distribution (3.13) and the cross section (3.14).

3.4 Coulomb breakup at first order

In the important particular case of Coulomb breakup, potential (3.2) reads

V C(r, t) =
ZcZT e

2

|R(t) − mf

mP
r| +

ZfZT e
2

|R(t) + mc

mP
r| −

(Zc + Zf)ZT e
2

R(t)
. (3.17)

With the von Neuman expansion

1

|r′ − r| =
∞
∑

λ=0

rλ
<

rλ+1
>

4π

2λ+ 1

λ
∑

µ=−λ

Y µ∗
λ (Ω′)Y µ

λ (Ω), (3.18)

where r> = max(r, r′), r< = min(r, r′), and the far-field approximation R > r, one
obtains

V C(r, t) ≈ ZT e
∞
∑

λ=1

4π

2λ+ 1

λ
∑

µ=−λ

Y µ∗
λ (ΩR)

Rλ+1
M(Eλ)

µ . (3.19)

The electric multipole operators

M(Eλ)
µ = Z

(Eλ)
eff erλY µ

λ (Ω) (3.20)

involve the effective charges

Z
(Eλ)
eff = Zc

(

mf

mP

)λ

+ Zf

(

−mc

mP

)λ

. (3.21)

Effective charges are useful to estimate the importance of the role of the various mul-
tipoles. When the fragment is a neutron (Zf = 0), the E2 component is small. For
example, for the breakup of 11Be into 10Be + n, the E1 charge is 4/11 ≈ 0.36 and the
E2 charge is 4/121 ≈ 0.03. The situation is quite different when the fragment is a
proton (Zf = 1). For the breakup of 8B into 7Be + p, the E1 charge is 3/8 ≈ 0.38 but
the E2 charge is larger, 53/64 ≈ 0.83.
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The scalar products (3.16) become up to an irrelevant phase factor

〈φklm|Ψ(1)(+∞)〉 ≈ ZT e

ih̄

∞
∑

λ=1

4π

2λ+ 1

λ
∑

µ=−λ

〈φklm|M(Eλ)
µ |φ0〉Iλµ (3.22)

with the integrals over time,

Iλµ =
∫ +∞

−∞
eiωtY

µ∗
λ [ΩR(t)]

R(t)λ+1
dt. (3.23)

For a straight-line trajectory R(t) = vt + b, their analytical expression is given from
Eq. (15) of Ref. [27] as

Iλµ =
1

v

√

2λ+ 1

π

iλ+µ

√

(λ+ µ)!(λ− µ)!

(

ω

v

)λ

K|µ|

(

ωb

v

)

(3.24)

which involves a Hankel function Kn(x) [11].
For simplicity, we now assume l0 = 0 and denote the radial wave function of the

ground state as u0. Selection rules in (3.22) then provide λ = l and µ = m. Let us
define the dipole strength (λ = 1) as

dB(E1)

dE
=

1

h̄vcf

∑

m

∣

∣

∣〈φk1m|M(E1)
m |φ0〉

∣

∣

∣

2
=

3(Z
(E1)
eff e)2

4πh̄vcf

∣

∣

∣

∣

∫ ∞

0
uk1(r)ru0(r)dr

∣

∣

∣

∣

2

. (3.25)

With (3.24), the probability distribution (3.13) of dipole breakup of the projectile P
into core c and fragment f reads at first order

dP (1)(E1)

dE
=

16π

9

(

ZT e

h̄v

)2 (ω

v

)2

[K0(x)
2 +K1(x)

2]
dB(E1)

dE
(3.26)

where x = ωb/v. The electric dipole breakup cross section is given by

dσ(1)(E1)

dE
= 2π

∫ ∞

bmin

bdb
dP (1)(E1)

dE
, (3.27)

where the smallest impact parameter bmin corresponds to the maximum scattering angle
in the experiment. With the integral

∫

xK2
n(x)dx = 1

2
x2[K2

n(x) −Kn−1(x)Kn+1(x)] (3.28)

and recurrence relations [11], it can be written as

dσ(1)(E1)

dE
=

32π2

9

(

ZT e

h̄v

)2

xminK0(xmin)K1(xmin)
dB(E1)

dE
(3.29)

with xmin = ωbmin/v. When the first-order perturbation and far-field approximations
are valid, a measurement of the breakup cross section provides the electric dipole
strength which in turn provides the cross section for the radiative-capture process
c(f,γ)P [6]

σγ(E1) ∝ dB(E1)

dE
(3.30)
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Figure 2: Accuracy of first-order perturbation theory for 11Be breakup in the left panel
and 8B breakup in the right panel (adapted from Ref. [30]).

(see Refs. [28, 29] for a detailed expression of σγ). The validity of the simple first-order
approximation is however limited, even at large impact parameters as shown by Fig. 2.

In Fig. 3 are shown ratios of breakup probability distributions calculated by solving
the time-dependent Schrödinger equation (see section 3.5) to the corresponding first-
order quantities at large impact parameters [30]. The 11Be breakup is presented in the
left panel. One observes that even at very large impact parameters, the first-order E1
approximation does not reproduce the time-dependent results. The accuracy is about
5 %. Moreover the energy dependence is different. For the 8B breakup presented in
the right panel, the first-order result contains both E1 and E2 components. The ratio
is always smaller than unity.

A simple analytical approximation exists for the dipole strength of a bound neutron
[13, 31]. Let us use it to illustrate a technique of determination of the spectroscopic fac-

tor S. The scattering wave φklm is approximated by a partial wave k
√

2/πjl(kr)Y
m
l (Ω)

of a plane wave and the initial ground-state wave function φ0 by its asymptotic be-
haviour N0r

−1e−κ0rY 0
0 (Ω) [Eq. (2.5)]. A simple integration in (3.25) using j1 = −j′0

leads to

dB(E1)

dE
=

3

π2
(Z

(E1)
eff e)2 h̄2

µcfE2
0

SN2
0

2κ0
f

(

E

|E0|

)

(3.31)

where a spectroscopic factor S is introduced as explained in section 2.1 to simulate
the fact that the projectile does not have a pure core-neutron structure. Function f is
given by

f(x) =
x3/2

(x+ 1)4
. (3.32)

It has a maximum at x = 3/5 so that, according to this simple model, the dipole
strength can be expected to be maximum near E = 3|E0|/5. The shapes of the dipole
strength and of the breakup cross section are thus very sensitive to the value of the
ground-state energy for weakly bound systems.
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Figure 3: Breakup cross section (left, bmin = 13 fm) and E1 strength (right) for the
11Be breakup on 208Pb at 72 MeV/nucleon obtained with Saxon-Woods potentials of
Ref. [26] without spin-orbit term (full lines) and of Ref. [33] (dotted lines) and with
Eq. (3.31) (dashed lines). Experimental data from Ref. [32].

As an example, we consider the 11Be breakup. The 11Be one-neutron halo nucleus
possesses two weakly bound states: a 1/2+ (l = 0) ground state with a neutron sepa-
ration energy Sn = 0.503 MeV and a 1/2− (l = 1) excited state with Sn = 0.183 MeV.
In Fig. 3, the maximum of the experimental E1 strength of Ref. [32] is located near 0.3
MeV, as expected from the simple model (3.31). Let us now describe and discuss the
determination of the spectroscopic factor performed in Ref. [32]. In Ref. [32], the ANC
in Eq. (3.31) is deduced from the ground-state wave function in a square well with ra-
dius 4 fm, which provides N0 = 0.783 fm−1/2. As shown by the dashed curves in Fig. 3,
a fit of the RIKEN data leads to S ≈ 1 [32]. However, expression (3.31) should be
replaced by a more realistic calculation involving a potential. Let us use Saxon-Woods
potentials to calculate the radial wave functions appearing in (3.25). The potential of
Ref. [26] (adapted from Ref. [20]) reproduces the two bound states of 11Be. Here we
neglect the spin-orbit term for simplicity. The potential −V0/[1+exp((r−2.669)/0.6)]
with V0 = 59.5 MeV for l = 0 and 40.5 MeV for l > 0 provides the full curves in
Fig. 3 which are very close to the dashed curves. With this potential, the ANC is
0.837 fm−1/2 and the spectroscopic factor is also close to one. However if one uses
the potential −59.05/[1 + exp((r − 2.75)/0.62)] of Ref. [33] which only reproduces the
ground-state energy, the results (dotted lines) are rather different in spite of a similar
ANC of 0.845 fm−1/2. The deduced spectroscopic factor (≈ 0.8) is then smaller with
such a potential. The ‘measured’ spectroscopic factor is thus sensitive to the poten-
tial choice because the transition strength also depends on the properties of the final
scattering state as explained in Ref. [34] with time-dependent (section 3.5) and CDCC
(section 4.4) calculations. Since the potential of Ref. [33] does not reproduce the l = 1
weakly bound state, its validity for the l = 1 final scattering state, and hence the
derived spectroscopic factor, are dubious.

The interest of working with the E1 strength is that it allows comparing experiments
at different energies (provided that the first-order approximation is valid in both cases).
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Figure 4: Comparison of E1 strengths from the GSI and RIKEN experiments in 2003
(Fig. 6 from Ref. [35]).

Data for the dipole strength but with a different normalization were obtained at GSI
from an experiment at much higher energies [35]. A comparison in Fig. 4 shows that
the GSI data taken at 520 MeV/nucleon do not agree with the RIKEN data of that
time. The GSI normalization was eventually confirmed at RIKEN [33] following a
recalibration [36, 33] and leads to a reduction by a factor 0.85 of the data of Ref. [32].
The spectroscopic factor should thus be reduced accordingly. This reduction and the
controversial potential choice in Ref. [33] then lead to a much smaller spectroscopic
factor. As shown by this example, determinations of spectroscopic factors may thus
be affected by potential choices in a non negligible way. The uncertainty on the 11Be
spectroscopic factor remains rather large, because of the uncertainties on both the data
normalization and the potential choice.

3.5 Numerical resolution of the TDSE

The TDSE (3.1) is solved from −T to +T (T large) by small time steps ∆t. A three-
dimensional (3D) representation of the projectile internal wave function is needed.
Because of the angular-momentum dependence of the Vcf interaction, it is preferable
to use spherical coordinates [17-24, 26, 37-40] 1. The wave function can be represented
on a 3D mesh, as depicted in Fig. 5 [26]. The evolution of the wave function after a
time interval ∆t is obtained with the evolution operator U according to Eq. (3.3),

ψ(t+ ∆t) = U(t+ ∆t, t)ψ(t). (3.33)

For a small enough time step, approximations of this operator can be derived. See
references [26, 41, 9] for more information.

The 11Be breakup on a 208Pb target has been studied with this technique [24, 26]. In
that case, the dissociation is mostly due to the Coulomb interaction. The 11Be nucleus

1Cartesian coordinates are employed in Ref. [25].
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Figure 5: Example of three-dimensional discretization: two-dimensional angular mesh
on a sphere and radial mesh.

displays a 5/2+ (l = 2) resonance at 1.27 MeV (Γ = 0.10 ± 0.02 MeV) above the
10Be + n threshold. This resonance is not observed in experiments on heavy targets.
On a light 12C target however, the dashed curve in Fig. 6 shows that a resonance is
clearly visible [37]. That it is the 5/2+ resonance is shown by the d5/2 contribution
(dotted curve). The resonance is also visible in the experimental data but seems to
be much broader. The agreement becomes very good when the theoretical results are
convoluted with the experimental resolution (full curve). After the choice of a 10Be + n
potential reproducing the 11Be properties, the theoretical calculation does not contain
any parameter fit. The results are sensitive to the separation energy as shown by the
example of the 19C breakup in Ref. [24].

Experiment
Convoluted

d5/2

Coulomb + Nuclear

E (MeV)

d
σ
/d

E
(b

/M
eV

)

2.521.510.50

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 6: Cross section for the 11Be breakup on 12C at 67 MeV/nucleon (adapted from
Ref. [37]). Experimental data from Ref. [33].
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3.6 Summary and comments

First-order perturbation theory shows that, at energies of most experiments, breakup
is dominated by the E1 contribution for a neutron halo and by E1+E2 contributions
for a proton halo as indicated by the effective charges (3.21). At MSU and RIKEN
energies between about 40 and 80 MeV/nucleon, higher-order corrections are not neg-
ligible. In particular, a second-order E1-E1 transition may lead to important correc-
tions. Higher-order corrections probably become negligible at GSI energies (around
250 MeV/nucleon) but relativistic effects may then play a role.

Numerical resolutions of the TDSE are accurate but time-consuming. The semi-
classical treatment is valid mainly for integrated cross sections. Differential cross sec-
tions can not be calculated when a plausible trajectory can not be determined, or are
not realistic because interference effects are missing. But we shall see in section 4.3 that
it is also the basis of a quantal approximation giving access to angular distributions.

4 Quantum approximations

4.1 Cross sections

General expression

Let us first derive the expression of breakup cross sections by starting from the general
non-relativistic expression of a cross section [42, 43],

d3Nσ =
(2π)4

h̄v
|T̃fi|2δ





N
∑

f=1

E ′
f − E1 − E2 −Q



 δ





N
∑

f=1

k′
f − k1 − k2









N
∏

f=1

dk′
f



 . (4.1)

This expression describes a reaction with two particles in the entrance channel with
initial wavevectors k1 and k2 and energies E1 and E2; v is the asymptotic initial
relative velocity between these particles. The outgoing channel with threshold energy
Q involves N particles with final wavevectors k′

f and energies E ′
f (f = 1 to N). The

3N -differential cross section corresponds to a situation where the final particles occupy
a volume element

∏N
f=1 dk

′
f of phase space around the directions k′

1, k′
2, . . . , k′

N . The
energy and wavenumber (or momentum) conservation laws are included in the Dirac δ
functions. Dynamical effects are included in the transition matrix element T̃fi.

The T -matrix element can be defined in several equivalent ways [42, 43]. Here it is
a matrix element of the interaction potential. The wave function in the ket is the exact
solution of the Schrödinger equation with a normalization such as in Eq. (2.15). The
wave function in the bra describes N − 1 free relative motions of the N final particles.

The general procedure then consists in integrating over the final total momentum
K ′

cm. Momentum conservation is then satisfied. A 3N − 4 differential cross section is
obtained by integrating over one final energy. This energy can be chosen in various ways
and in various reference frames in order to match the conditions of a given experiment.
When some variables are not measured, further integrations are necessary.

Elastic scattering

Let us first consider the simple example of elastic scattering (N = 2). The wavevectors
of the final particles (which remain identical to the initial P and T particles) can be
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replaced by the total and relative wavevectors

K ′
cm = k′

P + k′
T , k′ =

mT k′
P −mP k′

T

mP +mT
. (4.2)

Integration over the total wavevector leads to

d3σ =
1

(2π)2h̄v
|Tfi|2δ

(

h̄2k′2

2µPT
−E −Q

)

dk′ (4.3)

where factors (2π)−3/2 have been explicitly removed from the matrix element Tfi. The
transition matrix element is thus now defined as

Tfi = (2π)3T̃fi = 〈eik
′

·r|VPT |ψ(r)〉. (4.4)

It involves the exact scattering wave function of the two-body Hamitonian normalized
as ψ(r) −→

z→−∞
ei(kz+...) where the dots recall the possible existence of Coulomb dis-

tortion. With the decomposition in spherical components dk′ = k′2dk′dΩ and the δ
function property

δ[f(x) − f(x0)] =
1

|f ′(x0)|
δ(x− x0), (4.5)

the differential elastic cross section becomes

dσ

dΩ
=

1

(2π)2

µ2
PT

h̄4 |Tfi|2 = |fk(Ω)|2, (4.6)

where the last equality arises from (2.16), and k′ = k. Comparing (4.4) with (4.19)
below, one verifies that the scattering amplitude is indeed related to the T -matrix
element by

fk(Ω) = − µPT

2πh̄2 Tfi. (4.7)

Breakup

Now we consider the more complicated breakup case (N = 3). The different final
wavevectors can be replaced by the total momentum and the relative momenta (2.25)
and (2.26),

K ′
cm = k′

f + k′
c + k′

T , K ′ =
mT (k′

f + k′
c) −mP k′

T

mP +mT
, k =

mck
′
f −mfk

′
c

mP
. (4.8)

Notation k is prefered to notation k′ since there is no ambiguity. Integration over the
total wavevector leads to

d6σ =
1

(2π)5h̄v
|Tfi|2δ

(

h̄2K ′2

2µPT
+
h̄2k2

2µcf
− E −Q

)

dkdK ′. (4.9)

Three factors (2π)−3/2 have been explicitly removed from the transition matrix element
defined as

Tfi = (2π)9/2T̃fi = 〈eiK
′

·Rφ
(−)

k
(r)|VPT |Ψ(R, r)〉 (4.10)
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with the asymptotic normalization

Ψ(R, r) −→
Z→−∞

ei(KZ+...)φ0(r) (4.11)

and a similar normalization for φ
(−)

k
. If one integrates over the norm of the final

relative momentum K ′ = (K ′,Ω), one obtains the 5-differential cross section in the
centre-of-mass frame,

dσ

dkdΩ
=

1

(2π)5

µPTK
′

h̄3v
|Tfi|2. (4.12)

The derivation of expressions for laboratory cross sections with the above procedure is
discussed in Ref. [44]. An example that can be obtained from (4.9) is given by Eqs. (15)
and (16) of Ref. [45].

4.2 Eikonal approximation

Potential scattering

Before applying this approximation to breakup, let us consider the simpler case of
potential scattering,

(

p2

2µ
+ V (r)

)

ψ = Eψ (4.13)

According to Ref. [46], the wave function is factorized as

ψ(r) = eikzψ̂(r). (4.14)

With the velocity v = h̄k/µ, the Schrödinger equation becomes
(

p2

2µ
+ vpz + V (r)

)

ψ̂ = 0. (4.15)

This is still an exact expression. At high energy, the new function ψ̂ is expected to
verify

|∆ψ̂| ≪ k|∇ψ̂| (4.16)

since k is large. Most of the wave function variation is included in factor eikz. Hence,
Eq. (4.15) can be approximated as

(

−ih̄v ∂
∂z

+ V (r)

)

ψ̂eik. = 0. (4.17)

The wave function at the eikonal approximation thus reads

ψeik.(r) = exp
[

ikz − i

h̄v

∫ z

−∞
V (b, z′)dz′

]

. (4.18)

Coordinate r is now written as (b, z). This notation emphasizes the similarity between
its transverse part b = (x, y) and the semi-classical impact parameter. The asymptotic
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expression of the eikonal wave function is however not correct as shown by a comparison
with (2.15).

The exact scattering amplitude is formally given by [10, 42, 43]

fk(Ω) = − µ

2πh̄2

∫

exp(−ik′ · r)V (r)ψ(r)dr. (4.19)

Its calculation requires the resolution of the Schrödinger equation. However this ex-
pression is also useful to derive approximations such as the Born expansion. When
V (r) is short-ranged, the correctness of the asymptotics of ψ is not crucial and (4.19)
can be used for deriving a scattering amplitude with the eikonal wave function ψeik..

Let us define the transfered momentum q = k′ − k. At small scattering angles
θ, the expression k′ · r − kz = q · r appearing in fk can be approximated by q · b.
This corresponds to considering q as orthogonal to the z axis. Then the scattering
amplitude becomes

fk(θ) ≈ − µ

2πh̄2

∫

db e−iq·b
∫ +∞

−∞
dz V (b, z) exp

[

− i

h̄v

∫ z

−∞
V (b, z′)dz′

]

=
ik

2π

∫

db e−iq·b
[

1 − eiχ(b)
]

(4.20)

where the phase-shift function is defined as

χ(b) = − 1

h̄v

∫ ∞

−∞
V (b, z)dz. (4.21)

Since potential V is spherically symmetric, one can integrate over ϕ in (4.20) with

Jn(z) =
i−n

2π

∫ 2π

0
ei(z cos ϕ−nϕ)dϕ (4.22)

and obtain the eikonal amplitude

f eik.
k (θ) = ik

∫ ∞

0
bdbJ0(qb)

[

1 − eiχ(b)
]

. (4.23)

Coulomb scattering

The analytical case of Coulomb scattering illustrates the problems encountered when
the potential is not short-ranged. The phase-shift function takes the simple form

χC(b) = −Z1Z2e
2

h̄v

∫ +∞

−∞

1√
b2 + z2

dz (4.24)

but, unfortunately, the integral diverges. Following Ref. [46], let us introduce a cut off
a≫ b. The integral from −a to +a gives the dominant term

χC(b) ≈ 2η ln
b

2a
. (4.25)

The scattering amplitude then reads

f eik.
C (θ) = fC(θ)e−2iη ln 2ka (4.26)

where

fC(θ) = − η

2k sin2 1
2
θ
e2i(σ0−η ln sin

1
2

θ) (4.27)

is the exact quantum expression [10, 42, 43]. Both (4.26) and (4.27) lead to the Ruther-
ford cross section (3.7). However, these amplitudes differ by an arbitrary phase.
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Two-body breakup

Now let us consider the breakup of a two-body system [5, 47-49]. In Eq. (2.28), the
relative-motion three-body wave function is replaced by

Ψ(R, r) = eiKZΨ̂(R, r) (4.28)

with K = kP − kT where kP and kT are the projectile and target wavevectors. The
initial projectile-target wavenumber K is related to the total energy Etot in the c.m.
frame and to the internal energy E0 of the projectile by

Etot =
h̄2K2

2µPT
+ E0. (4.29)

With the initial velocity v = h̄K/µPT , the Schrödinger equation becomes

(

P 2

2µPT

+ vPZ +H0 + VPT (R, r) −E0

)

Ψ̂(R, r) = 0. (4.30)

Like in (4.16), we assume

|∆RΨ̂| ≪ K|∇RΨ̂| (4.31)

at large K. Moreover we also perform the adiabatic approximation consisting in re-
placing H0 by E0, i.e. we assume that the internal energy of the projectile does not
vary much. This approximation is expected to be especially valid for a weakly-bound
halo nucleus. With both approximations, the Schrödinger equation becomes

(

−ih̄v ∂

∂Z
+ VPT (R, r)

)

Ψ̂eik.(R, r) = 0. (4.32)

The solution satisfying the initial condition (4.11) reads

Ψ̂eik.(R, r) = exp

[

− i

h̄v

∫ Z

−∞
VPT (b, Z ′, r)dZ ′

]

φ0(r) (4.33)

where coordinate R is now written as (b, Z) with its transverse part b = (X, Y ).
A reasoning similar to the one developed for potential scattering leads to the elastic
amplitude

f eik.
k (θ) = iK

∫

db e−iq·bSeik.
0 (b). (4.34)

The transfered momentum reads here q = K ′ − K and

Seik.
0 (b) = lim

Z→+∞
〈φ0(r)|Ψ̂eik.(R, r)〉 − 1. (4.35)

The limit of the wave function can be written with r = (r⊥, z) as

lim
Z→+∞

Ψ̂eik.(r, b, Z) = eiχ(r⊥,b)φ0(r) (4.36)
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where, from (4.33) and (2.29),

χ(r⊥, b) = χcT

(∣

∣

∣

∣

b − mf

mP
r⊥

∣

∣

∣

∣

)

+ χfT

(∣

∣

∣

∣

b +
mc

mP
r⊥

∣

∣

∣

∣

)

(4.37)

and χcT (b) and χfT (b) are given by (4.21) for VcT and VfT , respectively.
The eikonal T -matrix for breakup is given by

Tfi ≈ ih̄v
∫

db e−iq·bSeik.(k, b) (4.38)

with

Seik.(k, b) = lim
Z→+∞

〈φ(−)

k
(r)|Ψ̂eik.(R, r)〉 = 〈φ(−)

k
(r)|eiχ(r⊥,b)|φ0(r)〉. (4.39)

It provides the eikonal approximation of the breakup cross section

dσ

dkdΩ
=
KK ′

(2π)5

∣

∣

∣

∣

∫

db e−iq·bSeik.(k, b)

∣

∣

∣

∣

2

. (4.40)

This expression can be evaluated by a direct integration. It is also convenient to expand
it in partial waves [47]. This will be described in section 4.3 for a more general case.
Expressions (4.46) to (4.49) and (4.51) are also valid here when using (4.36).

The Coulomb divergence problem is also present here. The divergence can be
avoided by truncating the integration at some impact parameter such as bmax =
h̄v/2|E0| proposed in Ref. [48]. In Fig. 7, this approximation (dashed line) performed
with the potential of Ref. [26] is compared for 11Be breakup with a first-order pertur-
bation calculation as in Fig. 3 (full line). Here the more recent RIKEN data of Ref. [33]
are displayed. In Refs. [50, 51], the eikonal wave function (4.33) has been used as final
state in various expressions to deduce possible corrections for the eikonal approxima-
tion. Such a correction, which is explicitly displayed and applied in Ref. [49], and does
not require any truncation leads to the dotted curve in Fig. 7. These results are closer
to experiment. The comparison with experiment would require a convolution with the
experimental energy resolution which might still improve the agreement [52].

4.3 Dynamical eikonal approximation

Dynamical effects in the projectile or between its fragments are not neglected when the
eikonal approximation (4.31) is performed but the adiabatic approximation H0 → E0

is not performed. The Schrödinger equation for the dynamical eikonal approximation
(DEA) then reads

ih̄v
∂

∂Z
Ψ̂(R, r) = (H0 + VPT − E0) Ψ̂(R, r). (4.41)

With the replacement t = Z/v, this equation is formally identical to the semi-classical
Schrödinger equation (3.1) with straight-line trajectories [53, 54]. The solution Ψ̂(R, r)
of (4.41) is thus proportional to the solution Ψ̂s.c.(r, Z/v) of the TDSE (3.1). However,
some care must be taken here because one needs this solution for all values of vector b.
The TDSE must be solved for each impact parameter b but one does not wish to solve
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Figure 7: Angle-integrated cross sections for the elastic breakup of 11Be on 208Pb at
68 MeV/nucleon. Eikonal approximation with cutoff (dashed line) and with a correc-
tion [51, 49] (dotted line. The first-order results (full line) are shown for comparison.
Experimental data from 0◦ to 6◦ (dots) [33].

it more than once at a given b. For a given ‘impact parameter’ b, solutions at different
angles (see Fig. 8) are coherently related by a rotation as [54]

ΨDEA(R, r) = eiKZe−iϕblzΨ̂s.c.(r, Z/v). (4.42)

The elastic-breakup amplitude can be defined as

S(k, b) = lim
Z→+∞

〈φ(−)

k
(r)|Ψ̂s.c.(r, Z/v)〉 (4.43)

and provides the breakup cross section (4.40) but now for the DEA. It is more conve-
nient to use a partial-wave expansion

S(k, b) = (2π)3/2k−1
∑

lm

Y m
l (Ωk)e

−imϕbSklm(b). (4.44)

If the semi-classical cross section is expanded as

lim
Z→+∞

Ψ̂s.c.(r, Z/v) =
1

r

∑

lm

ψ̂lm(r)Y m
l (Ωr), (4.45)

the partial breakup amplitudes are simply given by

Sklm(b) = lim
Z→+∞

〈φ(−)
klm|Ψ̂s.c.(r, Z/v)〉 = i−lei(σl+δl)

∫ ∞

0
ukl(r)ψ̂lm(r)dr. (4.46)

With (4.22), the cross section reads

dσ

dkdΩ
=
KK ′

k2

∣

∣

∣

∣

∣

∑

lm

i−|m|Y m
l (Ωk)e

−imϕ
∫ ∞

0
bdbJ|m|(qb)Sklm(b)

∣

∣

∣

∣

∣

2

. (4.47)
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Figure 8: Schematic representation of the rotation in Eq. (4.42) between trajectories
parallel to the Z axis (full lines) with impact vectors bX at angle 0 and b at angle ϕb.

It depends on the angle difference ϕk − ϕ of the azimutal angles of k and K ′ and is
thus invariant with respect to rotations around the Z axis.

When the direction of emission of the fragments is not determined, an integration
over Ωk and a change of variable lead to

dσ

dEdΩ
=
KK ′

h̄vcf

∑

lm

∣

∣

∣

∣

∫ ∞

0
bdbJ|m|(qb)Sklm(b)

∣

∣

∣

∣

2

. (4.48)

When the projectile c.m. direction is not determined, an integration over Ω with
q = 2K sin 1

2
θ and KK ′ ≈ K2 provides

dσ

dE
=

2π

h̄vcf

∑

lm

∫ ∞

0
bdbS∗

klm(b)
∫ ∞

0
b′db′Sklm(b′)

∫ 2K

0
qdqJ|m|(qb)J|m|(qb

′). (4.49)

Since wavenumber K is large, one can approximate the upper bound of the integral
over q by +∞. The resulting integral is

∫ ∞

0
qdqJm(qb)Jm(qb′) =

1

b
δ(b− b′) (4.50)

and leads to the expression

dσ

dE
≈ 2π

h̄vcf

∑

lm

∫ ∞

0
bdb |Sklm(b)|2 (4.51)

which is identical to the semi-classical expression (3.14). Notice that Coulomb effects
do not cause any divergence in the DEA.

The DEA has the important advantage over a semi-classical calculation that it pro-
vides elastic differential cross sections. In the left panel of Fig. 9, the elastic scattering
of 11Be on 12C [53] is compared with GANIL data at 49.3 MeV/nucleon [55]. The
agreement is very good. However, the simpler eikonal approximation (4.34) provides
a similar agreement. In the right panel, the results of both approximations are com-
pared for the elastic scattering of 11Be on the heavier target 208Pb at the lower energy
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Figure 9: Elastic scattering of 11Be on 12C at 49.3 MeV/nucleon (left) and on 208Pb
at 20 MeV/nucleon (right) (Figs. 1 and 2 from Ref. [53]). Experimental data from
Ref. [55].

20 MeV/nucleon. Because Coulomb breakup dominates, the difference between both
approximations is larger but they remain qualitatively similar. A semi-classical cross
section (dotted line) can be calculated here with a Coulomb trajectory. The average
behaviour of the differential cross section is reproduced but interference effects are
missing.

Angle-integrated breakup cross sections of 11Be on 208Pb at 69 MeV/nucleon are
displayed in Fig. 10 [54]. One observes that approximation (4.51), or equivalently a
semi-classical calculation, give very close results to those of an angular integration from
0 to 6 degrees. They slightly underestimate the experimental data [33]. An integration
up to 1.3◦ corresponding to large impact parameters is in an even better agreement
with the data except possibly beyond 1 MeV. It indicates that the spectroscopic factor
should be close to one.

The breakup of 8B on 208Pb is illustrated in Figs. 11 and 12. Here the fragment is
a proton. The E2 effective charge is much larger (see section 3.4). Several experiments
have attempted to evaluate the importance of the E2 contribution. Longitudinal mo-
mentum distributions of 7Be are especially sensitive to the interference between the
E1 and E2 multipoles. Such an effect induces an asymmetry in the data of Ref. [56].
This asymmetry is obtained with first-order perturbation theory but could not be re-
produced in CDCC calculations [57] (see Fig. 14). One observes in Fig. 11 that the E2
component is essential to induce this asymmetry. Without any adjusted parameter, the
DEA provides a fair reproduction of data at 44 MeV/nucleon but the agreement is not
so good at 81 MeV/nucleon [58]. Angular distributions measured at RIKEN [59] are
also well reproduced by the DEA under exactly the same conditions of calculation. If
valid, first-order perturbation theory would allow extracting the radiative-capture cross
section (3.30) from breakup data but the E2 component and the role of higher-order
corrections make this extraction difficult and thus inaccurate [58].
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Figure 10: Angle-integrated cross sections for the elastic breakup of 11Be on 208Pb at 69
MeV/nucleon (Fig. 9 from Ref. [54]). The curve labeled ’Dyn. Eik.’ is obtained with
Eq. (4.51). The curve labeled ’Eik.’ corresponds to the eikonal approximation (4.39).
The other curves are obtained by integrating numerically Eq. (4.47). Experimental
data from 0◦ to 6◦ (dots) and from 0◦ to 1.3◦ (triangles) [33].

4.4 Method of coupled discretized-continuum channels

The principle of a coupled-channel method is to expand the wave function in Eq. (2.28)
over the complete set of eigenstates ofH0, the coefficients of the expansion depending on
R. The unknown coefficients satisfy an infinite system of coupled differential equations
which must be truncated at some level. When there is only one bound state, this
procedure becomes much more complicated because of the important role played by
continuum states.

The expansion can in principle be performed over stationary scattering states as
[60, 61]

Ψ(R, r) = φ0(r)X0(R) +
∫

φ
(+)

k
(r)Xk(R)dk. (4.52)

This procedure is not usable in practice. First, one has to take rotational invariance
into account and expand the partial wave for each total angular momentum J . Indeed
the three-body Hamiltonian commutes with the total orbital momentum J = l + L

[Eq. (2.27)]. The existence of the good quantum numbers J and M leads to a simpler
partial-wave expansion

ΨJM(R, r) = (rR)−1

(

∑

L

Y JM
l0L u0l0(r)X

J
0l0L(R) +

∑

lL

Y JM
lL

∫ ∞

0
ukl(r)X

J
klL(R)dk

)

(4.53)

where u0l0 is the ground-state radial wave function and ukl is defined by (2.10) and
(2.11). The coupled spherical harmonics

Y JM
lL (Ωr,ΩR) =

∑

mm′

(lLmm′|JM)Y m
l (Ωr)Y

m′

L (ΩR) (4.54)
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Figure 12: DEA calculations of an-
gular distributions for the breakup
of 8B on Pb at 52 MeV/nucleon
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purely Coulomb (dotted lines), and
E1 (dashed lines) P -T interactions;
first-order calculations with E1+E2
strengths (dash-dotted lines) (Fig. 6
from Ref. [58]). Experimental data
from [59].

are common eigenfunctions of l2, L2, J2 and Jz. Since l and L are not good quantum
numbers, they appear as summation indices in (4.53). The corresponding system would
also involve a continuous infinity of equations because the expansion in scattering
functions φklm still contains an integral over wavenumber k.

Therefore, it has been proposed to replace φklm by a discretized continuum [60], i.e.
by a finite set of square-integrable functions

φklm → φilm = r−1uil(r)Y
m
l (Ωr), i = 1, . . . , N (4.55)

satisfying for each partial wave the orthonormality conditions

〈φilm|φi′lm〉 = δii′ (4.56)

and diagonalizing the internal Hamiltonian

〈φilm|H0|φi′lm〉 = Eilδii′ . (4.57)

The discrete energies Eil are positive, except the ground-state energy E0l0 < 0. They
have no physical meaning unless they correspond to some narrow resonance.
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The method of coupled discretized-continuum channels [60, 61, 62] (or continuum-
discretized coupled channels [63]) is better known as CDCC. The CDCC approximation
consists in the finite expansion [45, 57, 60-69]

ΨJM
CDCC(R, r) = (rR)−1

N
∑

i=1

∑

lL

Y JM
lL uil(r)X

J
ilL(R). (4.58)

The sum includes the bound state and the discretized scattering states. Introducing
(4.58) in the Schrödinger equation (2.28) and projecting leads to the N coupled-channel
equations

[

− h̄2

2µPT

(

d2

dR2
− L(L+ 1)

R2

)

+ V J
ilL,ilL(R) + Eil −Etot

]

XJ
ilL(R)

+
∑

i′l′L′ 6=ilL

V J
ilL,i′l′L′(R)XJ

i′l′L′(R) = 0. (4.59)

The potential matrix elements are defined by

V J
ilL,i′l′L′(R) = 〈Y JM

lL r−1uil|VPT |Y JM
l′L′ r−1ui′l′〉. (4.60)

In this expression, the integration is performed over r and ΩR. Equations (4.59) can
now be solved in analogy with those of the traditional coupled-channel problem [70].

Two main variants exist for the choice of the discretized continuum. In the first vari-
ant, pseudostates are constructed by solving the Schrödinger equation for the internal
motion using the expansion [61, 62, 65, 69]

φilm(r) =
N
∑

j=1

C
(i)
jl ϕjlm(r) (4.61)

where some square-integrable basis states have been chosen as

ϕjlm(r) = Γjl(r)Y
m
l (Ωr). (4.62)

The Γjl are often Gaussian functions [62, 63] or can be based on a transformed harmonic
oscillator [69]. The energies and coefficients are given by the system of N variational
equations

N
∑

j=1

(〈ϕj′lm|H0|ϕjlm〉 −Eil〈ϕj′lm|ϕjlm〉)C(i)
jl = 0. (4.63)

Usually, only states below some chosen maximal energy are kept in the CDCC calcu-
lation.

The second variant consists in constructing average scattering states over momen-
tum bins [60, 62, 66],

φilm(r) =
1

Wi

∫ ki

ki−1

φklm(r)fi(k)dk. (4.64)

Such states are square-integrable if fi is square-integrable. They are orthogonal because
of (2.7). They are normed when

Wi =

(

∫ ki

ki−1

|fi(k)|2dk
)1/2

. (4.65)
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The energies are given by

Eil =
h̄2

2µcfW 2
i

∫ ki

ki−1

|fi(k)|2k2dk. (4.66)

A simple example for non-resonant states is given by fi(k) = 1 and Wi = (ki−ki−1)
1/2.

The corresponding energies are

Eil =
h̄2(k2

i + kiki−1 + k2
i−1)

6µcf
. (4.67)

Basis states with fi(k) = 1 are mostly used for l > 0 [45]. For a resonance, a discretiza-
tion in small momentum bins requires too much computer time. The Lorentzian form
factor fil(k) = i1

2
Γ/(E − ERl + i1

2
Γ) is preferable [71, 63]. The average energy is then

equal to the resonance energy Eil = ERl.
In order to calculate the cross section (4.12), one needs an expression for the partial

transition matrix element

T J
lL(K, k) = 〈Y JM

lL R−1u
(−)
KL(R)r−1u

(−)
kl (r)|VPT |ΨJM

CDCC(R, r)〉 (4.68)

where the wave function is replaced by its CDCC approximation. The u(−) radial
functions are defined by (2.23) but here for plane or Coulomb waves. However, what
is available is the discretized expression

T̂ J
jlL(K) = 〈Y JM

lL R−1u
(−)
KL(R)r−1ujl(r)|VPT |ΨJM

CDCC(R, r)〉. (4.69)

Its calculation requires a multipole expansion of the interaction. The situation is
schematically depicted in Fig 13. An approximation of (4.68) can be obtained by
interpolation. Using in (4.68) the approximate closure relation

∑

jlm

|φjlm〉〈φjlm| ≈ 1, (4.70)

one obtains from (4.69) [45]

T J
lL(K, k) ≈

∑

j

〈φ(−)
klm|φjlm〉T̂ J

jlL(K). (4.71)

This expression can be used with both types of discretized continuum.
The results of CDCC calculations for the 8B breakup into 7Be and p are displayed

in Figs. 14 and 15. Fig. 14 should be compared with Fig. 11 since both models concern
the same experimental data [56]. The CDCC results do not reproduce the asymmetry
of the data (left panel) [57]. Increasing the E2 component by a factor 1.6 leads to a
good agreement with experiment (right panel) but this modification can not receive a
physical justification.

In Fig. 15 are displayed CDCC results [68] corresponding to the upper panel in
Fig. 12. Cross sections are presented with (filtered) and without (unfiltered) convo-
lution with the experimental energy resolution. The quality of the agreement with
experiment is similar for CDCC and for DEA, which indicates that both methods are
accurate in this projectile-energy domain.
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Figure 13: Schematic representation of the different types of approximation (adapted
from Ref. [63]): (a) Eq. (4.69) for pseudostates, (b) Eq. (4.69) for momentum bins, (c)
interpolation (4.71).

Figure 14: CDCC calculations of longitudinal momentum distributions of 7Be obtained
by dissociation of 8B on Pb at 44 MeV/nucleon for 7Be scattering angles smaller than
2.4 and 1.5 degrees (Fig. 5 from Ref. [57]). Experimental data from [56].

4.5 Summary and comments

The CDCC method, as a purely quantal method, has the advantage of being valid at low
energies but can also be applied at rather high energies. Besides its long computational
times, its main drawback is the difficulty of assessing its convergence. The discretization
of the continuum requires some skill. Controlling the accuracy is difficult. Extensions
to core excitation are in progress [72]. Among the two different types of bases used,
the pseudostate basis seems more promising for studying the breakup of three-body
projectiles [73].

The dynamical eikonal approximation is only valid at rather high energies and
rather small scattering angles. Coulomb effects are treated without difficulty. The
DEA improves and complements the semi-classical approximation for which various
codes are available. An extension to three-body projectiles is difficult as it involves
much larger computing times.

The usual eikonal approximation is significantly simpler but needs care when dealing
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Figure 15: CDCC angular distributions for the breakup of 8B on Pb at 52 MeV/nucleon
over the 0.5 − 0.75 energy range (Fig. 3 from Ref. [68]). Left panel: influence of
convolution (filtering); right panel: partial-wave decomposition. Experimental data
from [59].

with the Coulomb force. The error introduced by Coulomb terms can not easily be
estimated. It provides physically good results when the nuclear force dominates.

Other methods exist such as the adiabatic approximation [74, 75] or DWBA [76, 77].

5 Conclusion

The theory of breakup reactions offers several accurate approximations covering a broad
energy range that allow an interpretation of various experiments. However, it is based
until now on rather simple, and even too simple, models of the projectile structure.
The sensitivity to the projectile model seems to be rather weak provided that the value
of the projectile binding energy is correct. The precise form of final scattering states
is often assumed not to play a significant role but this point deserves verification.

An additional difficulty is that experiments are not very accurate and usually require
unpleasant convolutions of theoretical results to simulate the resolution and acceptance
of the detectors. Little can then be learned about the projectile from two-body breakup
reactions. The determination of spectroscopic factors is affected by various uncertain-
ties (accuracy of the normalization of the data, knowledge of ANC, choice of potential).
The two-body breakup on a light target can be used as a tool to search for resonances.
The Coulomb breakup on heavy targets is useful for assessing astrophysical S factors
for nuclear astrophysics but its accuracy is uncertain [58].

Several methods can now be applied to three-body breakup (CDCC, eikonal, . . . ).
They will allow studying coincidence observables that are more difficult to measure
but less sensitive to the absolute normalization of cross sections. They should lead to
interesting information about the projectile structure through the study of correlations
between the emitted fragments.

The main challenge for models is to improve the projectile description by using mi-
croscopic models, involving nucleon-nucleon forces and full antisymmetrization. Before
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such calculations can be performed with ab initio wave functions [78], a useful step will
be extending the present reaction models to projectile descriptions within the simpler
microscopic cluster model [79].
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Appendix A: Hyperbolic trajectory

Parametric equations of an hyperbolic Coulomb (or Rutherford) trajectory are given
by [14]

R = a(ǫ coshω + 1), (A.1)

cosϑ =

√
ǫ2 − 1 sinhω

ǫ coshω + 1
, (A.2)

vt = a(ǫ sinhω + ω), (A.3)

as a function of a parameter ω varying from −∞ to +∞. In (A.2), ϑ is the angle
between R and the symmetry axis of the trajectory. As a function of the scattering
angle θ, the eccentricity parameter ǫ is defined by

ǫ =
1

sin 1
2
θ

(A.4)

and the impact parameter b is given by

b = a cot 1
2
θ. (A.5)

In these expressions, a = ZPZT e
2/2E is half the distance of closest approach in head-on

collisions.
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