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ABSTRACTABSTRACTABSTRACTABSTRACT    

 
The field of nuclear structure physics is entering a new era, driven by a trio of 

technological advances that have revolutionized the field, giving access to new realms of 
rare isotopes. Someday, research in this area will lead to a new, comprehensive theory of 
nuclei in all their many manifestations.  Our current pot-pourri of models and approaches 
will likely appear as a projection of the more general theory onto the nuclei near stability.  
To understand the current situation from which such a new perspective will develop 
requires a sound understanding of how structrure evolves and the current models used 
to describe structure.  These pages attempt to present a partial overview, with emphasis 
on a macroscopic interpetation of nuclei based on symmetry and shape. 
 
I I I I –––– INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION    
 

The field of nuclear structure is entering a new era driven by three technological 
advances, in accelerator systems capable of producing and using beams of unstable 
nuclei, in the instrumentation needed to separate these isotopes from (often) copious 
contaminants and to carry out measurements with beam intensities that are often many 
orders of magnitude weaker than traditionally, and in advances in computing that allow 
the on-line analysis of these data and which enable modern theories of the nucleus to 
progress into new realms.   

 
The upshot of these advances is to give access to entirely new regions of nuclei 

and to the new facets of nuclear structure that they are revealing. The opportunity thus 
offered has the real likelihood of profoundly altering our understanding of nuclear 
structure, nuclear reactions and their role in the cosmos. Indeed, already, studies of 
nuclei far from stability have overturned many paradigms, such as some of the traditional 
magic numbers (see below) which had been benchmarks of nuclear structure for over 
half a century.  Research in this area has been accorded the highest priority in the field in 
virtually every region of the globe, as evidenced by the abundance of major new facilities 
(most on the order of the half billion Euro level) illustrated in the timeline of Fig. 1. 
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Figure 1.Figure 1.Figure 1.Figure 1. Timeline of major exotic beam facilities worldwide. Thicker arrows refer to new 
projects or major upgrades. All estimates of future beam-on-target dates are tentative. 
Figure courtesy of W. Nazarewicz. 

Figure 2 illustrates the new isotopic frontiers and the philosophy with which these 
exotic nuckei will be approached.  There are four isotopic frontiers: proton rich nuclei 
which have largely been explored already at least to some extent; neutron rich nuclei, 
which provide the greatest territory for new studies; the heaviest nuclei and the search 
for new superheavy elements, whose binding occurs only because of quantum 
correlations that can overcome the repulsive Coulomb force; and a fourth frontier which, 
often, is not stated (and hence is highlighted in the figure) namely the long sequences of 
isotopes that will become available, stretches that are often wider than the entire 
currently known sets of isotopes of certain elements. An important point here is that the 
new territory is not only the new nuclei that will become accessible but also the already 
known isotopes that will be accessible with orders of magnitude higher count rates than 
currently, allowing entirely new classes of experiments. Thus the set of nuclides for which 
new or greatly expanded data will be available numbers in the thousands. 
 

 
 

Figure 2.Figure 2.Figure 2.Figure 2. The isotopic frontiers of research in the (N, Z ) plane. 



 
It is important to recognize that the goal is not to study all these thousands of 

nuclei but to view their accessibility as providing a new “gene pool” of “designer nuclei” 
from which to choose those that isolate or amplify new physics, new nucleonic 
interactions, new collective modes or shapes, shape/phase transitions, and the like. 
 

How will we try to interpret and understand these nuclei and their structural 
evolution? There are two general overarching complementary questions or perspectives 
that embody the science. These are summarized in Fig. 3 and can be labeled as a 
microscopic (sometimes called, more accurately, a femtoscopic) approach in terms of 
nucleons and their interactions, and a macroscopic approach in terms of an overall view 
of the nuclear many-body system as an entity in itself with its own description, its own 
symmetries, shapes, quantum numbers and selection rules.  Both perspectives are 
essential. The purview of the present paper is the second. We will first outline how 
structure evolves, and then discuss simple models to describe and parameterize such 
evolution. 
 

Before doing so, it is useful to put the entire sweep of nuclear physics in a broader 
context of modern physics generally. The  two perspectives in Fig. 3 often apply to other 
areas of science stretching from atomic physics (e.g., quantum dots) to condensed 
matter and even biological systems). This and related ideas are illustrated in Fig. 4 
showing how the femto world of nuclei finds its own building blocks in the sub-femto 
landscape, is related through many conceptual approaches to emergent phenomena and 
the nano world, and to the universe by the crucial way in which nuclei, and especially 
exotic nuclei, play key roles in stellar energy generation and nucleosynthesis. 
    

Themes and challenges of Modern Science

•Complexity out of simplicity -- Microscopic

How the world, with all its apparent complexity and diversity can be 
constructed out of a few elementary building blocks and their interactions

•Simplicity out of complexity – Macroscopic

How the world of complex systems can display such remarkable regularity 
and simplicity

What is the force that binds nuclei?

What are the simple patterns that nuclei 
display and what is their origin ?

 
Figure 3.Figure 3.Figure 3.Figure 3. Twin perspectives on many-body science. 

    



    
Figure 4.Figure 4.Figure 4.Figure 4. The role of nuclear structure in the broader context of modern physics. 
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In this section we will provide a partial and incomplete but nevertheless hopefully 
useful overview of how nuclear structure evolves with Z and N, as a prolegomenon to a 
description of some important model concepts designed to understand what is observed. 
Note that, throughout this paper, for practical reasons of space and focus, we deal only 
with even-even nuclei although we will certainly touch of the orbits and interactions of 
individual nucleons.   
 

It is worthwhile from the outset to show the key observables that we will deal with. 
Figure 5 shows these observables.  They are only a small subset of what can be measured 
and, often, one needs many more for an accurate understanding.  However, they provide 
an excellent, simple, and surprisingly useful “starter-set” of data that can actually take us 

quite far.  Most are obvious.  We note here only one specifically, namely R4/2 = E( +

1
4 )/E( +

1
2 ), 

which we will use very often. 
 

Let us start by looking at the simplest “spectroscopic” observable, the energy of 

the first 2+ state.  Figure 6 (top) shows the variation of E( +

1
2 ) across the nuclear chart. One 

sees sharp peaks and, especially in heavier nuclei, broad valleys. These are easy to 
understand by reference the independent particle model (IPM) [1, 2]. Of course, such a 
simple model cannot account for everything and it has been found essential to include so-
called residual interactions into the IPM. One of the principle effects of such residual 
interactions is to produce correlations (mixing) of independent particle model 
configurations. 
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Figure 5Figure 5Figure 5Figure 5.... Key observables discussed in this article. 

 



 

Figure 6.Figure 6.Figure 6.Figure 6.  ( )+

1
2E values. Top: For Z ≥ 8. Bottom: For the rare earth region. 

 



The essence of the IPM is illustrated in Fig. 7. At the top left, the nuclear “problem” 
is epitomized by the schematic version of the nucleon-nucleon potential. To “solve” a 
nucleus involves an integral over all possible pairwise interactions of all A nucleons (and 
even that is a gross approximation that ignores, for example, 3-body forces). Very rapidly 
the number of dimensions explodes combinatorily and, today, this approach is only 
tractable up to A ~ 12 or so. It is probably safe to say that it will never be viable in full form 
for all but a tiny fraction of the nuclear chart.  

 
The IPM simplifies the problem by assuming that each nucleon orbits in a common 

field produced in concert by all of them.  The result, for any plausible short range 
potential, is always a clustering of levels.  Coupled with the effects of the Pauli Principle 
which limits the number of particles in each orbit, one comes (see Fig. 7) to the classic 
magic numbers (2, 8, 20, 28, 50, 82, and 126, with 40 and 64 occasionally playing that 
role). Nuclei with those numbers of either protons or neutrons have exceptional 
properties, among them the high excitation energy required to create excited states.  

(The reason, of course, is that, when one has a full shell, states other than the 0+ ground 

state require particle excitations across the energy gap into the next shell.)  This 

accounts for the sharp peaks in E( +

1
2 ) at the magic numbers in Fig. 6 (top). 

    

 
 
Figure 7.Figure 7.Figure 7.Figure 7. Illustration of the quantum levels of the Independent Particle Model. 

 
Of course, such a simplification cannot account for all the important interactions. 

One needs to add so-called residual interactions, and these are, in fact, of the utmost 



importance. Inclusion of them converts the IPM into the Shell Model. In this model, the 
energies of states of different total angular momenta, J, in a given configuration such as 

=2

7/2
,  0,  2,  4,  6Jf  will differ from each other (the 0+ states will always lie lowest) and, 

further, different configurations will be admixed with each other.  Such mixing always has 
the effect of lowering at least one state, which is the maximally coherent linear 
combination of the configurations in the basis.   

 
This lowering is the essence of collectivity and leads to the onset of deformation, 

which is a pervasive feature of nuclear structure.  The idea is illustrated in the toy model 

in Fig. 8, which shows a set of N degenerate states (say, 2
+
), each of which mixes equally 

with every other one with the same interaction strength V.  The upshot is that one state is 
lowered by (N - 1)V and all the others are raised by V. The wave function of the lowest 
state is an equal linear combination of all the basis states. While this is an extreme 
illustration it exemplifies the origins of collectivity. For our purposes here, it gives the 

rationale why the first 2
+
 state should drop in energy as nucleons are added to a doubly 

magic nucleus. Thus, the rigidity of magic nuclei and very generic effects of residual 
interactions account, broadly speaking, for the trends in Fig. 6. The lower part of the 
figure shows the beautifully systematic data in a particular region, the well-studied rare 
earth nuclei. 

 
 
Figure 8.Figure 8.Figure 8.Figure 8. Toy model of the origin of collectivity in terms of congifuration mixing. 

 
We noted briefly above that recent research in nuclei far from stability has 

shattered the idea of immutable magic numbers. Realizing that most of our models have 
been developed from the perspective of nuclei accessible with stable beams and targets, 
it now appears that the traditional magic numbers may only be a kind of “projection” of a 
more general Shell Model onto the nuclei near stability and that the full nuclear chart will 
display an evolution of magicity with N and Z. In some sense, this has been known for 
decades, with the well-documented dissolution of partial magic numbers at Z = 40 and 64 
[3, 4], and with well-known changes in single particle energies as a function of N and Z 
(see ref. [5]). What has happened recently is the discovery of  a number of spectacular 
examples of the breakdown of magicity in light nuclei [6].  This is illustrated in Fig. 9 which 
shows the A ~ 30 = 50 region. Here one sees that the magic number N = 20 has vanished 
for Mg and that N = 28 is no longer magic for S, Si, and Ar. 



 
Figure 9.Figure 9.Figure 9.Figure 9. The +

1
2 states in the A ~ 30 – 50 region showing the breakdown of the magic 

numbers at N = 20, 28 for certain Z values. 
 

We now turn to another observable, R4/2.  As we shall see, this is the only 

observable whose values have universal (as far as we know) implications. (Others, such 

as E(2
+

1), are mass dependent since they depend on the nuclear moment of inertia which 

goes, roughly, as A
-5/3

.) Typical level spectra for different kinds or classes of nuclei are 

shown in Fig 10.  On the left one sees a spectrum 0
+
, 2

+
, 4

+
, 6

+
…, in which there is a large 

gap between the ground state and the first 2
+
 level, and then successively smaller 

spacings to the higher yrast levels.  Thus, for such a spectrum, R4/2 < 2.0.  Nuclei in this 

category, such as 
134

Te shown in the figure,  have two or a few nucleons of one type 

outside a doubly magic nuclei.   
 

When additional valence nucleons are added, the residual interactions of the Shell 
Model lead (as in Fig. 8) to the development of collectivity and, ultimately, to the onset of 
deformed shapes.  This is illustrated in the middle and right panels of Fig. 10. The middle 

panel shows a spectrum for 
110

Cd with approximately equally spaced multiplets of levels. 

This naturally leads to R4/2 ~ 2.  As we shall see, such a spectrum corresponds to a 

nucleus which is spherical but “soft” and can undergo (quadrupole) vibrations about that 
spherical shape. These quadrupole excitations, which carry an integer angular 
momentum of 2ħ, are bosonic – vibrational phonons – and hence can be superposed. The 

successive multiplets correspond to 1, 2, 3, 4, and 5 phonon states.  
 

When one has more than a few valence nucleons of both types, non-spherical – 
ellipsoidal – shapes set in, in all known mass regions. Such nuclei can rotate and display 
low lying spectra resembling those of a symmetric rotating top, where the energy levels 

go as J (J + 1) where J is the level spin (total angular momentum), giving R4/2 = 3.33. 

  
 



 
 

Figure 10.Figure 10.Figure 10.Figure 10. Partial spectra and R4/2 values for three classes of nuclei.  

    
It is interesting, both from the standpoint of gaining familiarity with the data across 

the nuclear chart, and as one of the most beautiful illustrations of the striking regularities 

and simple patterns that nuclei exhibit, to show the full sweep of E( +

1
2 ) and R4/2 for all 

known nuclei.  This is shown in Fig. 11.  Here one sees the magic proton and neutron 
numbers clearly visible as narrow redish-brown-yellow bands, and the regions of 
deformation as blue patches, which come to dominate large spans of major shell regions 
in heavier nuclei.  (We will see the simple reason for this shortly). The greenish areas 
denote transitional regions between these two structural regimes.  The figure shows both 
one of the beauties of structural evolution and one of the challenges of nuclear theory to 
understand from a microscopic perspective. 
 
 



10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10

20

30

40

50

60

70

80

90

100

 

 

P
ro

to
n 

N
um

be
r

Neutron Number

80.00

474.7

869.5

1264

1600

E(21
+)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10

20

30

40

50

60

70

80

90

100

 

 

P
ro

to
n 

N
um

be
r

Neutron Number

1.400

1.776

2.152

2.529

2.905

3.200

R4/2

 

Figure 11.Figure 11.Figure 11.Figure 11. E( +

1
2 ) and R4/2 for all nuclei with Z  ≥ 8. Figure courtesy of R. Burcu Cakirli. 

 
It is instructive to briefly show a few other examples of observables of interest (See 

Fig. 5). These are shown for the rare earth region, along with R4/2 and E( +

1
2 ), on the left in 

Fig 12.  These observables represent the binding of individual nucleons, transition rates 
representing the growth of collective effects, and charge radii sensitive to overall nuclear 
sizes. 
 



 
 

Figure 12.Figure 12.Figure 12.Figure 12. Data for the rare earth region for five observables. Left: The observables 
themselves. Right: Their differences. From ref. [7]. 

 



We notice that all five observables show very smooth and regular behavior, 
typifying further the remarkable regularities displayed by atomic nuclei. The two-nucleon 
separation energies show sharp drops just after closed shells, as the last particles enter 
significantly less bound orbits, and a flattening when deformation ensues.  The B(E2) 
values are small near magic numbers and peak strongly near mid-shell where collectivity 
maximizes. This reflects the toy model of Fig. 8. And the charge radii grow systematically, 
but show larger jumps when the shape changes from spherical to deformed. We also note 
that the patterns are different for each observable. However, if instead of the direct 
observables, their differentials, for nuclei differing in neutron number by two, are plotted, 
the right side of Fig. 12 results [7]. Here all five observables show very similar patterns 
with near singularities at magic numbers and smaller but distinct anomalies at the onset 
of deformation at N ~ 90. 
 
3333    ----    SIMPLE MACROSCOPIC MSIMPLE MACROSCOPIC MSIMPLE MACROSCOPIC MSIMPLE MACROSCOPIC MODELS ODELS ODELS ODELS –––– GEOMETRICAL APPROAC GEOMETRICAL APPROAC GEOMETRICAL APPROAC GEOMETRICAL APPROACHESHESHESHES    
    

As stressed several times already, there are, broadly speaking, two theoretical 
perspectives with which to view atomic nuclei – the femtoscopic and the macroscopic. 
The former focuses on nucleonic motions and the interactions. It can have real predictive 
power (although most current versions are so parameter-laden that it is not clear to what 
extent new nuclei are predicted rather than parametrized). But the hope and the goal 
remains. Macroscopic models focus instead on the overall shape, and shape excitations 
of the nucleus as a whole, and are often couched in terms of, or inspired by, symmetry 
considerations.  (We note in passing that there are hybrid models that constrain large 
basis microscopic calculations with symmetry considerations.)  Macroscopic models are 
the focus of this brief paper.  We note that they are not predictive in the sense of having 
the capability to predict the structure of a new nucleus a priori. However, they are 
predictive within a nucleus once they are “fed” by using some observables in that nucleus 
to pin down the parameters.  In this sense, they are correlative within a macroscopic 
perspective. Of course, these two general approaches must ultimately be consistent and 
that, as emphasized above, is one of the main goals in the new era of nuclear structure. 
 

To proceed with a geometrical approach, consider a non-spherical nucleus with 
quadrupole shape deformation. (Higher order shapes can be added by direct extension of 

these ideas.) Its shape is described by two body-fixed quantities, usually called ββββ and γγγγ. 
The former describes the extent of the ellipsoidal deformation, that is, basically, the ratio 

of major to minor axes.  For prolate shapes, ββββ  typically varies from 0 to 0.3 for low lying 
levels.  The latter variable specifies the deviations of the ellipsoidal shape from axial 

symmetry: γγγγ  is given in degrees. There are different  conventions in the literature but, in 

all of them, γγγγ = 0 degrees corresponds to axial symmetry and γγγγ = 30 degrees to maximum 
asymmetry.  In addition to these parameters, a deformed quantal object can rotate in 
space and so one needs the three Euler angles to fully specify its coordinates at a given 
moment in time.   
 

It is possible to write down a model potential that expresses the nuclear shape in 

terms of ββββ    and γγγγ,,,, that is, in terms of nuclear shapes and oscillations in those shapes. Such 
a model simply specifies the potential V to incorporate into the Bohr Hamiltonian. Known 
as the Geometric Collective Model (GCM) [8], it uses the following potential  
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The terms in ββββ and γγγγ give potential wells of finite width and depth and thus allow for 
oscillations of the nuclear shapes in these two degrees of freedom.  For the case with a 
non-spherical equilibrium shape the nucleus can also rotate in space.  Thus, the 
Hamiltonian for the GCM has eight free parameters, the six above in V and two additional 
ones for the kinetic energy (which contains the rotational motion).   

 
For most cases, that is too many parameters to really pin down the Hamiltonian. 

Therefore, almost always, a truncated Hamiltonian is used (at least until significant 
discrepancies with the data might appear).  To see this, consider Fig. 13 which illustrates 

three potentials.  The one on the left corresponds to a spherical nucleus (V(ββββ ) minimizes 

at ββββ = 0) that can vibrate (due to the fact that the steepness of the increase in V is finite). It 

is specified purely in terms of ββββ    since γγγγ  has no meaning for a sphere.  
 

The energy levels for such a potential are easy to understand. The ground state, as 

with all even-even nuclei, has J = 0
+
. Since the potential has finite width, vibrational 

excitations are possible. We consider the case of quadrupole vibrations carrying angular 
momentum 2ħ. As briefly mentioned above, these integer angular momentum modes are 
phonons or bosonic in nature. Hence they can be superposed.  Clearly, they require a 

certain amount of energy.  (In typical vibrational nuclei, such as 
110

Cd illustrated above, 

the phonon energy is about 500-600 keV.)  Hence the lowest lying excited state will be of 
single phonon character, then a two-phonon mode will appear at about twice the energy, 
then a three-phonon mode, etc.  The two-phonon mode is a superposition of two phonons 
each with angular momentum 2. Consideration of the symmetry of such states allows one 

to show that the allowed angular momenta of the two-phonon mode are 0
+
, 2

+
, 4

+
 (The 

easiest way to show this is with the m-scheme, see ref. [5] for detailed examples).  In the 

simplest potential – the one in ββββ2222
 in Fig 13, these three states will be degenerate.  Of 

course, in practice, such a model is too simple and such degeneracies are broken, as 

seen experimentally in 
110

Cd.   Figure 14 shows the low lying levels and some other 

properties of the ideal vibrator case.  
 

Many of these properties are easily understood with the use of creation and 
destruction operators. We assume the reader is familiar with them – if not, they are briefly 

summarized in ref. [5].  The ground state has phonon number nb =0. The excited states 

with one and two phonons are obtained by operating on the ground state with creation 

operators, that is, operators b
†
 and b

†
b

†
. The excited phonon states will, of course, 

decay, by E2 transitions, to lower states.  Labeling the phonon levels by their phonon 

number, nb, it is clear (See Fig. 14) that a γγγγ-ray decay corresponds to a transition that 

destroys a phonon, that is, to the operator b.  Figure 14 shows that this immediately leads 
to a signature selection rule, namely, that the only allowed transitions are those that 
change the phonon number by one.  Moreover, the transition probability, or B(E2) value, 
is proportional to the number of phonons in the initial state, that is, to the number of 
possible choices for destruction.  Of course, this leads in turn to a predicted ratio of 2 for 
the B(E2) values for the decays of the two- and one-phonon states.  The same kind of 
approach leads to predictions for the decay of the higher states. The results for a couple 
of three phonon states are shown in Fig. 15. Here, again one has a relative value of three 
for the decay but some of these states can decay to more than one two-phonon state by 

E2 transitions and so the strength is fragmented, as illustrated for the 2
+
 three-phonon 

state in Fig. 15.  
 



 
Figure 13.Figure 13.Figure 13.Figure 13. Illustration of three typical geometric potentials and their description in terms 

of an expression in powers of ββββ and γγγγ. 
 

 
 
Figure 14.Figure 14.Figure 14.Figure 14. Key properties of vibrational nuclei. 

 



 

 
 
FFFFigure 15.igure 15.igure 15.igure 15. Relative B(E2) values for 1-, 2-, and some 3- phonon levels. 
 

Returning to Fig. 13, the middle panel corresponds to a deformed nucleus (V(ββββ) 

minimizes at finite ββββ ) whose structure is independent of γγγγ[(V(γγγγ) = constant]. That is, the 

nucleus can freely change the degree of axial asymmetry, and can also vibrate in ββββ.  The 
third panel corresponds to a well-deformed nucleus that has an equilibrium axially 

symmetric shape [that is, V(γγγγ ) minimizes at 0 degrees and V(ββββ ) at finite ββββ.] Note that, in 

these two deformed situations, C2 < 0 to insure an initially decreasing potential and that 

C4 > 0 is needed to bring the potential back positive, thus forming a minimum at finite ββββ. 

The exact location of the minimum depends on the ratio of C2 to C4. 

 
We illustrate the low lying levels of a typical axially deformed nucleus in Fig. 16. 

The deformed level scheme has a more complex structure because of the superposition 
of rotational motion [the sequences of states satisfying the energy relation E ~ J(J + 1)] 
and vibrational motion. Every “intrinsic” state, whether the ground state or a vibrational 
excitation, has a “rotational band” built on top of it.  The vibrational excitations are 
exemplified by the lowest two excited bands seen in Fig. 16, starting with spins 2 and 0. 

These are called the γγγγ    and ββββ vibrational bands, respectively, and correspond to small 

amplitude fluctuations in γγγγ and ββββ. The figure labels each class of levels, and, for the 
rotational levels, compares their energies (relative to the bandhead of each) to the rotor 
formula.  
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Figure 16.Figure 16.Figure 16.Figure 16. Typical deformed nucleus, 
164

Er. The rotational states and vibrational modes 

are identified. The former are compared to the rotor formula and the extracted values of 

the inertial parameter, ħ
2
/2l, is given for each. For simplicity, the numerical coefficients in 

the GCM potential V are incorporated into the C coefficients.  
 

Lastly, we return to deformed axially asymmetric nuclei, and note that there are 

two types, those that are γγγγ-soft and those that have rigid triaxial shapes. The potential for 
the first was illustrated in the middle panel of Fig. 13.  The second would be obtained from 

the right panel of Fig. 13 if the coefficient, C3, of the γγγγ term had the opposite sign, leading 

to an initially downgoing potential in γγγγ, and if an additional term, in C5 ββββ 

5
cos (3γγγγ), with 

positive-going slope, were added.  The predictions for both these seemingly very different 
models of axially asymmetric nuclei are surprisingly similar. The most easily measurable 

difference is in the staggering of energy levels in the γγγγ band, as illustrated in Fig. 17. 
 

 
 

Figure 1Figure 1Figure 1Figure 17777.... Comparison of levels in a rigid triaxial and a γγγγ-soft nucleus, focusing on the 

different energy staggering in the γγγγ–band. 



 

Extensive data in many deformed nuclei shows no significant examples of γγγγ rigid 
behavior in the low energy spectra, although that model remains a useful benchmark. 
Numerous studies at higher spin have pointed to evidence of triaxial behavior in such a 
regime, although it remains quite difficult to identify unambiguous empirical signatures of 
such shapes. 
 

It is useful to illustrate the different energy behavior of the yrast levels for the three 

cases of a spherical vibrator, an axially deformed and a γγγγ-soft deformed nucleus. The 
energies of the first are simply proportional to the number of phonons. Since the spin of 

the maximum angular momentum states for a given number of phonons is simply J = 2nb, 

the energies are linear in J.  For the rotor, as noted, they go as J (J + 1).  The Wilets and 

Jean model [9] showed that those of the γγγγ-soft rotor go as J (J + 6). (This result is also 
obtained in the O(6) symmetry [10] of the IBA model discussed in Section 5).  All three of 

these can be expressed in terms of a single formula, E ~ J ( J + x), where x = 6 for the γγγγ-soft 
case, 1 for the rotor and, effectively, is infinite for the vibrator. These results are 
summarized in Fig. 18. 

E ~  J ( J + 6 )

E ~  J ~ J ( J +    )

8

E ~  J ( J + 1 )E ~  J ( J + X )

 
Figure 1Figure 1Figure 1Figure 18888.... Yrast energies in three models. 

 
To summarize our discussion of geometrical models we have seen a variety of 

types – spherical vibrators, axial rotors and axially asymmetric rotors of two types, γγγγ-soft 

and γγγγ-rigid.  Within the geometrical collective model, these, as well as a variety of 
intermediate situations, can all be described by relatively simple potentials.  The 
potentials vary from having one parameter to typically three or four (although the full 
potential has 6). Such a  model (including a single parameter kinetic energy term) is thus 
relatively simple and can correlate large amounts of data on energy levels and transition 
rates in collective nuclei. We will turn in Section 5 to a different collective model, the IBA, 
which is even simpler (typically 2-3 parameters in total) and which has been used 
extensively over the last 35 years. First, however, we make a short excursion to briefly 
discuss how such classes of nuclei can arise microscopically, that is, what are the 
microscopic drivers of the onset of configuration mixing in the Shell Model, and hence of 
collectivity and of deformation. 
 
4444    ----    THE DRIVERS OF COLLETHE DRIVERS OF COLLETHE DRIVERS OF COLLETHE DRIVERS OF COLLECTIVITY AND STRUCTURCTIVITY AND STRUCTURCTIVITY AND STRUCTURCTIVITY AND STRUCTURAL EVOLUTIONAL EVOLUTIONAL EVOLUTIONAL EVOLUTION    
    

Much of the evolution of structure can be understood in terms of a competition 
between two residual interactions added to the Independent Particle Model, namely 



pairing and the valence proton-neutron (p-n) interaction. Pairing refers to the preference 
for two particles in the same Shell Model orbit to combine in time-reversed motions to 

form a 0
+ state. [See Fig. 10 (left)].  Due to the short range nature of the nuclear force and 

the Pauli Principle, the J = 0 state of a 2
,j J  configuration is favored over other J values. 

It corresponds to a spherical shape and tends to drive the nucleus towards a paired, 
spherical condensate.   
 

In competition with this are residual interactions that induce mixing of Shell Model 
configurations. Such mixing gives correlations and leads to collective behavior (see the 
toy model in Fig. 8). It is also tantamount to deformation.  By far, the most important of 
these residual interactions is the valence p-n interaction. Its effect are clearly shown in 

Fig. 19, which shows empirical +

1
2 energies in the Sn region. For Sn, which is magic in 

protons and therefore has no valence p-n interactions, the +
2 energy is roughly constant, 

independent of the number of valence neutrons.  As soon as one has valence protons 

(either particles as in Te and Xe, or holes as in Cd) the +

1
2 energy drops rapidly since now 

there are valence p-n interactions. Further, the drop is larger for more valence protons 
(Xe compared to Te).  
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Figure Figure Figure Figure 19191919.... Energies of the lowest excited state in nuclei in the Cd-Xe region showing the 
dramatic lowering that occurs when one has both valence protons and neutrons. 
 

It is data such as this which gave rise to the well-known NpNn scheme [11] and the 

idea of the P-factor [12]. The NpNn scheme is an extreme simplification of the effects of 

the valence p-n interaction that assumes that a) all valence p-n interactions are of the 
same strength and that configuration mixing and collectivity are simply proportional to 

the product of the number of valence protons, Np, times the number of valence neutrons, 

Nn.  Plotting data against this product leads to an enormous simplification of the 

systematics, as shown by a pair of observables in Fig. 20. 
 



 

Figure 2Figure 2Figure 2Figure 20000.... Normal and NpNn plots for E( +

1
2 ) in the A ~ 100 region and R4/2 near A ~ 190. 

Based on ref. [11]. 
    

There is one important caveat, which can also represent an opportunity. In using 

the NpNn scheme – in order to know Np and Nn, one must know the nearest magic 

numbers.  As we have noted, it is now realized that these numbers are not the immutable 
benchmarks they have long been considered.  This is especially so with “mini-shell gaps” 
that sometimes occur in the midst of major shells. The two best known of these are for Z = 
40 and 64. In both cases, those gaps in the proton single particle level clustering are 
themselves neutron number dependent, disappearing, respectively, at N = 60 and 90 [3, 

4]. If such effects are not taken into account in constructing an NpNn plot, the systematic 

are not smooth. Of course, in new regions of uncharted nuclei, this can be an advantage. 
One can use such plots to “see” changes in shell structure even if one cannot 
experimentally reach the magic numbers in question experimentally. 
 

Figure 20 shows another use of the NpNn scheme. It can highlight nuclei with 

deviant behavior that would otherwise be more difficult to detect. In Fig. 20, 
184

Hg is an 

excellent example. Of course, in this case, the reason is well known. The light Hg isotopes 
have low lying intruder states that mix with the yrast states and shift their energies. In 

new regions deviations from the smoothness of NpNn plots might signal interesting 

behavior and perhaps special structural effects of interest. 
 

There is another use of the NpNn scheme of relevance for exotic nuclei.  The value 

of NpNn, for a given total number of valence nucleons, maximizes when Np and and Nn are 

equal.  That means that a nucleus far from stability where either Np or Nn is small may 

have a smaller NpNn product than nuclei near stability with more equal Np and Nn.  

Estimating/anticipating the properties of new, unknown, nuclei far from stability is 

normally a (risky) extrapolation. However, in the NpNn scheme, it can often be 



accomplished by the far more reliable process of interpolation. This is illustrated in Fig. 

21.  Here, nuclei are known with NpNn  values stretching out to almost 200. Yet there are 

many unknown nuclei with far smaller values. To estimate their properties in a normal plot 

(left of Fig. 21) is very uncertain. For example, does E( +

1
2 ) for 

142
Xe (Z = 54, N = 88) 

continue the downtrend of the N = 88 isotones or does it turn up with the approach to Z = 

50?  Without detailed calculations one cannot know.  However, one can estimate E( +

1
2 ) for 

such a nucleus simply by interpolation at a value NpNn = 24 on the right. This and a couple 

of other examples of such a process are noted in the figure. Since this figure was first 

drawn in the 1980s [13], 
142

Xe, 
148

Ba, and 
160

Sm have been studied and, in each case, the 

NpNn estimate was validated.  

 

The NpNn scheme:  Interpolation vs. Extrapolation

 

Figure 2Figure 2Figure 2Figure 21111.... Illustration of how NpNn values can be used to evaluate the properties of 

unknown nuclei far from stability by interpolation. 

Finally, one can use the idea of the NpNn scheme and the competition between the 

p-n interaction and pairing to develop an incredibly simple way to estimate structure. The 

p-n interaction roughly scales with NpNn .  The pairing interaction scales with Np + Nn 
since each valence nucleon pairs with only one other, that one in the same orbit in the 
time reversed magnetic sub-state. The pairing interaction is well known in heavy nuclei to 
be on the order of 1 - 1.5 MeV [see Fig. 10 (left) for an illustration of the energy gained in 

forming a 0
+
 pair–this is not the same as the pairing interaction but gives an idea of the 

strengths involved]. The p-n interaction in heavy nuclei is about 200-300 keV. This is 
known from studies of double differences of masses which isolate the interaction of the 
last two protons with the last two neutrons [14-17]. 
 

Therefore, very crudely, but usefully, it takes about 5 p-n interactions to compete 
with one pairing interaction.  The P-factor [12] embodies this competition. P is defined by 
 

P = NpNn / (Np  + Nn) 
    

Nuclei should become deformed when P ~ 4-5. This is in fact the case in heavy 

nuclei as can be seen by a detailed look at the right side of Fig. 11 where contours of R4/2 
are shown.  For example, in the rare earth region, deformation is well-known to ensue at 



N = 90 for Sm and Gd: for 
152

Sm, with P = 96/20 = 4.8, and for 
154

Gd, with P = 112/22 = 

5.09.  In contrast, a nucleus such as 
146

Ba (which also has N = 90), has a P-factor of P = 

48/14 = 3.4 and is not deformed, as seen by the R4/2 values in Fig. 11 (right).     

    
With the detour into the study of the drivers of structural evolution (which, by the 

way, is far more complex that the simple ideas presented here can fully account for – yet, 
hopefully, these ideas give some useful guidance), we now turn to a very important 
collective model, the IBA.     
    
5555    ----        SIMPLSIMPLSIMPLSIMPLE MACROSCOPIC MODELSE MACROSCOPIC MODELSE MACROSCOPIC MODELSE MACROSCOPIC MODELS    –––– ALGEBRAIC APPROACHE ALGEBRAIC APPROACHE ALGEBRAIC APPROACHE ALGEBRAIC APPROACHESSSS    
 

An alternate approach to nuclear collective motion lies in algebraic, or group 
theoretical, models. The best known of these is the Interacting Boson Approximation 
(IBA) model, usually called simply the IBA [18-22].  The IBA comes actually in a variety of 
forms, known by names like IBA-1, IBA-2, IBFM (for odd-A nuclei), etc. The IBA- 1 ignores 
the distinction between protons and neutrons, while the IBA-2 takes that into account. By 
far, the  overwhelming majority of IBA calculations have been done with the IBA-1, largely 
because of its tremendous simplicity, parameter efficiency, and success.  This might 
seem strange, given the discussion in the previous section of the importance of the p-n 
interaction. However, both the GCM and the IBA, and other macroscopic models, are 
phenomenological, that is, their predictions require at least a modicum of information 
about the properties (observables) of a given nucleus.  They are not designed for ab initio 
predictions of the variations of structure. Therefore, the ignored effects of the p-n 
interactions may be embedded (to some level of approximation) in the choice of model 
parameters. Of course, for certain properties, such as mixed symmetry states, M1 
transitions, and g factors, one must use the IBA-2.  Here, for reasons of space, we will 
consider only the IBA-1 (hereafter called is simply the IBA). 
 

All versions of the IBA fall into a class of models known as algebraic or group 
theoretical.  One does not need to understand the group theory to understand and use 
the IBA but a few simple ideas of that theoretical framework are enlightening and helpful 
in appreciating the scope and general features of the model.  We will first introduce the 
IBA and then briefly discuss a few of the key group theoretical concepts underlying it. 
More extensive discussions are found in refs. [5, 18-25]. 
 

For nuclei with more than a few valence nucleons, the Shell Model rapidly becomes 
intractable and one must resort to some sort of truncation or simplification. There are 
many approaches that have been used, such as restricting the basis as a whole, or 
restricting the configurations allowed within the basis (e.g., a seniority truncation) or 
resorting to a totally different approach such as the collective model discussed in Section 
3.  
 

The IBA is another kind of truncation.  Its ansatz is to assume first that only the 
valence nucleons are important and that, among those, only pairs of particles coupled to 
angular momentum 0 or 2 are considered. The rationale behind this is seen in Fig. 10 (left) 
where the lowest states have J = 0 and 2.  Such pairs of particles can be treated 
(approximately) as bosons and are called s and d bosons, respectively. The IBA ignores 

all other configurations!  Thus, for example, in 
154

Sm it is possible to make 3 x 10
14 2+

 

states out of the proton and neutron valence shells (including the restrictions due to the 
Pauli Principle). The IBA restriction to s and d bosons only selects just 26 of these and 
attempts to describe the low lying collective states.   With such an enormously truncated 
basis, one would hardly expect the model to work at all.  The fact that it does, and has 
been so successful, speaks to the simplicity behind much of the collectivity exhibited at 



low energies and low spins in many nuclei, and to the essential reasonableness of the 
truncation in the IBA in capturing the essential physics of emerging collectivity in nuclei. 
Notice the important concept that, while the IBA is normally (and correctly) thought of as 
a collective model, its rationale identifies it as a (drastic) truncation of the Shell Model. It 
thus has “feet” in both camps in Fig. 3, the microscopic and mesoscopic.  
 

Since the IBA space is defined in terms of pairs of particles (or holes), it follows 

that the number of bosons characterizing a nucleus, that is, NB = ns + nd, in obvious 

notation, is a fixed number for all the excitations within a given nucleus. (This ignores 
special extentions of the IBA to include features such as intruder states).  Thus, for 

example, the states of 
154

Sm all have 11 bosons, variously distributed, in different ways, 

over s and d bosons in different states.  The next Sm isotope, 
156

Sm has 12 bosons and its 

states are described by configurations all having NB = 12.  The structure of a given state 

is provided by its description in terms of components with different numbers of s and d 
bosons, but always with their sum conserved. 

 
The IBA Hamiltonian is extremely simple. It consists of terms for the energy of the s 

bosons and for the energy of the d bosons, and interaction terms.  Since all states in a 
nucleus in the model have the same total number of bosons, all the terms in the 
Hamiltonian must conserve the total boson number.  That is, the Hamiltonian can only 

involve operators in couplets of the form: % %† † †, ,s s d d s d ,,,,    and and and and †d s . The most general 

form for the Hamiltonian with up to four s and d operators is given by: 
 
    

( ) ( )

( ) ( )

ε

νν

′= + ⋅

 + ⋅ + + +  

∑ %%

%

( ) ( )
† †

(2)
† † †2 202

1

2

. . . .
10 2 5

J J

d J
J

H n C d d dd

d d ds H c d s H c

 

    

The first term is the number of d bosons times the d boson energy,  εεεεdddd.  Since we 

are normally interested in excitation energies within a nucleus, we have an arbitrary 

energy zero so we have lost no generality in setting εεεεssss = 0.  The second term represents 

interactions between two d bosons that depend on the angular momentum, L = 0, 2, or 4, 
to which they are coupled. The remaining terms mix the s and d boson configurations, 
changing s bosons into d bosons and vice versa. It is this mixing that leads to collective 
states in the same spirit as in Fig. 8.  We will further discuss this Hamiltonian, and, in 
particular, a major simplification of it, a little below. However, first we want to introduce 
some simple ideas underlying the group theory of the model. 
 

To start, notice an important point concerning these operators.  The s boson, with 
L = 0, has only a single magnetic substate. The d boson has 5. The sum of these forms a 6 
dimensional space. It turns out that this space can be described by a Lie Algebra or Lie 
Group called U (6).  For those who are not familiar with group theory, it is not necessary to 
understand the deeper meaning of this. One can simply think of U (6) as a label or name.  

This group comprises 36 operators [[[[ s s
† (1)(1)(1)(1), %s d

†  ((((5)5)5)5), and %d d
†  (25)(25)(25)(25)]]]].  That is, the 

commutation relations for all combinations of these operators either gives back zero or 
one of the other members of the set. They are called the gererators of U(6). 

 
All of these 36 combinations conserve the total number of bosons. This is trivially 

obvious since each allowed pair of operators has equal numbers of creation and 
destruction operators. That means, mathematically, that they all commute with the 



operator NNNNBBBB  =   =   =   = nnnnssss +  +  +  + nnnndddd =  =  =  = s s
† + + + + d d

†%(0)(0)(0)(0).... This is typical of the commutators of a group. They 

conserve the value of some characteristic quantity (quantum number). 
 

One can also consider sub-groups. The 25 operators d d
†%conserve the total 

number of d-bosons alone: that is, they conserve nnnndddd. They are the generators of a group 

called U(5).   
 
The next key concept of that of Casimir operators of a group. These are operators 

that commute with all the generators of the group. Hence they too conserve the 
characteristic quantum number of that group. If a Hamiltonian can be written in terms of 
Casimir operators of a group, then the energy eigenvalues can be written as an analytic 
function of the quantum numbers of those Casimir operators. Since each Casimir 

operator conserves a given quantum number, such as NB, all the states with a given value 

of that quantum number must be degenerate. Thus, for a Hamiltonian written in terms of a 
linear combination of Casimir operators of a group and its sub-groups, the eigenvalues 
will be given by a set of terms, each a function of a different quantum number, and each 
scaled by a coefficient describing the “strength” of that term.   
 

Such a structure is called a dynamical symmetry.  It is useful to illustrate this 
concept with a simple example.  Consider the Hamiltonian: 
 

( ) ( )= + + = +% %0
† † †

B d
H a s s d d b d d aN bn  

 
This Hamiltonian corresponds to the group U(6) and its sub-group U(5).  The 

corresponding dynamical symmetry is written in the following notation: 
 

U(6) ⊃ U(5) 

 

The first term depends on/conserves NB, the second, nd.  First, take the case of b = 

0. Then the energies depend only on NB.  Since a given nucleus has a given total boson 

number, that means that all the states of that nucleus would be degenerate. States with 

different NB correspond to different nuclei.  This situation is illustrated on the left in Fig. 

22.  Of course, this situation is not realistic but it provides a simple illustration of the 
ideas. 

 
As an aside, note here an important point: in this paper we are only considering 

excitation energies – states within a given nucleus. That means that the U(6) term itself 
will be ignored in actual calculations – it contributes nothing to excitation energie.  
However, if we wanted to describe masses, or separation energies, for example, one 
would include that term and the coefficient “a” would be related to the mass differences 
of adjacent nuclei. 
 

Now, let us allow the coefficient b to take on finite values.  Suppose NB = 10. Then 

one can have states with nd = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. The energies of these will 

now depend on the coefficient b.  Thus the second term of the Hamiltonian breaks (splits) 
the degeneracy of states defined by the first term, labels them by an additional quantum 



number (nd in this case), and their energies depend on nd. This is illustrated on the right 

in Fig. 22. 
 

This discussion illustrates a more apt name for a dynamical symmetry, namely, a 
“spectrum generating algebra”.  In the IBA, the parent group U(6) has three dynamical 
symmetries, called U(5), SU(3), and O(6), after the name of the second group in the group 
chain.  

 
Figure 23 illustrates the successive degeneracy-breaking and quantum number-

defining steps for the O(6) case.  
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FigFigFigFigure 2ure 2ure 2ure 22222....  Illustration of the idea of the spectra associated with a group and its sub-
group, and a Hamiltonian wriiten in terms of the Casimir operators of those groups, in 
which, therefore, each separate term conserves a specific quantum number.  
 

Here there are three subgroups, defining three quantum numbers, σσσσ,,,, ττττ and JJJJ,,,, the total 
angular momentum. The spectrum “spreads out” with each successive term in the 
Hamiltonian and eigenvalue expression. One last point:  While the concept of a dynamical 
symmetry is completely independent of the magnitudes of the coefficients of the 
successive Casimir operators, if they do not tend to decrease systematically along a 
group chain so that the spacing of multiplets decreases, the dynamical symmetry may be 
valid but may not be very useful for identifying and labeling states. 
 
 
 



Concept of a Dynamical Symmetry:

Spectrum generating algebra

N

 
Figure 2Figure 2Figure 2Figure 23333....  The spectrum generated by the O(6) dynamical symmetry, through successive 
degeneracy breaking.  The groups involved in this symmetry are labeled at the bottom 
along with the spccitic term they contribute to the eigenvalue equation.  

 
 
The three dynamical symmetries of the IBA are specified by the group chains below: 
 

I.I.I.I.        UUUU(6) (6) (6) (6) ⊃⊃⊃⊃                UUUU(5) (5) (5) (5) ⊃⊃⊃⊃                    OOOO(5)(5)(5)(5)    ⊃⊃⊃⊃                OOOO(3)(3)(3)(3)                                                        UUUU(5)(5)(5)(5)    

NNNN                    nnnndddd                                            ννννnnnn∆∆∆∆                                                                JJJJ    
    

II.II.II.II.    UUUU(6) (6) (6) (6) ⊃⊃⊃⊃                SUSUSUSU(3) (3) (3) (3) ⊃⊃⊃⊃        OOOO(3) (3) (3) (3)                                                                                                 SUSUSUSU(3)(3)(3)(3)    

NNNN                ((((λλλλ, , , , µµµµ))))                        KKKK    JJJJ        
    



III.III.III.III.    UUUU(6) (6) (6) (6) ⊃⊃⊃⊃                OOOO((((6666) ) ) )     ⊃⊃⊃⊃            OOOO(5) (5) (5) (5) ⊃⊃⊃⊃            OOOO(3)(3)(3)(3)                                                        OOOO((((6666))))    

NNNN                            σσσσ                                            ττττ    νννν∆∆∆∆                                                        JJJJ    
 

The IBA Hamiltonian, of course, is much more general than these three limits, 
which simply correspond to specific values for specific coefficients in the Hamiltonian. 
Thus a rich variety of structures are embodied in this model.  Influenced by the existence 
of three symmetries, it is convenient and very common to display the structure of the IBA 
Hamiltonian in terms of a symmetry triangle for the IBA, as illustrated in Fig. 24. Here, 
U(5), SU(3) and O(6) correspond to the three vertices. Intermediate, internal, positions in 
the triangle correspond to Hamiltonians that do not represent any specific dynamical 
symmetry.  Most of the rest of our discussion will be couched in terms of the symmetries 
of the model and of calculations spanning the triangle. 
 

The Symmetry Triangle of the IBA

Sph.

Deformed

 
Figure 2Figure 2Figure 2Figure 24444.... Symmetry triangle of the IBA. 
 
To continue, let us simplify the full IBA Hamiltonian considerably by combining several 
terms and ignoring others. We therefore write a simplified IBA Hamiltonian as 
 

d
H n Q Q= − ⋅= − ⋅= − ⋅= − ⋅ε κε κε κε κ  

 
where we have used the symbol Q for a specific combination of s and d operators. Q is 
given by  
 

(((( )))) (((( ))))% % 2
† † †Q e s d d s d d

    = + += + += + += + +        
χχχχ     

The symbol Q is chosen because this term acts as a kind of boson quadrupole 

operator. Note that the E2 transition operator T(E2) = eeeeBBBBQQQQ where eeeeBBBB is just a scale factor. 



Thus one uses the same operator in both T(E2) and H. This Hamiltonian and E2 operator 
together define what is called the Consistent Q Formalism or CQF [26]. 

 
Since this is no longer the most general form of the IBA Hamiltonian, it may not 

describe certain kinds of structures. Nevertheless, we do this for several reasons:  it is 
simpler; it is, by far, the most commonly used form; it works extremely well; and it 
correlates very easily and intuitively with the triangle.   
 

The Hamiltonian has three parameters, εεεε κκκκ, and an internal parameter, χχχχ, in the Q 
operator.  The first term in H simply counts the number of d bosons and multiplies by a 

parameter, εεεε,,,, giving the energy of each. The second term is a kind of quadrupole-

quadrupole interaction between bosons, with strength κκκκ. Note that it can change an s 
boson into a d boson or vice versa. If one uses, as normal, a set of basis states 
characterized by good s and d boson numbers, then this term in Q will mix these basis 
states. This is the origin of collectivity in the IBA.   
 

We stated earlier that one can retrieve a given dynamical symmetry by 
appropriately choosing the terms of the Hamiltonian. Figure 25 shows how to do this in 

terms of εεεε, κκκκ and χχχχ.  Having only the εεεε  term gives U(5), which is a spherical vibrator, 

having only the κκκκ term gives deformed nuclei, either axially symmetric if χχχχ    = − 7 / 2  or γγγγ 

soft O(6) nuclei if χχχχ = 0.  As we shall see, finite ratios of κκκκ/εεεε give intermediate points in the 

triangle, that are further specified by χχχχ (see below).  

= -1.32

 
Figure 2Figure 2Figure 2Figure 25555....  Relation of the parameters of the CQF IBA Hamiltonian to the dynamical 
symmetries located at the vertices of the triangle..  

 
We now discuss each of the symmetries. As we have discussed, each corresponds 

closely to one of the geometrical symmetries we have already treated. In each case, 
though, there are subtle differences. We will note these where they have been relevant to 

date. The easiest case is that of U(5). Here, the d boson number, nd , is a good quantum 

number for each state as is obvious from the Hamiltonian which contains only terms in 
%†d d .  Thus the level scheme consists of a sequence of equally spaced levels whose 

energies are proportional to nd. The ground state thus has nd = 0 (and therefore ns = NB). 

The first excited state has nd    = 1, occurs at an energy εεεε, has angular momentum JJJJ    = 2, and 

corresponds to the one-phonon level.  At an energy of 2εεεε, one has a triplet of states, with 

JJJJ = 0
+
, 2

+
, 4

+
, having wave functions with nd = 2. These are the two phonon states.  And so 

on up the level scheme.  At this stage the levels in a multi-phonon group are all 
degenerate. This degeneracy can be broken, without perturbing the wave functions by 

adding to the Hamiltonian we have been considering the terms in CL that we saw earlier. 



 
The U(5) symmetry, at this stage, is identical to the vibrator we considered earlier.  

There are differences, however, especially in transition rates, due to a fundamental 
difference between the IBA and the geometrical model.  In the latter, the number of 
phonons varies from state to state. In the IBA, the number of bosons is constant for a 
given nucleus at half the number of valence nucleons. Thus, when a d boson is destroyed 
in going from, say, a two-phonon states to a one-phonon state, an s boson must also be 
created. That is, while the E2 operator in the geometrical model is simply the destruction 

operator, b, in the IBA, it is %†s d .  This introduces an extra square root term in the 

expression of the B(E2) values.  This “finite boson number” effect is pervasive in the IBA 
but beyond the scope of this paper. The reader is referred to more extensive reviews for 
further discussion of it. 
 

We now turn to the SU(3) symmetry, which corresponds to a special class of 

deformed rotors. It is important to stress (see calculations for 
168

Er below) that typical 

deformed nuclei are not good examples of SU(3). Typically, their wave functions are 
significant admixtures of two or more SU(3) representations, amplitudes ~ 0.4 for 
admixted configurations are not rare.  
 

The low lying levels of an SU(3) nucleus are illustrated in Fig. 26. One sees intrinsic 
states and rotational bands.  The most obvious special feature is sets of degeneracies, 

such as for states of the same spin in the ββββ    and γγγγ bands, and in the next higher grouping of 
KKKK = 0, 2, and 4 bands. In most deformed nuclei, these bands are not degenerate and one 
must break the rigorous SU(3) symmetry. 

 

The intrinsic levels in SU(3) are labeled by the quantum numbers (λλλλ,,,, µµµµ) of the 
different SU(3) representations, and, within a representation, by the approximate 
quantum number KKKK and the total angular momentum J.  The eigenvalue expression is seen 

in the figure. For each (λλλλ,,,, µµµµ) one has a set of rotational bands with KKKK = 0, 2, 4 … µµµµ. The 

lowest state has (λλλλ, µµµµ) = (2NB, 0) followed by (2NB   - 4, 2) and so on. Another 

characteristic of SU(3) that differs from the traditional picture of a rotor (but GCM 
calculations actually show the same behavior though this is largely unrecognized) is in E2 

transition rules. The selection rule is δδδδ (λλλλ, µµµµ) = (0,0), that is E2 transitions are restricted to 

a given representation. This implies, for example, allowed transitions between ββββ    and γγγγ 
bands, but not between either and the ground band.  When SU(3) was first proposed, this 
prediction was considered at variance with the traditional collective models and with the 
data. However, subsequent, highly sensitive tests [27] using the ultra high resolution bent 
crystal spectrometers at the ILL showed [28] that, in fact low energy interband transitions 
within a representation do exist and are collective. (Less sensitive, smaller dynamic 
range detectors such a Ge detectors could not observe such transitions because of the 

5
E γγγγ  factor connecting B(E2) values to transition rates). The confirmation of these 

predicted ββββ    ↔    γγγγ band transitions was, in fact, one of the early successes that helped 
establish the IBA. For transitions connecting the same pair of bands, the relative B(E2) 
values in SU(3) approximately follow the Alaga rules [29], although small deviations due to 
finite boson number effects are predicted. 
 

Very few nuclei exist that closely follow the SU(3) ideal. Perhaps some Yb and Hf 
nuclei near N = 104 are the best candidates [30].  However, the main relevance of SU(3) is 
as a benchmark for the treatment of the myriad deformed nuclei. We will illustrate such 
”perturbed” SU(3) calculations below after introducing a general approach to 
calculations within the triangle. 



SU(3)                 O(3) 

K = 0, 2, 4, - - - -

Characteristic signatures:

• Degenerate bands 
within a group

• Vanishing B(E2) values 
between groups

• Allowed transitions 
between bands within a 
group

 
Figure 2Figure 2Figure 2Figure 26666....  Low lying levels of SU(3). The box at upper right lists some specific 
characteristics of SU(3) that distinguish it from a traditional rotor nucleus. 
 

The final dynamical symmetry of the IBA is O(6). This corresponds to a γγγγ-unstable 
rotor, and is similar to the Wilets-Jean model [9]. The level scheme is shown in Fig. 27, 
along with the eigenvalue expression, which shows the families of levels corresponding to 

two quantum numbers, σσσσ and ττττ.  The former labels the representations of O(6) and 

separates the spectrum into major families [analogous to (λλλλ, µµµµ) in SU(3)].  Within a σσσσ 

group, the levels are labeled by ττττ and further by J. The label ττττ is similar to a phonon 

number but one notes that the ττττ multiplets in Fig. 27 differ from those of the vibrator 

model or U(5). For example, in the “two-phonon” grouping, the 0
+
 state is missing (it has 

evolved into the bandhead of the second σ family).  Since the selections rules (see Fig. 27) 

are δδδδ    ττττ = 1, this immediately implies a characteristic prediction that the lowest 0
+
 state 

(normally that with ττττ = 3) decays to the second 2
+
 state rather than the first.  (This 

assumes that the 0
+
 bandhead of the second σσσσ family lies higher – this is normal but not 

rigorously required by the symmetry).  A second characteristic prediction is that R4/2 = 

2.5.  Finally, the selection rule δδδδ    σσσσ = 0 implies that the bandheads of the higher σσσσ 
representations will not decay. Of course, in real nuclei, they will, but their B(E2) values 
should be hindered. (We will return to this momentarily). 



 
Figure 2Figure 2Figure 2Figure 27777.... Levels of O(6) for 6 bosons. The box gives the eigenvalue expression and some 
characteristic properties..  
 

The first, and still the best, empirical manifestation of O(6), is 
196

Pt whose level 

scheme is compared to O(6) in Fig. 28.  The energy spectrum is somewhat perturbed 

relative to O(6) and 
196

Pt also has a finite quadrupole moment in contrast to O(6), but, 

overall, the agreement is excellent, especially for the allowed and forbidden nature of the 
B(E2) values.  Those shown in the figure are relative values for each initial level. Overall, 
the selection rules and many of the detailed predictions are in very good agreement with 

the data. A special situation concerns the decay of the 
2
0++++ level at 1402 keV, assigned to 

have  (σσσσ, ττττ) = (N – 2, 0),  whose decay is therefore forbidden by the σσσσ and the ττττ selection 
rules. Figure 28 indicates that both transitions from this level are forbidden. Naturally one 
expects that these selection rules will be broken and that the larger B(E2) value will be to 

the 
1
2

++++  (rather than the 
2
2

++++ ) state since that violates only one selection rule. The key 

question, though, is the actual magnitudes of these B(E2) values. Without those, one 
really has only confirmed the O(5) sub-group symmetry.  

 

The B(E2: 0
+
 (1402) – 

1
2

++++ )  value was studied in a GRID experiment [32] at the ILL 

using Doppler effects following recoil of 
196

Pt after prior emission of a higher lying γγγγ-ray. 

Note that such recoil is of extraordinarily low energy and such an experiment requires 
energy resolution of 1-3 eV for a 1 MeV transition – this is readily obtainable with the 
GAMS 4 and 5 spectrometers at the ILL.  The results obtained an upper limit for this key 
B(E2) value that was about an order of magnitude smaller than collective (e.g., intraband) 

transitions in the same nucleus. This confirmation of O (6) character in 
196

Pt is therefore 



qualitatively different than in the other best known candidate region [33] for O (6) in the A 
~ 130 region of Xe and Ba nuclei where recent experiments [34] have shown that only a 
good O(5) character is actually established and that there is significant mixing of O(6) 
representations. 

196Pt:   γγγγ-soft     O(6) nucleus  

 

Figure 2Figure 2Figure 2Figure 28888.... Comparison of the empirical level scheme of 
196

Pt with O(6) predictions. The 

upper (lower) numbers on the transition arrows are the experimental and theoretical 
relative B(E2) values from each level.  See discussion for further important comments on 

the 1402 keV level and the goodness of the σσσσ quantum number. (Taken from  ref. [31]). 
 

Having discussed the dynamical symmetries of the IBA, we now turn to a 
discussion of general calculations spanning the entire triangle. The Hamiltonian we will 
use is not the full 6-parameter version but the simpler two-term CQF form introduced 

above in terms of κκκκ, εεεε and χχχχ parameters.  The structure in that Hamiltonian is determined 

by the ratio κκκκ/εεεε and by χχχχ....  The former ranges from zero for U(5) to infinity for the O(6) – 
SU(3) leg of the triangle. Such a variation is inconvenient and so it is traditional [35, 36] to 

convert this to the form shown in Fig. 29, in terms of ζζζζ    which ranges from zero [for U(5)] to 

unity. The relation of ζζζζ to κκκκ/εεεε is given in the figure as well as the ζζζζ    and χχχχ values for the 
three dynamical symmetries. (Note that an equivalent alternate form, in terms of a 

parameter ηηηη is also used–see ref. [24] for a discussion). 



Spanning the Triangle
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Figure Figure Figure Figure 29292929.... Definitions related to the ζζζζ formulation of the IBA Hammiltonian. 
 

We now discuss a simple way to use this formalism. Consider Fig. 30 and recall the 

R4/2 values at the vertices: 2.0 for U(5), 3.33 for SU(3) and 2.5 for O(6).  Now consider a 

point along the O(6) to SU(3) leg.  Clearly it will have an R4/2 value intermediate between 

2.5 and 3.33. As an example, we mark a point for R4/2 = 2.9 (this is illustrative only but is 

roughly in the right position for NB = 10 bosons).  Now do the same for the U(5) to SU(3) 

leg. Clearly, there must be some point along that axis where R4/2 again = 2.9. This is also 

marked.  Now consider a line stretching from U(5) to a point on the O(6) – SU(3) line to the 

lower right of the R4/2 = 2.9 point.  Along this line R4/2 will vary from 2.0 to a value along 

the O(6) to SU(3) leg that must be between 2.9 (located to its left) and 3.33 (located at 

SU(3) to its right).  Hence the R4/2 values along the dashed line vary from 2.0 to a number 

> 2.9.  Thus, somewhere along that line there must be a point where R4/2 = 2.9 and this 

point will be interior to the triangle. One can do the same analysis throughout the triangle 

and we find, of course, that there is an interior curve, a contour, along which R4/2 = 2.9, 

as illustrated.   
 

Thus a given R4/2 only specifies a family of structures and a trajectory within the 

triangle. Other R4/2 values between 2.0 and 3.33 determine other trajectories as shown in 

the upper left of Fig. 31. (As noted, these trajectories are NB dependent. For larger NB 

values, large numbers of valence nucleons, the contours cluster more in the center, 

leading to more and more rapid structural change). Thus, while R4/2 is a highly valuable 

observable, it does not uniquely define structure (that is, the location of a nucleus – the 
Hamiltonian parameters). 



= 2.9R4/2

 

Figure 3Figure 3Figure 3Figure 30000....  Illustration of a contour of constant R4/2 (using R4/2 = 2.9 as an example) to 

define the locus of a trajectory in the symmetry triangle. 
 

The Hamiltonian of Fig. 29 has two parameters (ζζζζ and χχχχ) and a scale factor that is fixed at 
the end to match the overall energy scale to be fitted. Thus one needs two observables to 

fix the Hamiltonian -- R4/2 is an excellent first choice.  Now we need to identify additional 

observables that can pin down the parameters. The upper right and lower left panels of 
Fig. 31 show two other energy ratios. Neither of these helps because their contours are 

more or less parallel to those for R4/2.  Likewise, analogous ratios of B(E2) values are not 

very definitive.  What is needed is a set of contours that runs more or less perpendicular 

to those for R4/2.  

 
Such a class does exist, namely observables relating two excited intrinsic modes, as 

illustrated in the lower right of Fig. 31.  If one has experimental values for R4/2 and [[[[EEEE(((( +
2
0 ) ) ) ) 

––––    EEEE((((2
++++
γγγγ
g )]/)]/)]/)]/EEEE(((( +

1
2 )))), their crossing provides a solution. Figure 32 illustrates this.  This 

approach is known as the technique of Orthogonal Crossing Contours (OCC) [37]. 
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FigureFigureFigureFigure 3 3 3 31111....  Contour plots for the IBA in the CQF approach for four different observables 
(Based on ref. [37]). 
 

Note that the fact that a Hamilonian using parameter values that reproduce 
specific values of these two observables does not necessarily imply that all data will be 
reproduced – after all, the model is an enormous truncation of the full Shell Model, with 
simplified interactions,  and we have ignored four of the six terns in even that simplified 
Hamiltonian. Thus the crossing point should, in practice, be considered a starting point 
for further fine tuning. It might also be the case that this form of the Hamiltonian is not 
sufficient to reproduce the data adequately.  Some theorists recommend that the full 6-
parameter Hamiltonian be used. Whether, and in what cases, this might be necessary, 
depends on the details of each nucleus and the accuracy with which one aims to 
reproduce the data. This latter criterion is not as simple as it may sound because the IBA 
is a collective model. To the extent that non-collective components play a role in the wave 
functions of the states of interest, one does not expect exact agreement with the data.  
  

 
 



Figure 32Figure 32Figure 32Figure 32.  Illustration of the OCC method of determing IBA parameters in terms of the 

crossing of contours of the two observables R4/2 and (((( )))) (((( )))) (((( ))))2 1
0 2 2/

+ + ++ + ++ + ++ + +−−−−
γγγγ

E E E . 

 
Figure 33 and Table 1 illustrate the kinds of predictions the IBA can achieve, using 

168
Er as an example [28].  Myriad other examples could have been chosen – see the 

review articles – [23, 24]. In fact the specific example in the figure and the table was 
developed very early [28] and used an approach that predates the CQF. Nevertheless, it 
nicely illustrates what the model can do in a case of historical importance and with very 
extensive data.  Figure 33 shows the comparison for energy levels. With the exception of 
the KKKK = 4 band at about 1.6 MeV, the agreement is remarkable, especially when one 
realizes that only two parameters were needed.  The Table compares relative B (E2) 

values for the decay of the γγγγ-band at 821 keV. One transition is normalized to 100 for each 

initial level. (For transitions connecting the γγγγ and ground bands, the Alaga rules are also 

shown). Again, the agreement is remarkable. Not only are the branching ratios for γγγγ - 
ground band transitions excellently reproduced, but the ratios of these interband 
transition B (E2) values to intraband transitions are simultaneously reproduced. No other 
model has been able to achieve comparable results without a proliferation of parameters 
that basically select the experimental ratios.   
 

 

Figure 33Figure 33Figure 33Figure 33.... Comparison of experimental energy levels for 
168

Er with IBA calculations 

(taken from ref. [28]). 
 



IBACQF Predictions for 168Er 
 
 
γ 

g 

 

Table 1.Table 1.Table 1.Table 1. Comparison of relative relative B(E2) values for decay of the γγγγ band in 
168

Er with 

the same IBA calculations shown in Fig. 33. The left columns list the transitions involved.  
The third column gives the Alaga ratios and the last two columns show the data and the 
results of the IBA calculations (based on ref. [28]).  
 

The CQF and the OCC technique have been used to locate dozens of other nuclei in 
the symmetry triangle and to map structural trajectories for a number of elements [38 – 
41]. Many of these results are shown in Fig. 34 (the curve marked “arc of regularity” 
refers to a subject beyond the scope of this review relating to the order/chaos aspects of 
IBA calculations – see refs. [42 - 45]). Up until several years ago it was thought [23] that 
nearly all the deformed rare earth nuclei lay along or close to the O(6) to SU(3) leg. Hence 
the results in Fig. 32 are quite a change. They result from the more sensitive approach of 
the OCC technique, better data, and a greater emphasis on reproducing the properties of 

the first excited 0
+
 excitation. 

 
 



    
Figure Figure Figure Figure 34343434....  Trajectories of structural evolution for rare earth nuclei in the symmetry 
triangle obtained by fitting the low lying levels with the IBA. The approach used was very 
similar to the OCC method described in the text. The “arc of regularity” refers to a topic 
beyond the scope of this paper (see refs. [42 – 45]. Based on refs. [39 – 41]). 
 

Many other quantities can be predicted with the IBA. Some are generic, others 

specific. Examples include universal mappings of the ratio of EEEE((((
2
0

++++ )/)/)/)/EEEE((((2
++++
γγγγ
)))), inter- to intra-

band B(E2) values, quadrupole moments, E0 transitions, and two nucleon transfer cross 

sections [e.g., (p, t) reactions to 0
+
 states].  Finally, the IBA has been much used in 

studies of nuclei in regions of rapid structural change, often described in terms of 
quantum phase transitions (see refs. [24, 46]). 

 
Two-nucleon separation energies can also be obtained with some important 

caveats.  One needs to carry out separate IBA calculations for adjacent nuclei and 
compare calculated binding energies. With the IBA Hamiltonian we have discussed, one 
can only calculate the collective contributions to binding. Alternately, one can add two 
terms to the Hamiltonian to calculate the energy separation of different representations 
(boson numbers, nuclei) of U(6). Recent work [47] on the collective contributions to 
binding suggests that masses may provide a very sensitive additional observable, in 
deformed nuclei with large boson numbers, and that different fits to spectroscopic data 
may have very different predictions for binding energies. Fitting the masses 
simultaneously can therefore help pin down the collective Hamiltonian. Such work is still 
at an embryonic stage and the optimum strategies for incorpating mass data in IBA 
calculations are still being worked out.  However, results to date already suggest that, in 
fitting a given nucleus, one should look, not only at the spectroscopic data, but also mass 
observables.  This can lead to important changes in the parameters and therefore in the 
deduced structure. 

 
There are important extensions to the IBA that are well beyond the scope of this 

introduction to the model. We have already mentioned the IBA-2, which separately 
models protons and neutrons,  and allows for so-called mixed-symmetry states, a topic of 
intense current interest. The IBA-2 is also required if one wants to calculate M1 
transitions and g factors. With the addition of p and f bosons, one can calculate negative 
parity (octupole) states.  The addition of a g boson allows hexadecapole modes to be 
incorporated. Higher order terms in the Hamiltonian introduce triaxial shapes.  Odd mass 
nuclei can be calculated in the IBFM.  All these approaches require additional parameters 



and it is a matter of taste how one balances the simplicity of fewer parameters with the 
greater accuracy of calculations and richness of observables available with more (often 
many more) parameters.   
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