TAMUTRAP plans for and progress towards β-p correlation studies

Scattering and energy loss in the foil...

Scattering and energy loss in the foil...

D. Melconian

WISArD Collaboration Meeting | Mar 22, 2021

TEXAS A&M

Measure means instead of 2nd moments

D. Melconian

T = 2, 3/2 pure Fermi and Gamow-Teller decays

D. Melconian

p

An IGISOL system at the Cyclotron Institute

Developing the RIBs for TAMUTRAP

- Efficiency is absolutely critical
 - IGISOL at Jyvaskyla quotes
 5% efficiency for gas cell
 - ★ Gas cell [5%] → separator [85%]
 → cooler/buncher [20%]
 - → Penning trap
 - Estimate for rates of proton-rich nuclei in the trap:

²¹ Mg	2650
²⁵ Si	1425
²⁹ S	850
³³ Ar	760
³⁷ Ca	190

²⁰ Mg	40
²⁴ Si	30
²⁸ S	25
³² Ar	10
³⁶ Ca	2

We have been developing a new gas cell

Need highest efficiency possible, and to build a new beamline to get the RIB to TAMUTRAP

TEXAS A&M

ĀМ

We have been developing a new gas cell

Need highest efficiency possible, and to build a new beamline to get the RIB to TAMUTRAP

AM TEXAS A&M

We have been developing a new gas cell

 Need highest efficiency possible, and to build a new beamline to get the RIB to TAMUTRAP
 Efficiency of ²⁵Si production *already*

0.13(2)%!!

1–2% no problem; 5% is achievable

TEXAS A&M

ĂМ

But 120° doesn't fit our existing equipment...

To bend up, need 45° + 45° instead

Collaborate with G. Berg, M. Couder and M. Brodeur (ND) to build the Light-ion guide Separator for TAMU's K150 RIBS

TEXAS A&M

Ā M

LSTAR performance specs and status

- Using COSY to optimize efficiency versus resolution
- Higher-order abberations
 corrected (G. Berg, M. Couder)
- SimION to estimate emittance from gas cell & SPIG
 - *** FQ** comparison ⇒ off by $2 \times ?$

TEXAS A&M

Ā M

DOE funded \$0.78M

Start construction soon! (this spring)

The TAMUTRAP facility at the Cyclotron Institute

D. Melconian

World's largest Penning trap commissioned

- Most cylindrical Penning traps have a length-to-radius ratio of l/r = 11.75
- To confine the protons from T = 2 decays, need r = 90 mm
 - * Needed a new design to make it fit in the 7T magnet

M.Mehlman *et al.*, NIMA **712**, 9 (2013) P.Shidling *et al.*, Hyperfine Interact **240**, 40 (2019)

AM TEXAS A&M

World's largest Penning trap commissioned

- Most cylindrical Penning traps have a length-to-radius ratio of l/r = 11.75
- To confine the protons from T = 2 decays, need r = 90 mm
 - * Needed a new design to make it fit in the 7T magnet

M.Mehlman *et al*., NIMA **712**, 9 (2013) P.Shidling *et al*., Hyperfine Interact **240**, 40 (2019)

AM TEXAS A&M

Mass measurement of stable ions

- Find resonant frequencies for ²³Na, ^{85,87}Rb, ¹³³Cs and ³⁹K
- Use AME value for ³⁹K, and calculate other masses
- Good agreement with AME values (within uncertainties)
- Precision
 - ✤ ²³Na: 240 ppb
 - ₭ 85Rb: 5 ppb
 - ₭ 87Rb: 6 ppb

P.Shidling *et al.*, in preparation (Int J Mass Spect)

Ā M

TEXAS A&M

Final thoughts, people involved

- TAMUTRAP: commissioned, just need radioactive ions...
- LSTAR starting to be built; RIB in ~3 yrs?
- PENELOPE simulations are starting
 - Complement G4 for WISArD
 - Flush out the details of the concept for TAMUTRAP's detection
 - Backscattering, backscattering, backscattering...
- Benchmark G4 and PENELOPE using TRINAT's system

B. FenkerS. BehlingM. MehlmanD. MelconianP.D. Shidling

G. Chubaryan

B. SchroederN. MorganA. Ozmetin

- D. McClain
- V. Kolhinen

V. Iacob

M. Soulard (2015)F. Bidault (2016)E. Gilg (2017)

WISArD Collaboration Meeting | Mar 22, 2021

D. Melconian

WISArD Collaboration Meeting | Mar 22, 2021

WISArD Collaboration Meeting | Mar 22, 2021

WISArD Collaboration Meeting | Mar 22, 2021

WISArD Collaboration Meeting | Mar 22, 2021

WISArD Collaboration Meeting | Mar 22, 2021

AM TEXAS A&M

Measurement of β scattering

- TRINAT geometry allows us to measure backscattering of β s and compare to GEANT4 simulations
- Obvious, very clean check: both telescopes register a β event
- Due to small solid angle to go from one to the other (~0.25%), not enough statistics with current data set (~10⁻⁴ of non-scattered)

TEXAS A&M

ĂМ

Measurement of β scattering

- TRINAT geometry allows us to measure backscattering of β s and compare to GEANT4 simulations
- Obvious, very clean check: both telescopes register a β event
- Due to small solid angle to go from one to the other (~0.25%), not enough statistics with current data set (~10⁻⁴ of non-scattered)
- Much more common: backscattered out of the scintillator
- Signature: two separate pixels in the double-sided Si-strip detector with energy deposited in the scintillator

TEXAS A&M

Ā Ň

How does GEANT4 do?

With non-standard options: Surprisingly well!!

 Take 2*σ* limit on observed deviation, or 5.1%, for "backscattered"
 events

How does GEANT4 do?

With non-standard options: Surprisingly well!!

* Take 2σ limit on 10° observed deviation, $\frac{1}{10}$ or 5.1%, for 10° "backscattered" 10° events 10°

 Assign 10% uncert to "scattered" events

* All together, a ± 0.0012 uncert on $\langle \cos \theta_{eff} \rangle$ and ± 0.0007 on A_{β}

