WISArD Collaboration Meeting, March 22, 2021

WISArD 2019 campaign & beta backscattering tests at CENBG

Federica Cresto

LPCC, Laboratoire de Physique Corpusculaire de Caen CENBG, Centre d'Etudes Nucleaires de Bordeaux – Gradignan

Outline

Two main topics will be covered:

WISArD campaign (CERN, July 2019)

 \rightarrow runs taken with different radioactive sources (multiple α -source, β -sources)

- data analysis &
 VALIDATION AND CONSTRAINT OF GEANT4 SIMULATIONS
 G4 simulations
 ACCURACY IN REPRODUCING OVERALL SPECTRA

β-backscattering tests (CENBG, 2020-2021)

- \rightarrow overview on tests performed in early 2020
- \rightarrow new tests currently being performed
 - feasibility study through G4 simulations
 - current data taking
- \rightarrow further studies & perspectives

WISArD campaign – CERN (2019)

María J G Borge and Klaus Blaum, J. Phys. G: Nucl. Part. Phys. 45 (2018) 010301

WISArD campaign – experimental set-up

Same experimental set-up used for the WISArD proof-of-principle experiment:

- **8 silicon detectors** $(\emptyset = 3 \text{ cm}, t = 300 \text{ } \mu\text{m})$
- 8 silicon detectors $(\emptyset = 3 \text{ cm}, t = 300 \,\mu\text{m})$ $\rightarrow \alpha$ -particle detection1 plastic scintillator ($\emptyset = 2 \text{ cm}, l = 5 \text{ cm}$)+ 1 SiPM $\rightarrow \beta$ -particle detection

ISOLDE hall, CERN

β-detector: scintillator + SiPM

Source support + detector planes

WISArD campaign – experimental set-up

Same experimental set-up used for the WISArD proof-of-principle experiment:

WISArD campaign – experimental campaign

From July 1^{st} - July 10^{th} 2019 (~130h of data acquisition) 36 runs were acquired:

Multiple-a source

• 4- α source (A = 4.6 kBq) \rightarrow 7 runs \rightarrow ¹⁴⁸Gd, ²³⁹Pu, ²⁴¹Am and ²⁴⁴Cm

Electron converted/β-sources

- ²⁰⁷Bi source (A = 20.9 kBq) \rightarrow 13 runs
- 137 Cs source (A = 36.8 kBq) \rightarrow 8 runs
- ¹³³Ba source (A = 592.8 kBq) \rightarrow 8 runs

DIFFERENT B FIELD INTENSITIES [0,6]T

Commercial calibration sources @ ISOLDE/CERN

Source	Run number	B (T)
²⁰⁷ Bi	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	0, 4, 6, 0.3, 0.4, 1, 2, 1.5, 1, 0.5, 0.2, 0.1, 0
^{137}Cs	14 , 15 , 16 , 17, 18, 19, 20, 21	4 , 4 , 0 ,2,0,1,0.5,0
$4-\alpha$	22, 23, 24, 25, 26, 27, 28	0, 6, 4, 2, 1, 0.5, 0
133 Ba	29, 30, 31, 32, 33, 34, 35, 36	0, 0, 6, 4, 2, 1, 0.5, 0

Runs summary scheme

Example: run 26, SiUp, B = 1 T

DATA ANALYSIS

- 1. Energy calibration (for all detectors and all runs)→ in all cases resulted perfectly linear♀
- 2. Computation of **a**-detection efficiencies (for all peaks, all detectors and all runs):

$$\epsilon_p^{det,run} = \frac{N_p^{det,run}}{\Delta t_{run}}$$

by using the following integration windows:

Peak n.	Source	Energy [keV]	Lower limit [keV]	Upper limit [keV]
1	^{148}Gd	3271	3100	3400
2	²³⁹ Pu	5156	5000	5300
3	^{241}Am	5486	5300	5600
4	$^{244}\mathrm{Cm}$	5805	5600	5950

Table 2: Summary of the correspondence between α -peaks and the lower and upper integration limits used for the determination of the detection efficiencies.

DATA ANALYSIS

- **1. Energy calibration (for all detectors and all runs)**→ in all cases resulted perfectly linear
- 2. Computation of **α**-detection efficiencies (for all peaks, all detectors and all runs):

$$\epsilon_p^{det,run} = \frac{N_p^{det,run}}{\Delta t_{run}}$$

3. Normalization of detection efficiencies to **B** = 0 T:

$$\epsilon_{NORM}^{det,run} = \frac{\epsilon_p^{det,run}}{\epsilon_{det,B=0T}}$$

DATA ANALYSIS

Normalized experimental detection efficiencies have been determined for all peaks, all detectors and all runs

10

F. Cresto

DATA ANALYSIS

Normalized experimental detection efficiencies have been determined for all peaks, all detectors and all runs

F. Cresto

G4 SIMULATIONS

1. WISArD detection set-up implemented

→ detectors, main supports, WISArD magnet

2. Radioactive sources coded

- \rightarrow r = 2 mm, decay libraries based on ENSDF
- → *emstandard_opt4* PhysicsList, per-decay simulations

G4 SIMULATIONS

1. WISArD detection set-up implemented

→ detectors, main supports, WISArD magnet

2. Radioactive sources coded

- \rightarrow r = 2 mm, decay libraries based on ENSDF
- → *emstandard_opt4* PhysicsList, per-decay simulations

3. Magnetic field implementation

G4 SIMULATIONS

A. All α -sources at all B field intensities have been simulated

 \rightarrow 7 source positions simulated ($\Delta x_0 \pm 2 \text{ mm}$) \rightarrow systematic errors

B. Simulated runs built to reflect the experimental runs

 \rightarrow 4 individual α -source simulations have been summed up to a single run

C. Simulated runs analyzed with the same method applied for the experimental ones

 \rightarrow determination of normalized detection efficiencies (for all detectors and all runs)

15

DIFFERENCES BETWEEN EXPERIMENTAL AND SIMULATED DETECTION EFFICIENCIES

- Excellent agreement between experimental and simulated results
 - \rightarrow for all energies and at all B field intensities
 - \rightarrow almost all values compatible with zero within the only statistic error bar (1 σ)
 - \rightarrow differences up to a 9.34% ± 4.87% (stat.) ± 4.67% (syst.)
- > Crystalline and quantitative indicator to proceed and evaluate β -particle spectra reproduction

DIFFERENCES BETWEEN EXPERIMENTAL AND SIMULATED DETECTION EFFICIENCIES

F. Cresto

DATA ANALYSIS

Runs with different electron-converted sources were acquired:

- each run \rightarrow three QDC spectra: [-10, 250], [-10, 50] and [-10, 1200] ns
- ²⁰⁷Bi source, ¹³⁷Cs source and ¹³³Ba source

DATA ANALYSIS

Runs with different electron-converted sources were acquired:

- each run \rightarrow three QDC spectra: [-10, 250], [-10, 50] and [-10, 1200] ns
- ²⁰⁷Bi source, ¹³⁷Cs source and ¹³³Ba source

DATA ANALYSIS

Runs with different electron-converted sources were acquired:

- each run \rightarrow three QDC spectra: [-10, 250], [-10, 50] and [-10, 1200] ns
- ²⁰⁷Bi source, ¹³⁷Cs source and ¹³³Ba source

excluded from the analysis

Runs taken with source of ¹³³Ba with QDC1: [-10, 250] ns

2.1 Electron Capture Transitions

Crest	2
CI COLL	

F.

DATA ANALYSIS

- → Subtraction of run at B = 0 T (for 207 Bi and 137 Cs runs respectively)
- → Ad hoc energy calibration for each run

G4 SIMULATIONS

- ²⁰⁷Bi and ¹³⁷Cs sources coded (*G4 General Particle Source*)
- Total energy spectra inside scintillator retrieved
- Each spectrum convoluted with the response function of the detector \rightarrow extrapolated from exp. runs: $\sigma \propto VE$
- Subtraction of spectra at B = 0 T

COMPARISON EXP/SIMU

- Exp/simulated runs superimposed
- Descend gradient algorithm to minimize the χ^2
 - \rightarrow best configuration in the 5-dimension parameter space:

 $E = \mathbf{a} + \mathbf{b} \cdot \#CH + \mathbf{c} \cdot \#CH^2$ $\sigma = \mathbf{d} + \mathbf{e} \cdot \sqrt{E}$

COMPARISON EXP/SIMU

- Exp/simulated runs superimposed
- Descend gradient algorithm to minimize the χ^2
 - → best configuration in the 5-dimension parameter space:

 $E = \mathbf{a} + \mathbf{b} \cdot \#CH + \mathbf{c} \cdot \#CH^2$ $\sigma = \mathbf{d} + \mathbf{e} \cdot \sqrt{E}$

COMPARISON EXP/SIMU

- Exp/simulated runs superimposed
- Descend gradient algorithm to minimize the χ^2
 - \rightarrow best configuration in the 5-dimension parameter space:

 $E = \mathbf{a} + \mathbf{b} \cdot \#CH + \mathbf{c} \cdot \#CH^2$ $\sigma = \mathbf{d} + \mathbf{e} \cdot \sqrt{E}$

COMPARISON EXP/SIMU

- Exp/simulated runs superimposed
- Descend gradient algorithm to minimize the χ^2
 - \rightarrow best configuration in the 5-dimension parameter space:

 $E = \mathbf{a} + \mathbf{b} \cdot \#CH + \mathbf{c} \cdot \#CH^2$ $\sigma = \mathbf{d} + \mathbf{e} \cdot \sqrt{E}$

97

COMPARISON EXP/SIMU

• Good agreement between experimental and simulated results

Run number	B field [T]	PhysicsList	$\chi^2_{exp-simu}/\text{NDF}$
11	0.2	GS	7.85
4	0.3	GS	3.49
10	0.5	GS	4.85
6	1.0	GS	9.51
8	1.5	GS	6.94
7	2.0	GS	5.85
2	4.0	GS	3.61
3	6.0	GS	5.54

• Similar results obtained for other *PhysicsLists* tested

β-backscattering tests - CENBG

β-backscattering tests - Motivation

First results: error budget (November 2018) ⁽¹⁾

	Source	Uncertainty	$\Delta \tilde{a}_{\beta\nu} (10^{-3})$
background	false coinc.	8%	< 1
proton	detector calibration	0.2%	2
	detector position	$1 \mathrm{mm}$	< 1
	source position	$3 \mathrm{mm}$	3
	source radius	$3 \mathrm{mm}$	1
	B field homogeneity	1%	< 1
	silicon dead layer	$0.3~\mu{ m m}$	5
	mylar thickness	$0.15~\mu{\rm m}$	3
positron	backscattering	10%	15
	threshold	12 keV	8
total			19

OBJECTIVE:

characterization of backscattering of β 's

- Lower detection threshold as a function of E_{e} and θ_{inc}
- Validation and constraints for GEANT4 simulations

HOW TO ACHIEVE IT:

- Different experimental set-up explicitly conceived for the study of β -backscattering
- Simulations varying input parameters in Geant4
- Study of the Geant4 goodness of description of $\beta\mbox{-backscattering}$

β-backscattering tests - State-of-the-art

Different β -backscattering test benches to reproduce different relative angles between detectors and incoming particles:

Electron spectrometer (Nov. 2019 - ...)

data analyzed and compared with G4 simulations:

- fairly good agreement with the experimental data
- evaluation of backscattering coefficient @ E, θ_{inc}
- **PROS:** \rightarrow selection of monoenergetic e- beam
 - \rightarrow high intensity
- **CONS**: \rightarrow measurements taken at atmospheric pressure

New dedicated set-up (ongoing)

- feasibility study through Geant4 simulations
- currently data taking

PROS:

- → measurements taken in primary vacuum
 - → employment of radioactive sources

- <u>Source ⁹⁰Sr:</u>
 - × $Q_{\beta}^{(90}$ Sr)=0.55 MeV → $Q_{\beta}^{(90}$ Y)=2.3 MeV
 - > Monoenergetic electrons via B field
 - Collimator (radius = 0.2 cm)
 - > $E_{e^-} = 0.7 1.8 \text{ MeV}$
- <u>Black box:</u>
 - Air (no vacuum)
 - > Trigger on e-
 - plastic scintillator
 - 100 µm thickness
 - + 2 optical guides coupled with PMs

Electron trigger with optical guides and PMs

- <u>Black box:</u>
 - Plastic scintillator (rotatable)
 - radius = 1 cm
 - length = 5 cm

→ collecting data with different electron incident angles ($\theta = 0^{\circ}, 20^{\circ}, 40^{\circ}$)

Plastic scintillator fixed on a rotatable support

EXPERIMENTAL MEASUREMENTS

• 13 runs varying 0.7 MeV < E_e < 1.8 MeV at different incident angles with respect to the scintillator (0°,20°,40°)

DATA ANALYSIS

- Reconstruction of the ADC spectra
- Gaussian+background fits
 - $\rightarrow \mu \rightarrow energy \ calibration$
 - $\rightarrow \sigma \rightarrow$ used to apply resolution to G4 simulations

G4 SIMULATIONS

• Each run simulated by using 8 different *PhysicsLists*

COMPARISON EXP/G4 SIMULATIONS

• β -backscattering coefficients computed (± stat. ± syst.)

QUANTITATIVELY:

→ Residual plots

→ Backscattering coefficient experimental/simulated spectra

EXAMPLE: $E_e = 1$ MeV, $\theta = 0^\circ$

QUANTITATIVELY:

→ Residual plots

→ Backscattering coefficient experimental/simulated spectra

EXAMPLE: $E_e = 1$ MeV, $\theta = 0^\circ$

→ Residual plots

→ Backscattering coefficient experimental/simulated spectra

- Qualitatively \rightarrow best reproduction with GS and SS PhysicsList
- Quantitatively?

QUANTITATIVELY:

·	Run name + PhysicsList Bac	ckscatterin	g coeff	icient ('	%)
	1 🖊	Value	Stat.	Syst.	
	hADC_SCINT_remainAfterCut_run_0011	8.58	0.45	0.51	Exp. spectrum
	run_0011_GS	7.76	0.04	0.49	Simu. spectrun
E = 1.0 MeV	run_0011_opt4	8.88	0.05	0.41	
	run_0011_SS	9.17	0.05	0.40	
$\theta = 0^{\circ}$	run_0011_WVI	6.40	0.03	0.61	
	run_0011_lowepphysics	6.84	0.03	0.57	
	run_0011_penelope	9.05	0.05	0.40	
				-	
	hADC_SCINT_remainAfterCut_run_0013	9.87	0.48	0.44	
	run_0013_GS	9.23	0.04	0.42	
E = 1.0 MeV	run_0013_opt4	10.48	0.06	0.35	
e	run_0013_SS	10.67	0.06	0.34	
$\theta = 20^{\circ}$	run_0013_WVI	7.82	0.04	0.50	
	run_0013_lowepphysics	8.39	0.04	0.47	
	run_0013_penelope	10.84	0.06	0.34	
	hADC_SCINT_remainAfterCut_run_0031	17.14	1.40	1.14	
	run_0031_GS	13.75	0.05	1.38	
E = 1.4 MeV	run_0031_opt4	15.14	0.06	1.20	
e e e	run_0031_SS	15.12	0.06	1.20	
$\theta = 40^{\circ}$	run_0031_WVI	11.93	0.04	1.62	
	run_0031_lowepphysics	12.89	0.05	1.50	
	run_0031_penelope	15.23	0.06	1.19	

Two different set-ups were originally conceived and simulated in order to decide the final configuration

DIMENSIONS:

→ Al box	→ thickness	= 5 mm
→ collimato	or → radius	= 1 mm
→ trigger	→ thickness	= 200 um
→ detector	→ r = 1.5 cm,	l = 5 cm

DISTANCES:

→ trigger	– detector	= 5.0 cm	(*)
→ collimator	– trigger	= 1.1 cm	
\rightarrow source -	- collimator	= 4.6 cm	(*)

(*) these distances can be varied in simulations

PROS:

→ incoming e- beam precisely collimated

- \rightarrow solid angle too little
- → acquisition time to obtain reasonable e- spectra too long

Two different set-ups were originally conceived and simulated in order to decide the final configuration

²⁰⁷Bi source positioned **without the Al box**

DIMENSIONS:

→ collimato	r → radius	= 1.5	cm
→ trigger	→ thickness	= 200	um
→ detector	→ r = 1.5 cm,	1 = 5	cm

DISTANCES:

→ trigger –	detector	= 1.1 cm	~ /
→ collimator -	- trigger	= 5.0 cm	(*)
\rightarrow source -6	collimator	= 3.0 cm	(*)

(*) these distances can be varied in simulations

DIFFERENCES BETWEEN THE TWO SET-UPS:

- \rightarrow NO Al box
- → collimator with higher radius, as large as the external chamber
- → distance between trigger and detector fixed at the minimum value request from mechanical constraints

G4 simulations will allow to choose the best experimental configuration

F. Cresto

Second experimental set-up realized and mounted (February 2021, CENBG):

- → possibility to maintain a collimated particle emission
- \rightarrow sensibly higher data collection given the same source activity

Current data taking:

- → ²⁰⁷Bi source (A = 148.7 kBq @ 01/02/2021)
- \rightarrow old GANIL acquisition system
- → 28 runs being acquired (different θ , l):

13 runs with higher collimator radius (r = 1 cm)

- + 13 runs with lower collimator radius (r = 1 mm)
- + 2 runs of background

Additional runs will be acquired to get rid of the gamma contribution (Al shield, t \approx 3 mm)

Thanks for your attention

1 1

THE P