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Two main topics will be covered:

→  runs taken with different radioactive sources (multiple -source, α -sources)β

→  data analysis &
      G4 simulations 

WISArD campaign (CERN, July 2019)A

● VALIDATION AND CONSTRAINT OF GEANT4 SIMULATIONS 
● ACCURACY IN REPRODUCING OVERALL SPECTRA 

B -β backscattering  tests (CENBG, 2020-2021)

→  overview on tests performed in early 2020

→  new tests currently being performed
● feasibility study through G4 simulations
● current data taking

→  further studies & perspectives
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HRS
High Resolution Separator

Target area

María J G Borge and Klaus Blaum, J. Phys. G: Nucl. Part. Phys. 45 (2018) 010301

WISArD campaign – CERN (2019)
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WISArD campaign – experimental set-up

3
ISOLDE hall, CERN WISArD detectors

Same experimental set-up used for the WISArD proof-of-principle experiment:

● 8 silicon detectors    (Ø = 3 cm, t = 300 μm)                          →   -particle detectionα
● 1 plastic scintillator (Ø = 2 cm, l = 5 cm)      + 1 SiPM        →   -particle detectionβ

Source support + detector planes

β-detector: scintillator + SiPM
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WISArD campaign – experimental set-up
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Si1U Si2U

Si1D Si2D

Source 
support

Radioactive source

Sc
in

t

α

ISOLDE hall, CERN WISArD detectors

Same experimental set-up used for the WISArD proof-of-principle experiment:

● 8 silicon detectors    (Ø = 3 cm, t = 300 μm)                          →   -particle detectionα
● 1 plastic scintillator (Ø = 2 cm, l = 5 cm)      + 1 SiPM        →   -particle detectionβ

SiPM
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WISArD campaign – experimental campaign
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From July 1st- July 10th 2019 (  130h of data acquisition) 36 runs were acquired:∼

DIFFERENT B FIELD INTENSITIES
[ 0 , 6 ] T

Multiple-  sourceα  

●  4-  source  (A = 4.6 kBq)        → 7 runsα
→ 148Gd, 239Pu, 241Am and 244Cm

● 207Bi source (A = 20.9 kBq)     → 13 runs
● 137Cs source (A = 36.8 kBq)     → 8 runs
● 133Ba source (A = 592.8 kBq)  → 8 runs

 Electron converted/ -β sources 

Commercial calibration sources @ ISOLDE/CERN

Runs summary scheme
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WISArD campaign – multiple α-source
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7 runs in total

each ADC spectrum → 4 main energy α-peaks

each run →  7 ADC spectra ≡ 
7 silicon detectors active at the moment of the data taking (Si4D disconnected) 

Example:  run 26,  SiUp,  B = 1 T

148Gd 239Pu 241Am

244Cm
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WISArD campaign – multiple α-source
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1.  Energy calibration (for all detectors and all runs)
→ in all cases resulted perfectly linear

DATA ANALYSIS

244Cm

241Am239Pu148Gd148Gd 239Pu 241Am

244Cm
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WISArD campaign – multiple α-source
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DATA ANALYSIS

244Cm
241Am

239Pu148Gd

by using the following integration windows:

1.  Energy calibration (for all detectors and all runs)
→ in all cases resulted perfectly linear

     2.  Computation of α-detection efficiencies 
(for all peaks, all detectors and all runs):
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WISArD campaign – multiple α-source
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1.  Energy calibration (for all detectors and all runs)
→ in all cases resulted perfectly linear

     2.  Computation of α-detection efficiencies 
(for all peaks, all detectors and all runs):

DATA ANALYSIS

244Cm
241Am

239Pu148Gd

3. Normalization of detection efficiencies to B = 0 T:
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WISArD campaign – multiple α-source
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DATA ANALYSIS

Normalized experimental detection efficiencies have been determined 
for all peaks, all detectors and all runs

Detector Si3D            Example:
Si3D, 

      all peaks, 
     all B field values tested
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WISArD campaign – multiple α-source
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DATA ANALYSIS

Normalized experimental detection efficiencies have been determined 
for all peaks, all detectors and all runs

            Example:
Si3D, 

      all peaks, 
     all B field values tested

● Higher particle detection
● More pronounced for low-energy -particlesα

Detector Si3D



  

Detector Si2U Detector Si3UDetector Si1U Detector Si2U Detector Si3U

Detector Si1DDetector Si4U Detector Si2D

12
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WISArD campaign – multiple α-source

13

G4 SIMULATIONS

1. WISArD detection set-up implemented
→ detectors, main supports, WISArD magnet 

     2. Radioactive sources coded
    → r = 2 mm, decay libraries based on ENSDF
    → emstandard_opt4 PhysicsList, per-decay simulations

Vacuum tube

WISArD
magnet Plastic scintillator

Detection plates
Mylar foil

Silicon detectors

z axis
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WISArD campaign – multiple α-source
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G4 SIMULATIONS

1. WISArD detection set-up implemented
→ detectors, main supports, WISArD magnet 

     2. Radioactive sources coded
    → r = 2 mm, decay libraries based on ENSDF
    → emstandard_opt4 PhysicsList, per-decay simulations

    3. Magnetic field implementation

z axis

α

G4 simulations 
smeared 
with the

detector resolution
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WISArD campaign – multiple α-source
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G4 SIMULATIONS

A.   All -sources at all B field intensities have been simulatedα
→ 7 source positions simulated (Δx0 ± 2 mm) → systematic errors

    B.   Simulated runs built to reflect the experimental runs
→ 4 individual -source simulations have been summed up to a single runα

    C.   Simulated runs analyzed with the same method applied for the experimental ones 
→ determination of normalized detection efficiencies (for all detectors and all runs)

            Example:
Si3D, 

      all peaks, 
     all B field values tested

Detector Si3D
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Detector Si2U Detector Si3UDetector Si1U Detector Si2U Detector Si3U

Detector Si1DDetector Si4U Detector Si2D
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WISArD campaign – multiple α-source
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DIFFERENCES BETWEEN EXPERIMENTAL AND SIMULATED DETECTION EFFICIENCIES  

Detector Si2U Detector Si3UDetector Si1U Detector Si2U Detector Si3U

➢ Excellent agreement between experimental and simulated results
→  for all energies and at all B field intensities
→  almost all values compatible with zero within the only statistic error bar (1σ)
→  diferences up to a 9.34% ± 4.87% (stat.) ± 4.67% (syst.)

➢ Crystalline and quantitative indicator to proceed and evaluate β-particle spectra reproduction
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WISArD campaign – multiple α-source
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DIFFERENCES BETWEEN EXPERIMENTAL AND SIMULATED DETECTION EFFICIENCIES  

Detector Si1DDetector Si4U Detector Si2D

Detector Si3D
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WISArD campaign –  β-sources

● each run   → three QDC spectra:   [-10, 250],  [-10, 50]  and  [-10, 1200] ns
● 207Bi source, 137Cs source and 133Ba source

DATA ANALYSIS

Runs with different electron-converted sources were acquired:

19
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WISArD campaign –  β-sources

● each run   → three QDC spectra:   [-10, 250],  [-10, 50]  and  [-10, 1200] ns
● 207Bi source, 137Cs source and 133Ba source

DATA ANALYSIS

Runs with different electron-converted sources were acquired:

20
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WISArD campaign –  β-sources

● each run   → three QDC spectra:   [-10, 250],  [-10, 50]  and  [-10, 1200] ns
● 207Bi source, 137Cs source and 133Ba source

                                                 

DATA ANALYSIS

Runs with different electron-converted sources were acquired:

21

excluded from the analysis
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WISArD campaign –  β-sources

DATA ANALYSIS

→   Subtraction of run at B = 0 T (for 207Bi and 137Cs runs respectively)
→   Ad hoc energy calibration for each run

22
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WISArD campaign –  β-sources

G4 SIMULATIONS

23

●   207Bi and 137Cs sources coded (G4 General Particle Source)
●  Total energy spectra inside scintillator retrieved

●  Each spectrum convoluted with the response function of the detector
→ extrapolated from exp. runs:   σ  √E∝  

●   Subtraction of spectra at B = 0 T
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WISArD campaign –  β-sources
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COMPARISON EXP/SIMU

●   Exp/simulated runs superimposed 
●   Descend gradient algorithm to minimize the χ2 

→ best configuration in the 5-dimension parameter space: E  = a + b • #CH  +  c  •  #CH2

  = σ d + e •√E      

Example:
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WISArD campaign –  β-sources
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Example:

G4 simulation
(scaled)

G4 smeared
Exp. run

COMPARISON EXP/SIMU

●   Exp/simulated runs superimposed 
●   Descend gradient algorithm to minimize the χ2 

→ best configuration in the 5-dimension parameter space: E  = a + b • #CH  +  c  •  #CH2

  = σ d + e •√E      

Example:
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WISArD campaign –  β-sources
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COMPARISON EXP/SIMU

Example:

G4 simulation

G4 smeared
Exp. run

Cut thresholds

COMPARISON EXP/SIMU

●   Exp/simulated runs superimposed 
●   Descend gradient algorithm to minimize the χ2 

→ best configuration in the 5-dimension parameter space: E  = a + b • #CH  +  c  •  #CH2

  = σ d + e •√E      

Example:
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WISArD campaign –  β-sources
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COMPARISON EXP/SIMU

G4 simulation

G4 smeared
Exp. run

Cut thresholds Residual plot

COMPARISON EXP/SIMU

●   Exp/simulated runs superimposed 
●   Descend gradient algorithm to minimize the χ2 

→ best configuration in the 5-dimension parameter space: E  = a + b • #CH  +  c  •  #CH2

  = σ d + e •√E      

Example:
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WISArD campaign –  β-sources
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COMPARISON EXP/SIMU

● Good agreement between experimental and simulated results

● Similar results obtained for other PhysicsLists tested
emstandard_opt4

penelope
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β-backscattering tests - CENBG
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β-backscattering tests  -  Motivation
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                              OBJECTIVE:

                              characterization of backscattering of β’s

● Lower detection threshold as a function of Ee and θinc

● Validation and constraints for GEANT4 simulations

First results: error budget (November 2018)

                              HOW TO ACHIEVE IT:

(1) 

● Different experimental set-up explicitly conceived 
for the study of β-backscattering

● Simulations varying input parameters in Geant4

● Study of the Geant4 goodness of description
of β-backscattering 

(1) V. Araujo-Escalona et al. arXiv:1906.05135 [nucl-ex] 
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β-backscattering tests  -  State-of-the-art
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Different -backscattering test benches to reproduceβ
different relative angles between detectors and incoming particles:

Electron spectrometer  (Nov. 2019 - …)
data analyzed and compared with G4 simulations:

● fairly good agreement with the experimental data
● evaluation of backscattering coefficient @ E, θinc

      →  selection of monoenergetic e- beam
      →   high intensity

      CONS:     →  measurements taken at atmospheric pressure 

PROS:

New dedicated set-up  (ongoing)
● feasibility study through Geant4 simulations
● currently data taking

                  →  measurements taken in primary vacuum 
       →  employment of radioactive sources

PROS:
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β-backscattering tests  @  e- spectrometer
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● Source 90Sr:
➢ Q  β

(90Sr)= 0.55 MeV →  Q  β
(90Y)= 2.3 MeV

➢ Monoenergetic electrons via B field
➢ Collimator (radius = 0.2 cm)
➢ Ee- = 0.7 – 1.8 MeV

● Black box:
➢ Air (no vacuum)
➢ Trigger on e- 

-  plastic scintillator
- 100 m thicknessμ

➢    + 2 optical guides coupled with PMs

Electron trigger with optical guides and PMs

➡B

PM1 PM2

Scintillator

e-

Spectrometer 
collimator

1.1 cm

2.44 cm

0.01 cm

5 cm

z axis

5 cm
2.7 cm

4.3 cm
12.5 μm

25 μm

0.03 cm

90Sr

2nd mylar foil

1st mylar foil

Trigger
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β-backscattering tests  @  e- spectrometer
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● Black box:
➢ Plastic scintillator (rotatable) 

- radius = 1 cm
- length = 5 cm

Plastic scintillator fixed on a rotatable support

→ collecting data with different          
 electron incident angles (θ = 0°, 20°, 40°)

➡B

PM1 PM2

Scintillator

e-

Spectrometer 
collimator

1.1 cm

2.44 cm

0.01 cm

5 cm

z axis

5 cm
Trigger2.7 cm

4.3 cm
12.5 μm

25 μm

0.03 cm

90Sr

Trigger

2nd mylar foil

1st mylar foil
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β-backscattering tests  @  e- spectrometer
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● 13 runs varying 0.7 MeV < Ee < 1.8 MeV at different 
incident angles with respect to the scintillator 
(0°,20°,40°)

EXPERIMENTAL MEASUREMENTS

DATA ANALYSIS

● Reconstruction of the ADC spectra
● Gaussian+background fits

→  → energy calibrationμ
→  → used to apply resolution to G4 simulationsσ

Trigger

● Scintillator

Scintillator 
support

Support 
structure

Support 
structure

e-

z axis

x axis

G4 SIMULATIONS

● Each run simulated by using 8 different PhysicsLists 

● β-backscattering coefficients computed (± stat. ± syst.)

COMPARISON EXP/G4 SIMULATIONS
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β-backscattering tests  @  e- spectrometer

35QUALITATIVELY:  ● GS and SS describe better the experimental spectra

EXAMPLES (LOWEST AND HIGHEST θINC ):
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β-backscattering tests  @  e- spectrometer
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EXAMPLE:    Ee = 1 MeV,  θ = 0° 

→ Residual plots 
→ Backscattering coefficient experimental/simulated spectra

QUANTITATIVELY:  
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β-backscattering tests  @  e- spectrometer
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EXAMPLE:    Ee = 1 MeV,  θ = 0° 

→ Residual plots 
→ Backscattering coefficient experimental/simulated spectra

QUANTITATIVELY:  

Backscattering continuum
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β-backscattering tests  @  e- spectrometer
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→ Residual plots 
→ Backscattering coefficient experimental/simulated spectra

QUANTITATIVELY:  

Ee= 1.0 MeV
θ = 0°

Ee= 1.0 MeV
θ = 20°

Ee= 1.4 MeV
θ = 40°

Run name + PhysicsList Backscattering coefficient (%)

Value          Stat.      Syst.

● Qualitatively → best reproduction with GS and SS PhysicsList
● Quantitatively?

Exp. spectrum
Simu. spectrum
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β-backscattering tests  @  new set-up
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Two different set-ups were originally conceived and simulated
in order to decide the final configuration

Detector
(SiPM)

Source
(207Bi)

Detector collinear 
with the z axis for 

the time being
(expected 
upgrade: 
rotation)

z axis

● Box of Al 5x5x5 mm
● Source may be placed at 

the different z positions
● Collimator r=1 mm

● Trigger 200 um
● Vacuum

1
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β-backscattering tests  @  new set-up

40

Al box

Trigger

Detector

Source

207Bi source positioned at the centre of the Al box

DISTANCES:
→ source      – collimator    = 4.6 cm     (*)
→ collimator  – trigger        = 1.1 cm    
→ trigger      – detector     = 5.0 cm    (*)

DIMENSIONS:

→ Al box         → thickness   = 5 mm     
→ collimator → radius         = 1 mm     
→ trigger        → thickness   = 200 um 
→ detector     → r = 1.5 cm,    l = 5 cm      

Collimator

(*) these distances can be varied in simulations

→ incoming e- beam precisely collimated 

→ solid angle too little
→ acquisition time to obtain reasonable e- spectra too long

PROS:

CONS:

External
Chamber
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β-backscattering tests  @  new set-up
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2

Two different set-ups were originally conceived and simulated
in order to decide the final configuration

SiPM  +  PMs

207Bi source

Collimator
(r = 1 mm, r = 10 mm)
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β-backscattering tests  @  new set-up

External
Chamber

Trigger

Detector

Source

207Bi source positioned without the Al box

DISTANCES:
→ source      – collimator = 3.0 cm     (*)
→ collimator  – trigger     = 5.0 cm     (*)
→ trigger      – detector     = 1.1 cm    

DIMENSIONS:

→ collimator → radius      = 1.5   cm     
→ trigger        → thickness   = 200 um 
→ detector     → r = 1.5 cm,    l = 5 cm      

Collimator

(*) these distances can be varied in simulations

DIFFERENCES BETWEEN 
THE TWO SET-UPS:

→ NO Al box
→ collimator with higher radius, as large as the external chamber
→ distance between trigger and detector fixed at the minimum value   
     request from mechanical constraints

G4 simulations will allow to choose the best experimental configuration 
42
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β-backscattering tests  @  new set-up
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Simulations have been performed to choose the experimental set-up:
● Nsimulated events = 400 M

FIRST SET-UP:

SECOND SET-UP:
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β-backscattering tests  @  new set-up
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Second experimental set-up realized and mounted (February 2021, CENBG):
→  possibility to maintain a collimated particle emission 
→  sensibly higher data collection given the same source activity 

Current data taking:
→  207Bi source (A = 148.7 kBq @ 01/02/2021)
→  old GANIL acquisition system
→  28 runs being acquired (different θ, l): 

13 runs with higher collimator radius (r = 1 cm)
     + 13 runs with lower  collimator radius (r = 1 mm)
     +  2    runs of background

 Additional runs will be acquired to get rid of the gamma contribution (Al shield, t ≈ 3 mm)

SiPM
(Hamamatsu , C13367-1350EA)

Plastic scintillator (t = 1 mm) 
+ 2 PMs
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Thanks
for your attention
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