Développements de compteurs à scintillation hautes performances et de très basse radioactivité pour le calorimètre du projet SuperNEMO

CHAUVEAU Emmanuel

BDI CNRS/Photonis CENBG

Jeudi 18 novembre 2010

Physique du neutrino

- Le neutrino : mélange, masse et nature
- La décroissance double bêta

De NEMO 3 à SuperNEMO

- Le détecteur NEMO 3
- Le projet SuperNEMO

8 R&D Calorimétrie pour SuperNEMO

- Bancs de test et outils d'analyse
- Outils de simulations optiques
- R&D scintillateurs
- R&D photomultiplicateurs

-

Le neutrino : mélange, masse et nature La décroissance double bêta

Le neutrino

Histoire du neutrino

1930 Wolfgang Pauli "invente" le neutrino

< ロ > < 回 > < 回 > < 回 > < 回 >

Le neutrino : mélange, masse et nature La décroissance double bêta

Le neutrino

Histoire du neutrino

1930 Wolfgang Pauli "invente" le neutrino

1956 Découverte expérimentale $\bar{\nu}_e$ (Cowan & Reines)

イロト イポト イヨト イヨト

Le neutrino : mélange, masse et nature La décroissance double bêta

Le neutrino

Histoire du neutrino

- 1930 Wolfgang Pauli "invente" le neutrino
- 1956 Découverte expérimentale $\bar{\nu}_e$ (Cowan & Reines)
- 1963 Découverte expérimentale du ν_{μ} (Brookhaven)

2000 Découverte expérimentale du ν_{τ} (DONUT)

Le neutrino dans le Modèle Standard

- trois neutrinos légers (u_e , u_μ , $u_ au$) + antineutrinos
- particule élémentaire, neutre et de spin 1/2
- sensible uniquement à l'interaction faible
- absence de ν_{R} et $\bar{\nu}_{I}$ dans l'expérience $\Rightarrow m_{\nu} = 0$

4 3 5 4 3 5 5

Le neutrino : mélange, masse et nature La décroissance double bêta

Le neutrino

Histoire du neutrino

- 1930 Wolfgang Pauli "invente" le neutrino
- 1956 Découverte expérimentale $\bar{\nu}_e$ (Cowan & Reines)
- 1963 Découverte expérimentale du ν_{μ} (Brookhaven)
- 1998 Évidence de l'oscillation des neutrinos par Super-Kamiokande

2000 Découverte expérimentale du ν_{τ} (DONUT)

Le neutrino dans le Modèle Standard

- trois neutrinos légers (u_e , u_μ , $u_ au$) + antineutrinos
- particule élémentaire, neutre et de spin 1/2
- sensible uniquement à l'interaction faible
- absence de ν_{R} et $\bar{\nu}_{I}$ dans l'expérience $\Rightarrow m_{\nu} = 0$

masse de neutrino
$$m_
u = ?$$

nature du neutrino $u
eq ar{
u} ext{ (Dirac)} ext{ ou }
u = ar{
u} ext{ (Majorana)} ?$

くロト く伺下 くまト くまう

De NEMO 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Le neutrino : mélange, masse et nature La décroissance double bêta

Oscillation des neutrinos

Mélange des neutrinos

- Deux représentations distinctes :
 - États propres de masse (ν_1, ν_2, ν_3)
 - États propres de saveur $(\nu_e, \nu_\mu, \nu_\tau)$

$$\begin{pmatrix} \nu_{\mathbf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{\mathbf{e}1} & \mathbf{U}_{\mathbf{e}2} & \mathbf{U}_{\mathbf{e}3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

• Angle de mélange θ_{12} , θ_{13} et θ_{23}

< 同 > < 三 > < 三 >

Probabilité d'oscillation

- Mélange entre deux saveurs : $\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta_{ij} & \sin \theta_{ij} \\ -\sin \theta_{ij} & \cos \theta_{ij} \end{pmatrix} \begin{pmatrix} \nu_i \\ \nu_j \end{pmatrix} \qquad \stackrel{\alpha, \beta = e, \mu, \tau}{_{i, j = 1, 2, 3}}$
- Évolution d'un neutrino u_{α} d'énergie *E* à une distance *L* :

$$P_{
u_{lpha} o
u_{eta}}(L,E) pprox \sin^2(2 heta_{ij}) \sin^2\left(rac{\Delta m_{ij}^2 L}{4E}
ight) \quad ext{avec} \quad \Delta m_{ij}^2 = m_i^2 - m_j^2$$

Le neutrino : mélange, masse et nature La décroissance double bêta

Résultats des expériences d'oscillation

Paramètres de mélange (PDG, 2010)

Hiérarchies de masse des neutrinos

Le neutrino : mélange, masse et nature La décroissance double bêta

Vers une mesure de la masse absolue

CMB (WMAP)

Types d'expériences

• observations en cosmologie $\sum_{i=1}^{3} m_i < 0.6 \text{ eV} (WMAP + SDSS, DEEP2, LBGs)$

< ロ > < 同 > < 三 > < 三 >

De NEMO 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Le neutrino : mélange, masse et nature La décroissance double bêta

Vers une mesure de la masse absolue

Types d'expériences

- observations en cosmologie $\sum_{i=1}^{3} m_i < 0.6 \text{ eV} (WMAP + SDSS, DEEP2, LBGs)$
- étude de la décroissance β

$$m_{
u_e} = \sqrt{\sum_{i=1}^3 U_{ei}^2} \; m_i^2 <$$
 2,3 eV (MAINZ, TROITZK)

< ロ > < 同 > < 三 > < 三 >

Le neutrino : mélange, masse et nature La décroissance double bêta

Vers une mesure de la masse absolue

Types d'expériences

- observations en cosmologie $\sum_{i=1}^{3} m_i < 0.6 \text{ eV} (WMAP + SDSS, DEEP2, LBGs)$
- étude de la décroissance β

$$m_{
u_e} = \sqrt{\sum_{i=1}^{3} U_{ei}^2 m_i^2} < 2,3 \; {
m eV} \; ({
m MAINZ, TROITZK})$$

• recherche de la décroissance double bêta sans émission de neutrinos : $m_{\beta\beta} = \sqrt{\left|\sum_{i=1}^{3} U_{ei}^{2} m_{i}^{2}\right|} \begin{cases} < 0, 2 - 1, 3 \text{ eV} (\text{CUORICINO, IGEX, H-M, NEMO 3}) \\ = 0, 32 \pm 0, 03 \text{ eV} (\text{H-M} : \text{Klapdor-Kleingrothaus}) \end{cases}$

Le neutrino : mélange, masse et nature La décroissance double bêta

La décroissance double bêta avec émission de neutrinos ($\beta\beta 2\nu$)

 $(A, Z) \longrightarrow (A, Z+2) + 2e^- + 2\bar{\nu}_e$

• Processus du second ordre de l'interaction faible : $T_{1/2}^{2\nu} \sim 10^{18} - 10^{21}$ ans

- Décroissance β simple interdite (énergie) ou défavorisée (spin)
- Énergie de transition $Q_{\beta\beta} \sim$ quelques MeV.

Le neutrino : mélange, masse et nature La décroissance double bêta

La décroissance double bêta sans émission de neutrinos $(\beta\beta 0\nu)$

$$(A,Z) \longrightarrow (A,Z+2) + 2e^{-}$$

그는 소 구

• Interdit par le Modèle Standard : non conservation du nombre leptonique

• Implique un neutrino de Majorana $\nu = \overline{\nu}$

• Accès à la masse effective du neutrino $m_{\beta\beta}$:

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} \left| M^{0\nu} \right|^2 \left| m_{\beta\beta} \right|^2 \qquad \begin{array}{c} G^{0\nu} & \text{Facteur d'espace de phase F}(Q_{\beta\beta}, Z) \\ M^{0\nu} & \text{Élément de matrice nucléaire} \end{array}$$

• Limites courantes sur la demi-vie : $T_{1/2}^{0\nu} \ge 10^{24} - 10^{25}$ ans

La décroissance double bêta

Détection de la décroissance double bêta

Observables disponibles

- Énergie totale des électrons $E_1 + E_2 : \frac{\beta\beta 2\nu}{\nu}$ vs. $\frac{\beta\beta 0\nu}{\nu}$
- Énergies individuelles E₁, E₂
 Distribution angulaire cos θ

Discrimination du mécanisme $\beta\beta 0\nu$

La décroissance double bêta

Détection de la décroissance double bêta

Observables disponibles

- Énergie totale des électrons $E_1 + E_2$: $\beta\beta 2\nu$ vs. $\beta\beta 0\nu$
- Énergies individuelles E_1, E_2 Distribution angulaire $\cos \theta$

Discrimination du mécanisme $\beta\beta$ 0 ν

Le neutrino : mélange, masse et nature La décroissance double bêta

Catégories d'expériences double bêta

Expériences purement calorimétriques

source = détecteur

- bolomètre
- scintillateur
- semi-conducteur

- grande efficacité de détection
- bonne résolution en énergie
- pas d'identification des électrons
- bruit de fond élevé

Expériences "tracko-calo"

- identification des électrons : cinématique des décroissances ββ
- mesure + rejection du bruit de fond

< ロ > < 同 > < 回 > < 回 >

- faible efficacité
- résolution en énergie modeste

De NEMÓ 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Le neutrino : mélange, masse et nature La décroissance double bêta

Statut expérimental

Résultat des expériences passées à ~ 10 kg d'isotopes ββ : m_{ββ} ≤ 0,2 −1,3 eV
 Projet de nouveaux détecteurs (100 kg) sensibles à m_{ββ} ≈ 50 meV

< 同 > < 三 > < 三 >

De NEMÓ 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Le neutrino : mélange, masse et nature La décroissance double bêta

Statut expérimental

• Résultat des expériences passées à \sim 10 kg d'isotopes $\beta\beta$: $m_{\beta\beta}$ \leq 0,2 –1,3 eV

ullet Projet de nouveau× détecteurs (100 kg) sensibles à $m_{etaeta}pprox$ 50 meV

A 10

★ ∃ → < ∃ →</p>

De NEMÓ 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Le neutrino : mélange, masse et nature La décroissance double bêta

Statut expérimental

- Résultat des expériences passées à \sim 10 kg d'isotopes etaeta : m_{etaeta} \leq 0,2 –1,3 eV
- Projet de nouveaux détecteurs (100 kg) sensibles à $m_{etaeta}pprox$ 50 meV

- T

< ∃> < ∃>

Le détecteur NEMO 3 Le projet SuperNEMC

De NEMO 3 à SuperNEMO

Détecteur NEMO 3

Module SuperNEMO

★ ∃ ► < ∃ ►</p>

Le détecteur NEMO 3 Le projet SuperNEMO

L'expérience NEMO 3

- 10 kg d'émetteur $\beta\beta$
- 6180 cellules à dérive + \vec{B} (25 G)
- 1940 compteurs à scintillation
- $\bullet\,$ blindages n et γ
- installé au LSM depuis 2003

* E > < E</p>

Le détecteur NEMO 3 Le projet SuperNEMO

L'expérience NEMO 3

- 10 kg d'émetteur $\beta\beta$
- 6180 cellules à dérive + \vec{B} (25 G)
- 1940 compteurs à scintillation
- blindages n et γ
- installé au LSM depuis 2003

Caractéristiques uniques

- \checkmark Choix de l'émetteur : ¹⁰⁰Mo, ⁸²Se, ...
- \checkmark Identification des particules lpha, eta, γ
- \checkmark Cinématique $\beta\beta$: E_1 , E_2 , $\cos \theta$, Δt

 $\Rightarrow \tilde{E}tude \beta\beta0\nu, \beta\beta2\nu, \beta\beta \text{ états excités}$ $\Rightarrow Mesure + rejet bruit de fond :$ $topologies <math>e^-, e^- \alpha, e^- \gamma, e^-\gamma\gamma, \dots$

3 b 4 3 b

Le détecteur NEMO 3 Le projet SuperNEMO

L'expérience NEMO 3

- 10 kg d'émetteur $\beta\beta$
- 6180 cellules à dérive + \vec{B} (25 G)
- 1940 compteurs à scintillation
- blindages n et γ
- installé au LSM depuis 2003

Caractéristiques uniques

- ✓ Choix de l'émetteur : ¹⁰⁰Mo, ⁸²Se, ...
- \checkmark Identification des particules α , β , γ
- \checkmark Cinématique $\beta\beta$: E_1 , E_2 , $\cos\theta$, Δt

⇒ Étude $\beta\beta0\nu$, $\beta\beta2\nu$, $\beta\beta$ états excités ⇒ Mesure + rejet bruit de fond : topologies e^- , $e^-\alpha$, $e^-\gamma$, $e^-\gamma\gamma$

Rôle du calorimètre

Le détecteur NEMO 3 Le projet SuperNEMO

Résultats et enseignements de NEMO 3

Résultat ¹⁰⁰Mo

- Exposition de 6,9×4,5 kg.ans
- Fenêtres [2,8 3,2] MeV : - données = 18 evts
 - Monte-Carlo = $16, 4 \pm 1, 4$ evts

A 10

< ∃> < ∃>

- $T_{1/2}^{0
 u}>1.10^{24}$ ans
- $m_{\beta\beta} < 0.5 1.0 \text{ eV}$

Le détecteur NEMO 3 Le projet SuperNEMO

Résultats et enseignements de NEMO 3

Bruit de fond (¹⁰⁰Mo)

- décroissance $\beta\beta 2\nu$ + résolution en énergie du calorimètre
- contaminations des feuilles sources (²¹⁴Bi, ²⁰⁸TI)
- radon ← émanation du calorimètre (²²⁶Ra)

< 回 > < 三 > < 三

Le détecteur NEMO 3 Le projet SuperNEMO

Résultats et enseignements de NEMO 3

Bruit de fond (100 Mo)

- décroissance $\beta\beta 2\nu$ + résolution en énergie du calorimètre
- contaminations des feuilles sources (²¹⁴Bi, ²⁰⁸TI)
- radon ← émanation du calorimètre (²²⁶Ra)

< 同 ▶ < 三 ▶

< 3

Le détecteur NEMO 3 Le projet SuperNEMO

Résultats et enseignements de NEMO 3

Bruit de fond (100 Mo)

- décroissance $\beta\beta 2\nu$ + résolution en énergie du calorimètre
- contaminations des feuilles sources (²¹⁴Bi, ²⁰⁸TI)
- radon ← émanation du calorimètre (²²⁶Ra)

イロト イボト イヨト イヨト

Le détecteur NEMO 3 Le projet SuperNEMO

Le projet SuperNEMO

Collaboration internationale SuperNEMO : 9 pays, ~ 100 physiciens Objectif du projet : $T_{1/2}^{0\nu} > 10^{26}$ ans $\iff m_{\beta\beta} < 40 - 110$ meV (⁸²Se)

- (B)

★ ∃ ► < ∃ ►</p>

Le détecteur NEMO 3 Le projet SuperNEMO

Le projet SuperNEMO

Collaboration internationale SuperNEMO : 9 pays, ~ 100 physiciens Objectif du projet : $T_{1/2}^{0\nu} > 10^{26}$ ans $\iff m_{\beta\beta} < 40 - 110$ meV (⁸²Se)

Approche modulaire

- $\bullet~Source$: ^{82}Se en feuilles de 40 mg/cm $^2 \rightarrow 5~kg$
- $\bullet\,$ Trajectographe : \sim 2000 cellules à dérive en régime Geiger
- $\bullet\,$ Calorimètre : $\sim\,500$ compteurs à scintillation

22 \times modules pour une masse \sim 100 kg

Le détecteur NEMO 3 Le projet SuperNEMO

Le calorimètre de SuperNEMO

Sous-module calorimètre de SuperNEMO

- \sim 250 compteurs à scintillation par mur :
 - scintillateur plastique de volume 8 12 L
 - photomultiplicateur hémisphérique 8"

4 3 5 4 3

Scintillateur plastique (organique)

- densité et Z faible (rétrodiffusion e⁻)
- rapidité de la réponse (\sim ns)
- transparence
- radiopureté excellente
- disponible en grand volume

Photomultiplicateur (PM)

- rapidité de la réponse (\sim ns)
- grande surface de détection
- gain élevé (10⁵ − 10⁷)
- bruit faible

Le calorimètre de SuperNEMO

Sous-module calorimètre de SuperNEMO

- \sim 250 compteurs à scintillation par mur :
 - scintillateur plastique de volume 8 12 L
 - photomultiplicateur hémisphérique 8"

Cahier des charges du calorimètre

- Résolution en énergie : < 8 % FWHM @ 1 MeV (15 % FWHM dans NEMO 3)
- Résolution temporelle 250 ps (σ) @ 1 MeV
- Linéarité meilleure que 1 % jusqu'à 3 MeV
- "tagging" $\gamma >$ 50 % @ 1 MeV (épaisseur du scintillateur > 10 cm)
- Radiopureté ightarrow ampoule en verre (\sim 85 % masse du PM) :

 $A(^{40}K) < 100 \ mBq/kg \qquad A(^{214}Bi) < 40 \ mBq/kg \qquad A(^{208}TI) < 3 \ mBq/kg$

Le détecteur NEMO 3 Le projet SuperNEMO

Résolution en énergie des compteurs à scintillation

(日本) (日本) (日本)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D Calorimétrie pour SuperNEMO

BANCS DE TEST

R&D SCINTILLATEURS

R&D PHOTOMULTIPLICATEURS

イロト イヨト イヨト イヨ

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs

Bancs de test : Spectromètres à électrons

Spectromètres à électrons au CENBG

- source de 90 Sr collimatée d'activité 470 MBq ($Q_{eta}=$ 2,28 MeV)
- sélection en énergie : 0,4 − 2,0 MeV (FWHM < 1,5 % @ 1 MeV)
- faisceau : profil gaussien (FWHM = 0,85 cm) et intensité \sim 30 e^-/sec. @ 1 MeV
- mobilité des spectromètres : 150×150 mm (\pm 0,5 mm) et 0,6×2 m (\pm 1 mm)

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Bancs de test : Contrôle et acquisition

Automatisation (services du laboratoire CENGB)

Contrôle du banc de test par ordinateur :

- réglage du faisceau (position, énergie, ...)
- système de déplacement motorisé
- planification de séries de mesures
- synchronisation avec une base de données

Acquisition MATACQ32

carte CEA/DAPNIA+IN2P3/LAL

- échantillonnage des signaux @ 2 GHz
- fenêtre de 1,25 $\mu {\rm s}$ (2520 points)
- précision en amplitude de 250 μV contrôle logiciel LPC-CAEN

< A > < E

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

$\mathsf{Bancs} \mathsf{ de test} \to \mathsf{Signal}$

< ロ > < 回 > < 回 > < 回 > < 回 >

э
Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Bancs de test : Analyse des signaux

• intégration de la charge, influence de la plage d'integration sur la résolution

PVT Eljen 2 cm + PM Photonis XP1886 (SN124)

PVT Eljen 2 cm + PM Photonis XP1886 (SN109)

くぼう くほう くほう

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Bancs de test : Analyse des signaux

- intégration de la charge, influence de la plage d'integration sur la résolution
- contrôle de la linéarité des compteurs à scintillation

PS Eljen 2 cm + PM Photonis XP1886 (SN100) VD3

PS Dubna 2 cm + PM Photonis XP1886 (SN100) VD1

通 ト イ ヨ ト イ ヨ ト

De NEMÓ 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Bancs de test et outils d'analyse

Bancs de test : Analyse des signaux

- intégration de la charge, influence de la plage d'integration sur la résolution
- contrôle de la linéarité des compteurs à scintillation
- mesure précise de la résolution en énergie (erreurs stat. + syst. de 2 %)

PS Dubna 10 cm + PM Photonis XP1886 (SN160)

4 A b

★ ∃ ► < ∃ ►</p>

De NEMÓ 3 à SuperNEMO R&D Calorimétrie pour SuperNEMO Conclusion Bancs de test et outils d'analyse

Bancs de test : Analyse des signaux

- intégration de la charge, influence de la plage d'integration sur la résolution
- contrôle de la linéarité des compteurs à scintillation
- mesure précise de la résolution en énergie (erreurs stat. + syst. de 2 %)
- autres propriétés : amplitude, caractéristiques temporelles, gain, ...

A (B) > A (B) > A (B) >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Bancs de test : Analyse des signaux

- intégration de la charge, influence de la plage d'integration sur la résolution
- contrôle de la linéarité des compteurs à scintillation
- mesure précise de la résolution en énergie (erreurs stat. + syst. de 2 %)
- autres propriétés : amplitude, caractéristiques temporelles, gain, ...
- définition d'un protocole d'analyse pour tests en série

그는 것 구

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Fiche résultat du test d'un compteur

- Caractérisation standard et de référence des scintillateurs et photomultiplicateurs
- Qualification en série des compteurs à scintillation pour SuperNEMO

< ロ > < 同 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Outils de simulations optiques

Objectif

Simulation du transport des photons pour :

- modéliser la réponse des compteurs de NEMO 3
- guider les développements pour SuperNEMO

Travail réalisé avec Benton PAHLKA (U. Texas, Austin)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Outils de simulations optiques

Objectif

Simulation du transport des photons pour :

- modéliser la réponse des compteurs de NEMO 3
- guider les développements pour SuperNEMO

Travail réalisé avec Benton PAHLKA (U. Texas, Austin)

4 3 6 4 3

Fonctionnement

Simulations Monte-Carlo GEANT4 :

- simulation de l'aspect corpusculaire du photon
- lois de l'optique parfaitement connues (Snell-Descartes, Beer-Lambert, ...)
- mais pour la plupart paramétrisées (indices optiques, longueur d'atténuation, ...)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Outils de simulations optiques

Objectif

Simulation du transport des photons pour :

- modéliser la réponse des compteurs de NEMO 3
- guider les développements pour SuperNEMO

Travail réalisé avec Benton PAHLKA (U. Texas, Austin)

周レイヨレイヨ

Fonctionnement

Simulations Monte-Carlo GEANT4 :

- simulation de l'aspect corpusculaire du photon
- lois de l'optique parfaitement connues (Snell-Descartes, Beer-Lambert, ...)
- mais pour la plupart paramétrisées (indices optiques, longueur d'atténuation, ...)

 \Rightarrow coordination d'un jeu de paramètre avec dépendance en longueur d'onde

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Modèle

イロト イボト イヨト イヨト

э

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Modèle

Lois optiques paramétrisées par

- spectre de scintillation PS + 1,5 % pTP + 0,01 % POPOP
- indices de réfraction

э

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Modèle

Lois optiques paramétrisées par

- spectre de scintillation PS + 1,5 % pTP + 0,01 % POPOP
- indices de réfraction
- réflectivité des surfaces

э

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Modèle

Lois optiques paramétrisées par

- spectre de scintillation
 PS + 1,5 % pTP + 0,01 % POPOP
- indices de réfraction
- réflectivité des surfaces
- atténuation des photons :
 - sans réémission (perte)
 - avec réémission (WLS)

< 同 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Modèle

Lois optiques paramétrisées par

- spectre de scintillation
 PS + 1,5 % pTP + 0,01 % POPOP
- indices de réfraction
- réflectivité des surfaces
- atténuation des photons :
 sans réémission (perte)
 - avec réémission (WLS)
- efficacité quantique du PM

A (1) > A (2) > A (2)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (1/2)

Importance des surfaces

Géométrie SuperNEMO $ightarrow \sim$ 5 réflexions/photons

- modification direction/longueur des trajectoires
- absorption en surface (R ≈ 93 %)
 ⇒ probabilité du survie 0,93⁵ = 0,64

医下子 医

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (1/2)

Importance des surfaces

Géométrie SuperNEMO $ightarrow \sim$ 5 réflexions/photons

- modification direction/longueur des trajectoires
- absorption en surface (R ≈ 93 %)
 ⇒ probabilité du survie 0,93⁵ = 0,64

きょうそうり

Nature des surfaces

- interface :
 - deux milieux optiques
 - état de surface (poli/dépoli)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (1/2)

Importance des surfaces

Géométrie SuperNEMO $ightarrow \sim$ 5 réflexions/photons

- modification direction/longueur des trajectoires
- absorption en surface (R ≈ 93 %)
 ⇒ probabilité du survie 0,93⁵ = 0,64

Nature des surfaces

- interface :
 - deux milieux optiques
 - état de surface (poli/dépoli)
- réflecteur :
 - spéculaire (Mylar aluminisé)
 - diffusif (Téflon)

< 回 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (1/2)

Importance des surfaces

Géométrie SuperNEMO $\rightarrow \sim$ 5 réflexions/photons

- modification direction/longueur des trajectoires
- absorption en surface (R ≈ 93 %)
 ⇒ probabilité du survie 0,93⁵ = 0,64

Nature des surfaces

- interface :
 - deux milieux optiques
 - état de surface (poli/dépoli)
- réflecteur :
 - spéculaire (Mylar aluminisé)
 - diffusif (Téflon)
- habillage : interface + réflecteur

< 回 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (1/2)

Importance des surfaces

Géométrie SuperNEMO $\rightarrow \sim$ 5 réflexions/photons

- modification direction/longueur des trajectoires
- absorption en surface (R ≈ 93 %)
 ⇒ probabilité du survie 0,93⁵ = 0,64

Nature des surfaces

- interface :
 - deux milieux optiques
 - état de surface (poli/dépoli)
- réflecteur :
 - spéculaire (Mylar aluminisé)
 - diffusif (Téflon)
- habillage : interface + réflecteur
 ⇒ réflexion totale interne possible sur l'interface scintillateur/air

マロト イラト イラト

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (1/2)

Importance des surfaces

Géométrie SuperNEMO $ightarrow \sim$ 5 réflexions/photons

- modification direction/longueur des trajectoires
- absorption en surface (R ≈ 93 %)
 ⇒ probabilité du survie 0,93⁵ = 0,64

・ 同 ト ・ ヨ ト ・ ヨ ト

Nature des surfaces

- interface :
 - deux milieux optiques
 - état de surface (poli/dépoli)
- réflecteur :
 - spéculaire (Mylar aluminisé)
 - diffusif (Téflon)
- habillage : interface + réflecteur
 ⇒ réflexion totale interne possible sur l'interface scintillateur/air
 - \Rightarrow réflexions multiples/complexes

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (2/2)

Test comparatif entre mesures et simulations

- scintillateur à base de polystryrène dans un état poli
- habillage progressif du scintillateur

・ 同 ト ・ ヨ ト ・ ヨ ト

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Simulations optiques : Cas des surfaces (2/2)

Test comparatif entre mesures et simulations

- scintillateur à base de polystryrène dans un état poli
- habillage progressif du scintillateur

	Résolution FWHM @ 1 MeV		
	Mesure (err. rel. 2 %)	Simulation GEANT4 (err. rel. 5 %)	
	Spectromètre	SANS gap d'air	AVEC gap d'air
Habillage 1	16,4 %	38,7 %	17,6 %
Habillage 2	14,4 %	28,4 %	15,6 %
Habillage 3	11,5 %	21,3 %	11,9 %
Habillage 4	10,7 %	12,3 %	10,7 %

Excellent accord entre mesures et simulations avec gap d'air \Rightarrow validation de la modélisation de l'habillage

< (T) >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques

— Géométrie —

— Polissage —

— Habillage —

— Matériau —

< ロ > < 回 > < 回 > < 回 > < 回 >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Géométrie

Choix de la géométrie de base

- Comparaison des formes carrés et hexagonales à surface d'entrée identique
- Simulation pour un scintillateur à base de PS
- Réponse en fonction du point d'impact d'électrons de 1 MeV

Forme de base carrée

Forme de base hexagonale

きょう そうり

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Géométrie

Choix de la géométrie de base

- Comparaison des formes carrés et hexagonales à surface d'entrée identique
- Simulation pour un scintillateur à base de PS
- Réponse en fonction du point d'impact d'électrons de 1 MeV

Simulation scintillateur NEMO3 + XP1886 SN100

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Géométrie

Vérification expérimentale

balayage de la surface de scintillateurs

Inhomogénéités de la réponse mesurées < 2 %

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Polissage

Choix de l'état de polissage

Trois surfaces différentes à considérer : face d'entrée, parois latérales, face de sortie

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Polissage

Vérification expérimentale

Polissage/dépolissage d'un scintillateur étape par étape

État des surfaces		Résolution @ 1 MeV		
Entrée	Cotés	Sortie	Mesure (\pm 0,2 %)	GEANT4 (\pm 0,6 %)
dépoli	dépoli	poli	11,1 %	11,7 %
poli	dépoli	poli	11,3 %	11,4 %
poli	poli	poli	10,7 %	10,7 %
poli	poli	dépoli	10,5 %	10,6 %

Scintillateur PS hex. 219 mm \times 100 mm + PM Photonis XP1886 (SN100)

• dépolissage de la sortie = meilleure transparence de la surface

• polissage des autres faces = reflexion totale interne > reflexion sur l'habillage

イロト イボト イヨト イヨト

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Habillage

Choix de l'habillage

- face d'entrée aux électrons : habillage fin à Z faible \Rightarrow Mylar aluminisé (6 μ m)
- surfaces latérales : spéculaire (Mylar) vs. diffusif (Téflon)

75 % Mylar + 25 % Téflon

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D scintillateurs plastiques : Habillage

Scintillateur PS hex. 219 mm \times 100 mm + PM Photonis XP1886 (SN100)

	Résolution FWHM		
Réflecteur latéral	Mesure (\pm 0,2 %)	Simulation (\pm 0,5 %)	
100 % Mylar	11,0 %	10,9 %	
100 % Téflon	10,7 %	10,7 %	
25 % Téflon + 75 % Mylar	10,7 %	10,5 %	

Test expérimental	
	Amélioration trop faible pour être mesurée
	\Rightarrow à contrôler avec la géométrie définitive

< ロ > < 回 > < 回 > < 回 > < 回 >

3

Bancs de test et outils d'analyse Outils de simulations optiques **R&D scintillateurs** R&D photomultiplicateurs

Bilan R&D scintillateurs plastiques

R&D scintillateurs polystyrène (PS)

- Choix de la géométrie cubique : meilleure FWHM + homogénéité
- Polissage des surfaces d'entrée et latérales, dépolissage de la face de sortie
- Habillage 100 % Téflon ou mixte

< ロ > < 同 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques **R&D scintillateurs** R&D photomultiplicateurs

Bilan R&D scintillateurs plastiques

R&D scintillateurs polystyrène (PS)

- Choix de la géométrie cubique : meilleure FWHM + homogénéité
- Polissage des surfaces d'entrée et latérales, dépolissage de la face de sortie
- Habillage 100 % Téflon ou mixte

Comparaison PS/PVT (polyvinyl toluène)			
Matériau	PS NEMO 3	PVT EJ-200	PVT EJ-204
Rendement lumineux	8000 ph./MeV	10000 ph./MeV	10400 ph./MeV
Émission maximale à	415 nm	425 nm	408 nm
Longueur d'atténuation	\sim 3 m	3,8 m	1,6 m

< 同 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques **R&D scintillateurs** R&D photomultiplicateurs

Bilan R&D scintillateurs plastiques

R&D scintillateurs polystyrène (PS)

- Choix de la géométrie cubique : meilleure FWHM + homogénéité
- Polissage des surfaces d'entrée et latérales, dépolissage de la face de sortie
- Habillage 100 % Téflon ou mixte

Comparaison PS/PVT (polyvinyl toluène)			
Matériau	PS NEMO 3	PVT EJ-200	PVT EJ-204
Rendement lumineux	8000 ph./MeV	10000 ph./MeV	10400 ph./MeV
Émission maximale à	415 nm	425 nm	408 nm
Longueur d'atténuation	\sim 3 m	3,8 m	1,6 m
Test comparatif de cubes 308 \times 120 mm + PM Photonis XP1886 (SN160)			
FWHM @ 1 MeV	$8,9\pm0,1~\%$	$8,3\pm0,1~\%$	$7,8\pm 0,1~\%$

Choix du scintillateur PVT EJ-204 pour SuperNEMO

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs (PMs)

Photonis SAS, Brives

Photonis XP1886

Collaboration CENBG/Photonis

Groupement d'Intérêt Scientifique Photonis/IN2P3

- Développement d'un PM 8" dédié à SuperNEMO, le XP1886 :
 - linéaire : adapté au régime scintillation (détection de $\sim 10^3$ photons)
 - amélioration des efficacités quantique et de collection des photoélectrons
 - radiopureté (verre + composants)
- \sim 50 PMs de dimensions variées reçus et testés au CENGB (1" \rightarrow 9")

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Linéarité

Mise au point de la linéarité

XP1886 = clone du XP1806 (11 étages, gain 10⁸)

- passage à 8 étages pour un gain à 10⁶
- multiplicateur linéaire focalisant conservé
- répartition des tensions entre les dynodes adaptée

- 4 同 1 4 三 1 4 三 1

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Linéarité

Mise au point de la linéarité

XP1886 = clone du XP1806 (11 étages, gain 10⁸)

- passage à 8 étages pour un gain à 10⁶
- multiplicateur linéaire focalisant conservé
- répartition des tensions entre les dynodes adaptée

PVT Eljen 2 cm + XP1886_SN100 (VD3)

7 prototypes XP1886 reçus :

linéarité meilleure que 0,3 % jusqu'à 2,0 MeV

< 17 ▶

* E > < E</p>
Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Répartition des tensions entre les dynodes

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Répartition des tensions entre les dynodes

Optimisation de l'alimentation du PM Influence de la répartition des tensions :

- dans les premiers étages :
 - collection des photoélectrons
 - rapidité des signaux
- aux derniers étages : gain, linéarité

Répartitions testées

k	(D	1 D	02 D	03 D	04 D	05 D	06 D	07 D	A 80	тот
VD1 nominale	10	4	4	1	1	1	1	1	1	24
VD2	10	4	4	1	1,25	1,5	1,75	2	2	27,7
VD3	20	4	4	1	1,25	1,5	1,75	2	2	37,5
VD4	20	6	4	1	1,25	1,5	1,75	2	2	39,5

- $\bullet~VD1 \rightarrow VD2$: repartition progressive en fin de multiplication
- VD2, VD3, VD4 : différentes configurations des tensions entre K-D1 et D1-D2

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Répartition des tensions entre les dynodes

Scintillateur PS cylindrique 8" x 100 mm + XP1886_SN100

Répartition VD3 retenue : amélioration de la résolution de 0,4 %

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Efficacité de photodétection

Amélioration de l'efficacité quantique de la photocathode

Progrès récents avec les photocathodes bialkali (ρ : 20 % \longrightarrow 40 % et +)

Travaux préliminaires sur PM 3"

PS 3" \times 50 mm + PM Photonis XP5312 (3")

Photocathode	$<\! ho\!>$	FWHM @ 1 MeV		
"bleu-blanc"	28 %	$7,9\pm0,2$ %		
"super ² "	37,3 %	$7,5\pm0,2$ %		

FWHM attendue \approx 6,8 %

Identification d'une dégradation du vide lors du "process" par Photonis

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Efficacité de photodétection

Amélioration de l'efficacité quantique de la photocathode

Progrès récents avec les photocathodes bialkali (ρ : 20 % \longrightarrow 40 % et +)

- Travaux préliminaires sur PM 3"
- Extrapolation des développements aux PMs 8" (XP1886)

No.
31. 4

PVT EJ-200 Hex. 219×100 mm + Photonis XP188

Photocathode	ρ @ 420 nm	FWHM @ 1 MeV		
standard	24 %	$7,3\pm0,1~\%$		
super ²	35 %	$7,1\pm0,1$ %		
super ² "process" amélioré	28 %	$6,7\pm0,1~\%$		

XP1886 + nouvelle photocathode \Rightarrow résolution en énergie < 7,0 % Améliorations encore possibles mais développements stoppés en mars 2009.

- 4 回 ト 4 ヨ ト

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Géométrie de l'ampoule

Simulation optique du PM (avec Cyril Moussant, PHOTONIS)

Étude des photons traversant la photocathode sans interagir

< 回 > < 三 > < 三

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Géométrie de l'ampoule

Simulation optique du PM (avec Cyril Moussant, PHOTONIS)

Étude des photons traversant la photocathode sans interagir

• Géométrie de l'ampoule suivant un plan fourni par PHOTONIS

∃ >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

R&D photomultiplicateurs : Géométrie de l'ampoule

Simulation optique du PM (avec Cyril Moussant, PHOTONIS)

Étude des photons traversant la photocathode sans interagir

- Géométrie de l'ampoule suivant un plan fourni par PHOTONIS
- Devenir des photons non détectés lors de la traversée de la photocathode

★ 3 → < 3</p>

- T

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Géométrie de l'ampoule

Simulation optique du PM (avec Cyril Moussant, PHOTONIS)

Étude des photons traversant la photocathode sans interagir

- Géométrie de l'ampoule suivant un plan fourni par PHOTONIS
- Devenir des photons non détectés lors de la traversée de la photocathode
- Géométrie de l'ampoule optimale : R > 140 mm
 - \Rightarrow meilleur recyclage des photons
 - ⇒ meilleure collection des photoélectrons (simulation PHOTONIS)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Radiopureté

Ampoule du PM Photonis XP1886

Élements internes aux PMs

Voie de R&D

- Diminution du nombre de voie (PM 5" \rightarrow 8")
- Développer un nouveau verre de très basse radioactivité
- $\bullet\,$ Contrôle et sélection des autres matériaux par spectrométrie $\gamma\,$

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (1/2)

Origine de la radioactivité du verre

• base : oxyde de silicium SiO₂

< ロ > < 同 > < 三 > < 三 >

э

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (1/2)

Origine de la radioactivité du verre

- base : oxyde de silicium SiO₂
- + fondant : Na₂O, K₂O, MgO, ... (point de fusion 1730 $^{\circ}$ C \rightarrow 1400 $^{\circ}$ C)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

R&D photomultiplicateurs : Développement d'un nouveau verre (1/2)

Origine de la radioactivité du verre

- base : oxyde de silicium SiO₂
- + fondant : Na₂O, K₂O, MgO, ... (point de fusion 1730 ° C \rightarrow 1400 ° C)
- + stabilisant : CaO, Al₂O₃, BaCl₂, BaCO₃, ... (résistance chimique)

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

R&D photomultiplicateurs : Développement d'un nouveau verre (1/2)

Origine de la radioactivité du verre

- base : oxyde de silicium SiO₂
- + fondant : Na₂O, K₂O, MgO, ... (point de fusion 1730 ° C \rightarrow 1400 ° C)
- + stabilisant : CaO, Al₂O₃, BaCl₂, BaCO₃, ... (résistance chimique)
- + autres composants suivant applications pour les PMs : transparence, rigidité, tenue photocathode

・ 同 ト ・ ヨ ト ・ ヨ ト

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (1/2)

Origine de la radioactivité du verre

- base : oxyde de silicium SiO₂
- + fondant : Na₂O, K₂O, MgO, ... (point de fusion 1730 ° C \rightarrow 1400 ° C)
- + stabilisant : CaO, Al₂O₃, BaCl₂, BaCO₃, ... (résistance chimique)
- + autres composants suivant applications pour les PMs : transparence, rigidité, tenue photocathode

 \implies forte présence de la plupart des éléments radioactifs présents sur terre notamment 40 K, 226 Ra et 228 Ra (parents du 214 Bi et 208 Tl)

- 4 同 ト 4 三 ト 4 三 ト

R&D photomultiplicateurs : Développement d'un nouveau verre (1/2)

Origine de la radioactivité du verre

- base : oxyde de silicium SiO₂
- + fondant : Na₂O, K₂O, MgO, ... (point de fusion 1730 ° C \rightarrow 1400 ° C)
- + stabilisant : CaO, Al₂O₃, BaCl₂, BaCO₃, ... (résistance chimique)
- + autres composants suivant applications pour les PMs : transparence, rigidité, tenue photocathode

 \implies forte présence de la plupart des éléments radioactifs présents sur terre notamment 40 K, 226 Ra et 228 Ra (parents du 214 Bi et 208 Tl)

Bq/kg	A(⁴⁰ K)	A(²¹⁴ Bi)	A(²⁰⁸ TI)
Verre standard	~ 100	\sim 10	~ 1
Verre des PMs de NEMO 3	~ 1	\sim 0,5	\sim 0,03
Critère SuperNEMO	< 0,1	< 0,04	< 0,003

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (2/2)

Stratégie

- État des lieux (dizaines d'échantillons mesurés)
- Sélection des ingrédients et formulation du verre avec Prime-Verre puis Philips
- Oulée et mesure HPGe d'échantillons
- Ontruction d'un PM puis contrôle de la radiopureté

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (2/2)

Stratégie

- État des lieux (dizaines d'échantillons mesurés)
- **@** Sélection des ingrédients et formulation du verre avec Prime-Verre puis Philips
- Oulée et mesure HPGe d'échantillons
- Ontruction d'un PM puis contrôle de la radiopureté

Échantillons de composants du verre

- T

∃ → < ∃</p>

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (2/2)

Stratégie

- État des lieux (dizaines d'échantillons mesurés)
- **2** Sélection des ingrédients et formulation du verre avec Prime-Verre puis Philips
- Soulée et mesure HPGe d'échantillons
- Contruction d'un PM puis contrôle de la radiopureté

mBq/kg	A(⁴⁰ K)	A(²¹⁴ Bi)	A(²⁰⁸ TI)	
Coulée 1	150 ± 50	< 5	< 1,4	
Coulée 2	280 ± 50	< 9	< 2,5	
Coulée 3	170 ± 40	< 4	< 2,2	
Coulée 4	80 ± 20	< 4	< 0,7	
Critère SuperNEMO	< 100	< 40	< 3	

A 10

★ ∃ → < ∃ →</p>

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

R&D photomultiplicateurs : Développement d'un nouveau verre (2/2)

Stratégie

- État des lieux (dizaines d'échantillons mesurés)
- **2** Sélection des ingrédients et formulation du verre avec Prime-Verre puis Philips
- Oulée et mesure HPGe d'échantillons
- Ontruction d'un PM puis contrôle de la radiopureté

mars 2009 : Arrêt des développements avec la fin des activités PMs de Photonis

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

Reprise de la R&D avec Hamamatsu : Photodétection

Statut de la R&D photomultiplicateurs

Fin des activités PMs de Photonis \rightarrow reprise de la R&D avec Hamamatsu

• nouveau PM 8" R5912MOD linéaire + photocathode "super-bialkali"

4 A 1

★ ∃ ► < ∃ ►</p>

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

Reprise de la R&D avec Hamamatsu : Photodétection

Statut de la R&D photomultiplicateurs

Fin des activités PMs de Photonis \rightarrow reprise de la R&D avec Hamamatsu

- nouveau PM 8" R5912MOD linéaire + photocathode "super-bialkali"
- différence des performances entres PMs Photonis/Hamamatsu constatée dès 2008 ⇒ mauvaise efficacité de collection des photoélectrons dans le PM R5912MOD

No oto	

comparatif Photonis/Hamamatsu Matt KAUER (UCL, Londres)

PM	ho(400 nm)	FWHM @ 1 MeV		
Photonis XP1886	28 %	$6,7\pm0,1~\%$		
Hamamatsu R5912MOD	32 %	$7,7\pm0,1$ %		

R5912MOD : meilleure efficacité quantique mais résolution en énergie moins bonne !

< 同 > < 三 > < 三 >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

Reprise de la R&D avec Hamamatsu : Photodétection

Statut de la R&D photomultiplicateurs

Fin des activités PMs de Photonis \rightarrow reprise de la R&D avec Hamamatsu

- nouveau PM 8" R5912MOD linéaire + photocathode "super-bialkali"
- différence des performances entres PMs Photonis/Hamamatsu constatée dès 2008 \Rightarrow mauvaise efficacité de collection des photoélectrons dans le PM R5912MOD
- amélioration de la répartition des tensions pour le PM R5912MOD

PVT EJ-204 cubique 236 mm + PM Hamamatsu R5912MOD

FWHM @ 1 MeV
$8,1\pm0,1~\%$
$7,5\pm0,1~\%$

avec PM Photonis : 7, 1 \pm 0, 1 %

4 3 5 4 3

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

Reprise de la R&D avec Hamamatsu : Photodétection

Statut de la R&D photomultiplicateurs

Fin des activités PMs de Photonis \rightarrow reprise de la R&D avec Hamamatsu

- nouveau PM 8" R5912MOD linéaire + photocathode "super-bialkali"
- différence des performances entres PMs Photonis/Hamamatsu constatée dès 2008 ⇒ mauvaise efficacité de collection des photoélectrons dans le PM R5912MOD
- amélioration de la répartition des tensions pour le PM R5912MOD
- mauvaise homogénéité de la photocathode des PMs R5912MOD :
 ⇒ R&D en cours pour améliorer ce défaut

A 10

★ ∃ >

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs **R&D photomultiplicateurs**

Reprise de la R&D avec Hamamatsu : Radiopureté

Radiopureté des PMs R5912MOD de Hamamatsu

Discussions en cours pour un transfert de technologie (Philips \rightarrow Hamamatsu)

• Verre Hamamatsu actuel : radiopureté meilleure que NEMO 3

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Reprise de la R&D avec Hamamatsu : Radiopureté

Radiopureté des PMs R5912MOD de Hamamatsu

Discussions en cours pour un transfert de technologie (Philips \rightarrow Hamamatsu)

- Verre Hamamatsu actuel : radiopureté meilleure que NEMO 3
- Contrôle HPGe des autres composants

A(mBq/kg)	A(⁴⁰ K)	A(²¹⁴ Bi)	A(²⁰⁸ TI)	Poids/PM (g)	
Verre R5912MOD	300	120	22	800 g	
Métaux	< 7000	< 600	250 ± 70	120 g	
Céramique	13600 ± 1200	1200 ± 300	120 ± 10	25 g	
Isolants	2300 ± 400	700 ± 60	610 ± 40	1 g	

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Reprise de la R&D avec Hamamatsu : Radiopureté

Radiopureté des PMs R5912MOD de Hamamatsu

Discussions en cours pour un transfert de technologie (Philips \rightarrow Hamamatsu)

- Verre Hamamatsu actuel : radiopureté meilleure que NEMO 3
- Contrôle HPGe des autres composants
- Activité totale des PMs R5912MOD

	Poids	A(⁴⁰ K)	A(²¹⁴ Bi)	A(²⁰⁸ TI)
1 × PM 8" R5912MOD	0,96 kg	0,583 Bq	0,127 Bq	0,020 Bq
Module SuperNEMO (482 × PM 8")	470 kg	286 Bq	62 Bq	9,8 Bq
Détecteur NEMO 3 (1940 \times PM 3" et 5")	590 kg	830 Bq	300 Bq	18 Bq

Bancs de test et outils d'analyse Outils de simulations optiques R&D scintillateurs R&D photomultiplicateurs

Reprise de la R&D avec Hamamatsu : Radiopureté

Radiopureté des PMs R5912MOD de Hamamatsu

Discussions en cours pour un transfert de technologie (Philips \rightarrow Hamamatsu)

- Verre Hamamatsu actuel : radiopureté meilleure que NEMO 3
- Contrôle HPGe des autres composants
- Activité totale des PMs R5912MOD

	Poids	A(⁴⁰ K)	A(²¹⁴ Bi)	A(²⁰⁸ TI)
1 × PM 8" R5912MOD	0,96 kg	0,583 Bq	0,127 Bq	0,020 Bq
Module SuperNEMO (482 \times PM 8")	470 kg	286 Bq	62 Bq	9,8 Bq
Détecteur NEMO 3 (1940 \times PM 3" et 5")	590 kg	830 Bq	300 Bq	18 Bq

Réduction d'un facteur 5 du taux de ²¹⁴Bi entre NEMO 3 et SuperNEMO

ほうしょ ほう

Conclusions (1/2)

Bancs de test

- Deux spectromètres à électrons automatisés
- Mise en place d'un protocole de caractérisation des compteurs à scintillation
- Bancs de référence pour le projet SuperNEMO

3 N 4

Simulations optiques

- Construction d'un programme de simulation du transport des photons dans le scintillateur
- Simulation avancée des surfaces et réflecteurs
- Outil prédictif et utile pour guider la configuration finale des scintillateurs de SuperNEMO

Conclusions (2/2)

R&D scintillateurs : \approx - 1,5 % sur FWHM

- utilisation du PVT EJ-204
- réponse optimale et uniforme avec une géométrie carrée
- identification de plusieurs améliorations : polissage, habillage

R&D photomutliplicateurs : \approx - 2,0 % sur FWHM

- nouvelle photocathode efficacité quantique (30 40 %)
- réponse linéaire aux flashs lumineux des scintillateurs SuperNEMO
- amélioration identifiée sur la répartition des tensions
- faisabilité d'un verre de très basse radioactivité

Résolution en énergie atteinte pour la géométrie de SuperNEMO :

- 7,1 % avec les PMs Photonis XP1886
- 7,5 % avec les PMs Hamamatsu R5912MOD
- \Rightarrow Objectif de la R&D accompli