
Basic Constructions 2

This chapter introduces some fundamental topics in programming: list
objects, while and for loops, if-else branches, and user-defined func-
tions. Everything covered here will be essential for programming in
general - and of course in the rest of the book. The programs associ-
ated with the chapter are found in the folder src/basic.

2.1 Loops and Lists for Tabular Data

The goal of our next programming example is to print out a conversion
table with Celsius degrees in the first column of the table and the
corresponding Fahrenheit degrees in the second column:

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

2.1.1 A Naive Solution

Since we know how to evaluate the formula (1.2) for one value of C,
we can just repeat these statements as many times as required for
the table above. Using three statements per line in the program, for
compact layout of the code, we can write the whole program as
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C = -20; F = 9.0/5*C + 32; print C, F
C = -15; F = 9.0/5*C + 32; print C, F
C = -10; F = 9.0/5*C + 32; print C, F
C = -5; F = 9.0/5*C + 32; print C, F
C = 0; F = 9.0/5*C + 32; print C, F
C = 5; F = 9.0/5*C + 32; print C, F
C = 10; F = 9.0/5*C + 32; print C, F
C = 15; F = 9.0/5*C + 32; print C, F
C = 20; F = 9.0/5*C + 32; print C, F
C = 25; F = 9.0/5*C + 32; print C, F
C = 30; F = 9.0/5*C + 32; print C, F
C = 35; F = 9.0/5*C + 32; print C, F
C = 40; F = 9.0/5*C + 32; print C, F

Running this program, which is stored in the file c2f_table_repeat.py,
demonstrates that the output becomes

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

This output suffers from somewhat ugly formatting, but that problem
can quickly be fixed by replacing print C, F by a print statement
based on printf formatting. We will return to this detail later.

The main problem with the program above is that lots of statements
are identical and repeated. First of all it is boring to write this sort of
repeated statements, especially if we want many more C and F values
in the table. Second, the idea of the computer is to automate repetition.
Therefore, all computer languages have constructs to efficiently express
repetition. These constructs are called loops and come in two variants
in Python: while loops and for loops. Most programs in this book
employ loops, so this concept is extremely important to learn.

2.1.2 While Loops

The while loop is used to repeat a set of statements as long as a condi-
tion is true. We shall introduce this kind of loop through an example.
The task is to generate the rows of the table of C and F values. The
C value starts at −20 and is incremented by 5 as long as C ≤ 40. For
each C value we compute the corresponding F value and write out the
two temperatures. In addition, we also add a line of hyphens above and
below the table. We postpone to nicely format the C and F columns
of numbers and perform for simplicity a plain print C, F statement
inside the loop.

Using a mathematical type of notation, we could write the while

loop as follows:
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C = −20
while C ≤ 40 repeat the following:

F = 9
5C + 32

print C, F
set C to C + 5

The three lines after the “while” line are to be repeated as long as the
condition C ≤ 40 is true. This algorithm will then produce a table of
C and corresponding F values.

A complete Python program, implementing the repetition algorithm
above, looks quite similar1:

print ’------------------’ # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition

F = (9.0/5)*C + 32 # 1st statement inside loop
print C, F # 2nd statement inside loop
C = C + dC # 3rd statement inside loop

print ’------------------’ # end of table line (after loop)

A very important feature of Python is now encountered: The block
of statements to be executed in each pass of the while loop must be
indented. In the example above the block consists of three lines, and
all these lines must have exactly the same indentation. Our choice
of indentation in this book is four spaces. The first statement whose
indentation coincides with that of the while line marks the end of the
loop and is executed after the loop has terminated. In this example
this is the final print statement. You are encouraged to type in the
code above in a file, indent the last line four spaces, and observe what
happens (you will experience that lines in the table are separated by a
line of dashes: -----).

Many novice Python programmers forget the colon at the end of
the while line – this colon is essential and marks the beginning of the
indented block of statements inside the loop. Later, we will see that
there are many other similar program constructions in Python where
there is a heading ending with a colon, followed by an indented block
of statements.

Programmers need to fully understand what is going on in a pro-
gram and be able to simulate the program by hand. Let us do this with
the program segment above. First, we define the start value for the se-
quence of Celsius temperatures: C = -20. We also define the increment
dC that will be added to C inside the loop. Then we enter the loop
condition C <= 40. The first time C is -20, which implies that C <= 40

(equivalent to C ≤ 40 in mathematical notation) is true. Since the loop
condition is true, we enter the loop and execute all the indented state-

1 For this table we also add (of teaching purposes) a line above and below the table.
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ments. That is, we compute F corresponding to the current C value,
print the temperatures, and increment C by dC.

Thereafter, we enter the second pass in the loop. First we check the
condition: C is -15 and C <= 40 is still true. We execute the statements
in the indented loop block, C becomes -10, this is still less than or equal
to 40, so we enter the loop block again. This procedure is repeated until
C is updated from 40 to 45 in the final statement in the loop block.
When we then test the condition, C <= 40, this condition is no longer
true, and the loop is terminated. We proceed with the next statement
that has the same indentation as the while statement, which is the
final print statement in this example.

Newcomers to programming are sometimes confused by statements
like

C = C + dC

This line looks erroneous from a mathematical viewpoint, but the state-
ment is perfectly valid computer code, because we first evaluate the
expression on the right-hand side of the equality sign and then let the
variable on the left-hand side refer to the result of this evaluation. In
our case, C and dC are two different int objects. The operation C+dC

results in a new int object, which in the assignment C = C+dC is bound
to the name C. Before this assignment, C was already bound to a int

object, and this object is automatically destroyed when C is bound to
a new object and there are no other names (variables) referring to this
previous object2.

Since incrementing the value of a variable is frequently done in com-
puter programs, there is a special short-hand notation for this and
related operations:

C += dC # equivalent to C = C + dC
C -= dC # equivalent to C = C - dC
C *= dC # equivalent to C = C*dC
C /= dC # equivalent to C = C/dC

2.1.3 Boolean Expressions

In our example regarding a while loop we worked with a condition C

<= 40, which evaluates to either true or false, written as True or False

in Python. Other comparisons are also useful:

C == 40 # C equals 40
C != 40 # C does not equal 40
C >= 40 # C is greater than or equal to 40
C > 40 # C is greater than 40
C < 40 # C is less than 40

2 If you did not get the last point here, just relax and continue reading.
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Not only comparisons between numbers can be used as conditions in
while loops: Any expression that has a boolean (True or False) value
can be used. Such expressions are known as logical or boolean expres-
sions.

The keyword not can be inserted in front of the boolean expression to
change the value from True to False or from False to True. To evaluate
not C == 40, we first evaluate C == 40, say this is True, and then not

turns the value into False. On the opposite, if C == 40 is False, not C

== 40 becomes True. Mathematically it is easier to read C != 40 than
not C == 40, but these two boolean expressions are equivalent.

Boolean expressions can be combined with and and or to form new
compound boolean expressions, as in

while x > 0 and y <= 1:
print x, y

If cond1 and cond2 are two boolean expressions with values True or
False, the compound boolean expression cond1 and cond2 is True if
both cond1 and cond2 are True. On the other hand, cond1 or cond2 is
True if at least one of the conditions, cond1 or cond2, is True3

Here are some more examples from an interactive session where we
just evaluate the boolean expressions themselves without using them
in loop conditions:

>>> x = 0; y = 1.2
>>> x >= 0 and y < 1
False
>>> x >= 0 or y < 1
True
>>> x > 0 or y > 1
True
>>> x > 0 or not y > 1
False
>>> -1 < x <= 0 # -1 < x and x <= 0
True
>>> not (x > 0 or y > 0)
False

In the last sample expression, not applies to the value of the boolean
expression inside the parentheses: x>0 is False, y>0 is True, so the com-
bined expression with or is True, and not turns this value to False.

The common4 boolean values in Python are True, False, 0 (false),
and any integer different from zero (true). To see such values in action,
we recommend to do Exercises 2.54 and 2.47.
3 In Python, cond1 and cond2 or cond1 or cond2 returns one of the operands and

not just True or False values as in most other computer languages. The operands
cond1 or cond2 can be expressions or objects. In case of expressions, these are first
evaluated to an object before the compound boolean expression is evaluated. For
example, (5+1) or -1 evaluates to 6 (the second operand is not evaluated when
the first one is True), and (5+1) and -1 evaluates to -1.

4 All objects in Python can in fact be evaluated in a boolean context, and all are
True except False, zero numbers, and empty strings, lists, and dictionaries. See
Exercise 6.27 for more details.
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Erroneous thinking about boolean expressions is one of the most
common sources of errors in computer programs, so you should be
careful every time you encounter a boolean expression and check that
it is correctly stated.

2.1.4 Lists

Up to now a variable has typically contained a single number. Some-
times numbers are naturally grouped together. For example, all Celsius
degrees in the first column of our table could be conveniently stored to-
gether as a group. A Python list can be used to represent such a group
of numbers in a program. With a variable that refers to the list, we can
work with the whole group at once, but we can also access individual
elements of the group. Figure 2.1 illustrates the difference between an
int object and a list object. In general, a list may contain a sequence
of arbitrary objects. Python has great functionality for examining and
manipulating such sequences of objects, which will be demonstrated
below.

var1 21

var2 0 20

1 21

2 29

3 4.0

Fig. 2.1 Illustration of two variables: var1 refers to an int object with value 21,
created by the statement var1 = 21, and var2 refers to a list object with value [20,

21, 29, 4.0], i.e., three int objects and one float object, created by the statement
var2 = [20, 21, 29, 4.0].

To create a list with the numbers from the first column in our table,
we just put all the numbers inside square brackets and separate the
numbers by commas:

C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

The variable C now refers to a list object holding 13 list elements. All
list elements are in this case int objects.

Every element in a list is associated with an index, which reflects the
position of the element in the list. The first element has index 0, the
second index 1, and so on. Associated with the C list above we have
13 indices, starting with 0 and ending with 12. To access the element
with index 3, i.e., the fourth element in the list, we can write C[3]. As
we see from the list, C[3] refers to an int object with the value −5.
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Elements in lists can be deleted, and new elements can be inserted
anywhere. The functionality for doing this is built into the list object
and accessed by a dot notation. Two examples are C.append(v), which
appends a new element v to the end of the list, and C.insert(i,v),
which inserts a new element v in position number i in the list. The
number of elements in a list is given by len(C). Let us exemplify some
list operations in an interactive session to see the effect of the opera-
tions:

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35) # add new element 35 at the end
>>> C # view list C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

Two lists can be added:

>>> C = C + [40, 45] # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

What adding two lists means is up to the list object to define5, but not
surprisingly, addition of two lists is defined as appending the second
list to the first. The result of C + [40,45] is a new list object, which
we then assign to C such that this name refers to this new list.

New elements can in fact be inserted anywhere in the list (not only
at the end as we did with C.append):

>>> C.insert(0, -15) # insert new element -15 as index 0
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

With del C[i] we can remove an element with index i from the list C.
Observe that this changes the list, so C[i] refers to another (the next)
element after the removal:

>>> del C[2] # delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete what is now 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C) # length of list
11

The command C.index(10) returns the index corresponding to the first
element with value 10 (this is the 4th element in our sample list, with
index 3):

5 Every object in Python and everything you can do with them is defined by programs
made by humans. With the techniques of Chapter 7 you can create your own objects
and define (if desired) what it means to add such objects. All this gives enormous
power in the hands of programmers. As one example, you can easily define your
own list objects if you are not satisfied with Python’s own lists.
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>>> C.index(10) # find index for an element (10)
3

To just test if an object with the value 10 is an element in the list, one
can write the boolean expression 10 in C:

>>> 10 in C # is 10 an element in C?
True

Python allows negative indices, which “count from the right”. As
demonstrated below, C[-1] gives the last element of the list C. C[-2] is
the element before C[-1], and so forth.

>>> C[-1] # view the last list element
45
>>> C[-2] # view the next last list element
40

There is a compact syntax for creating variables that refer to the
various list elements. Simply list a sequence of variables on the left-
hand side of an assignment to a list:

>>> somelist = [’book.tex’, ’book.log’, ’book.pdf’]
>>> texfile, logfile, pdf = somelist
>>> texfile
’book.tex’
>>> logfile
’book.log’
>>> pdf
’book.pdf’

The number of variables on the left-hand side must match the number
of elements in the list, otherwise an error occurs.

A final comment regards the syntax: some list operations are reached
by a dot notation, as in C.append(e), while other operations requires
the list object as an argument to a function, as in len(C). Although
C.append for a programmer behaves as a function, it is a function that
is reached through a list object, and it is common to say that append is
a method in the list object, not a function. There are no strict rules in
Python whether functionality regarding an object is reached through
a method or a function.

2.1.5 For Loops

The Nature of For Loops. When data are collected in a list, we often
want to perform the same operations on each element in the list. We
then need to walk through all list elements. Computer languages have
a special construct for doing this conveniently, and this construct is in
Python and many other languages called a for loop. Let us use a for

loop to print out all list elements:
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degrees = [0, 10, 20, 40, 100]
for C in degrees:

print ’list element:’, C
print ’The degrees list has’, len(degrees), ’elements’

The for C in degrees construct creates a loop over all elements in the
list degrees. In each pass of the loop, the variable C refers to an element
in the list, starting with degrees[0], proceeding with degrees[1], and
so on, before ending with the last element degrees[n-1] (if n denotes
the number of elements in the list, len(degrees)).

The for loop specification ends with a colon, and after the colon
comes a block of statements which does something useful with the
current element. Each statement in the block must be indented, as we
explained for while loops. In the example above, the block belonging
to the for loop contains only one statement. The final print statement
has the same indentation (none in this example) as the for statement
and is executed as soon as the loop is terminated.

As already mentioned, understanding all details of a program by
following the program flow by hand is often a very good idea. Here, we
first define a list degrees containing 5 elements. Then we enter the for

loop. In the first pass of the loop, C refers to the first element in the
list degrees, i.e., the int object holding the value 0. Inside the loop we
then print out the text ’list element:’ and the value of C, which is
0. There are no more statements in the loop block, so we proceed with
the next pass of the loop. C then refers to the int object 10, the output
now prints 10 after the leading text, we proceed with C as the integers
20 and 40, and finally C is 100. After having printed the list element
with value 100, we move on to the statement after the indented loop
block, which prints out the number of list elements. The total output
becomes

list element: 0
list element: 10
list element: 20
list element: 40
list element: 100
The degrees list has 5 elements

Correct indentation of statements is crucial in Python, and we therefore
strongly recommend you to work through Exercise 2.55 to learn more
about this topic.

Making the Table. Our knowledge of lists and for loops over elements
in lists puts us in a good position to write a program where we collect
all the Celsius degrees to appear in the table in a list Cdegrees, and then
use a for loop to compute and write out the corresponding Fahrenheit
degrees. The complete program may look like this:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
for C in Cdegrees:

F = (9.0/5)*C + 32
print C, F
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The print C, F statement just prints the value of C and F with a default
format, where each number is separated by one space character (blank).
This does not look like a nice table (the output is identical to the one
shown on page 52). Nice formatting is obtained by forcing C and F to
be written in fields of fixed width and with a fixed number of decimals.
An appropriate printf format is %5d (or %5.0f) for C and %5.1f for F. We
may also add a headline to the table. The complete program becomes:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
print ’ C F’
for C in Cdegrees:

F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)

This code is found in the file c2f_table_list.py and its output becomes

C F
-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

2.1.6 Alternative Implementations with Lists and Loops

We have already solved the problem of printing out a nice-looking con-
version table for Celsius and Fahrenheit degrees. Nevertheless, there
are usually many alternative ways to write a program that solves a
specific problem. The next paragraphs explore some other possible
Python constructs and programs to store numbers in lists and print
out tables. The various code snippets are collected in the program file
c2f_table_lists.py.

While Loop Implementation of a For Loop. Any for loop can be im-
plemented as a while loop. The general code

for element in somelist:
<process element>

can be transformed to this while loop:

index = 0
while index < len(somelist):

element = somelist[index]
<process element>
index += 1
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In particular, the example involving the printout of a table of Celsius
and Fahrenheit degrees can be implemented as follows in terms of a
while loop:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40J
index = 0
print' C F'
while index < len(Cdegrees):

C = Cdegrees[index]
F = (9.0/5)*C + 32
print '%5d %5.1f' % (C, F)
index += 1

Storing the Table Columns as Lists. A slight change of the previous
program could be to store both the Celsius and Fahrenheit degrees
in lists. For the Fahrenheit numbers we may start with an empty list
Fdegrees and use append to add list elements inside the loop:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40J
Fdegrees = [] # start with empty list
for C in Cdegrees:

F = (9.0/5)*C + 32
Fdegrees.append(F)

If we now print Fdegrees we get

[-4.0, 5.0, 14.0, 23.0, 32.0, 41.0, 50.0, 59.0,
68.0, 77.0, 86.0, 95.0, 104.0J

Loops with List Indices. Instead of having a for loop over the list
elements we may use a for loop over the list indices. The indices are
integers going from 0 up to the length of the list minus one. Python
has a range function returning such a list of integers:

• range (n) returns [0, 1, 2, ... , n-1J.

• range (start, stop, step) returns a list of start, start+step,

start+2*step, and so on up to, but not including, stop. For exam-
ple, r ange Cz , 8, 3) returns [2, 5J, while r ange Ct, 11, 2) returns
[1, 3, 5, 7, 9J.

• range (start, stop) is the same as range (start, stop, 1).

All legal indices of a list a are obtained by calling range (len (a».

The previous for loop can alternatively make use of the range func-
tion and loops over list indices:

Cdegrees = range (-20, 45, 5) # generate C values
Fdegrees = [O.O]*len(Cdegrees) # list of 0.0 values
for i in range(len(Cdegrees)):

Fdegrees[iJ = (9.0/5)*Cdegrees[iJ + 32

Observe that we need to initialize Fdegrees to be a list of length
len(Cdegrees) (setting each element to zero for convenience). If we
fail to let Fdegrees have the same length as Cdegrees, and set Fdegrees

61
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= [] instead, Fdegrees[i] will lead to an error messages saying that
the index i is out of range. (Even index 0, referring to the first element,
is out of range if Fdegrees is an empty list.)

Loops over Real Numbers. So far, the data in Cdegrees have been inte-
gers. To make real numbers in the Cdegrees list, we cannot simply call
the range function since it only generates integers. A loop is necessary
for generating real numbers:

C_step = 0.5
C_start = -5
n = 16
Cdegrees = [0.0]*n; Fdegrees = [0.0]*n
for i in range(n):

Cdegrees[i] = C_start + i*C_step
Fdegrees[i] = (9.0/5)*Cdegrees[i] + 32

A while loop with growing lists can also be used if we specify a stop
value for C:

C_start = -5; C_step = 0.5; C_stop = 20
C = C_start
Cdegrees = []; F_degrees = []
while C <= C_stop:

Cdegrees.append(C)
F = (9.0/5)*C + 32
Fdegrees.append(F)
C = C + C_step

About Changing a List. We have two seemingly alternative ways to
traverse a list, either a loop over elements or over indices. Suppose we
want to change the Cdegrees list by adding 5 to all elements. We could
try

for c in Cdegrees:
c += 5

but this loop leaves Cdegrees unchanged, while

for i in range(len(Cdegrees)):
Cdegrees[i] += 5

works as intended. What is wrong with the first loop? The problem is
that c is an ordinary variable which refers to a list element in the loop,
but when we execute c += 5, we let c refer to a new float object (c+5).
This object is never “inserted” in the list. The first two passes of the
loop are equivalent to

c = Cdegrees[0] # automatically done in the for statement
c += 5
c = Cdegrees[1] # automatically done in the for statement
c += 5

The variable c can only be used to read list elements and never to
change them. Only an assignment of the form
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Cdegrees[i] = ...

can change a list element.
There is a way of traversing a list where we get both the index and

an element in each pass of the loop:

for i, c in enumerate(Cdegrees):
Cdegrees[i] = c + 5

This loop also adds 5 to all elements in the list.

List Comprehension. Because running through a list and for each ele-
ment creating a new element in another list is a frequently encountered
task, Python has a special compact syntax for doing this, called list
comprehension. The general syntax reads

newlist = [E(e) for e in list]

where E(e) represents an expression involving element e. Here are three
examples:

Cdegrees = [-5 + i*0.5 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]
C_plus_5 = [C+5 for C in Cdegrees]

List comprehensions are recognized as a for loop inside square brackets
and will be frequently examplified thoughout the book.

Traversing Multiple Lists Simultaneously. We may use the Cdegrees

and Fdegrees lists to make a table. To this end, we need to traverse
both arrays. The for element in list construction is not suitable in
this case, since it extracts elements from one list only. A solution is to
use a for loop over the integer indices so that we can index both lists:

for i in range(len(Cdegrees)):
print ’%5d %5.1f’ % (Cdegrees[i], Fdegrees[i])

It happens quite frequently that two or more lists need to be traversed
simultaneously. As an alternative to the loop over indices, Python offers
a special nice syntax that can be sketched as

for e1, e2, e3, ... in zip(list1, list2, list3, ...):
# work with element e1 from list1, element e2 from list2,
# element e3 from list3, etc.

The zip function turns n lists (list1, list2, list3, ...) into one list
of n-tuples, where each n-tuple (e1,e2,e3,...) has its first element (e1)
from the first list (list1), the second element (e2) from the second list
(list2), and so forth. The loop stops when the end of the shortest list
is reached. In our specific case of iterating over the two lists Cdegrees

and Fdegrees, we can use the zip function:



64 2 Basic Constructions

for C, F in zip(Cdegrees, Fdegrees):
print ’%5d %5.1f’ % (C, F)

It is considered more“Pythonic”to iterate over list elements, here C and
F, rather than over list indices as in the for i in range(len(Cdegrees))

construction.

2.1.7 Nested Lists

Our table data have so far used one separate list for each column. If
there were n columns, we would need n list objects to represent the data
in the table. However, we think of a table as one entity, not a collection
of n columns. It would therefore be natural to use one argument for
the whole table. This is easy to achieve using a nested list , where each
entry in the list is a list itself. A table object, for instance, is a list
of lists, either a list of the row elements of the table or a list of the
column elements of the table. Here is an example where the table is a
list of two columns, and each column is a list of numbers6:

Cdegrees = range(-20, 41, 5) # -20, -15, ..., 35, 40
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

table = [Cdegrees, Fdegrees]

With the subscript table[0] we can access the first element (the
Cdegrees list), and with table[0][2] we reach the third element in
the list that constitutes the first element in table (this is the same as
Cdegrees[2]).

table1 0 0 20

1 25

2 30

3 35

4 40

1 0 68.0

1 77.0

2 86.0

3 95.0

4 104.0

(a)

table2 0 0 20

1 68.0

1 0 25

1 77.0

2 0 30

1 86.0

3 0 35

1 95.0

4 0 40

1 104.0

(b)

Fig. 2.2 Two ways of creating a table as a nested list: (a) table of columns C and F

(C and F are lists); (b) table of rows ([C, F] lists of two floats).

6 Any value in [41, 45] can be used as second argument (stop value) to range and will
ensure that 40 is included in the range of generate numbers.
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However, tabular data with rows and columns usually have the con-
vention that the underlying data is a nested list where the first index
counts the rows and the second index counts the columns. To have
table on this form, we must construct table as a list of [C, F] pairs.
The first index will then run over rows [C, F]. Here is how we may
construct the nested list:

table = []
for C, F in zip(Cdegrees, Fdegrees):

table.append([C, F])

We may shorten this code segment by introducing a list comprehen-
sion:

table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]

This construction loops through pairs C and F, and for each pass in the
loop we create a list element [C, F].

The subscript table[1] refers to the second element in table, which
is a [C, F] pair, while table[1][0] is the C value and table[1][1] is
the F value. Figure 2.2 illustrates both a list of columns and a list of
pairs. Using this figure, you can realize that the first index looks up
the “main list”, while the second index looks up the “sublist”.

2.1.8 Printing Objects

Modules for Pretty Print of Objects. We may write print table to im-
mediately view the nested list table from the previous section. In fact,
any Python object obj can be printed to the screen by the command
print obj. The output is usually one line, and this line may become
very long if the list has many elements. For example, a long list like
our table variable, demands a quite long line when printed.

[[-20, -4.0], [-15, 5.0], [-10, 14.0], ............., [40, 104.0]]

Splitting the output over several shorter lines makes the layout nicer
and more readable. The pprint module offers a “pretty print” function-
ality for this purpose. The usage of pprint looks like

import pprint
pprint.pprint(table)

and the corresponding output becomes

[[-20, -4.0],
[-15, 5.0],
[-10, 14.0],
[-5, 23.0],
[0, 32.0],
[5, 41.0],
[10, 50.0],
[15, 59.0],
[20, 68.0],
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[25, 77.0],
[30, 86.0],
[35, 95.0],
[40, 104.0]]

With this book comes a slightly modified pprint module having
the name scitools.pprint2. This module allows full format con-
trol of the printing of the float objects in lists by specifying
scitools.pprint2.float_format as a printf format string. The fol-
lowing example demonstrates how the output format of real numbers
can be changed:

>>> import pprint, scitools.pprint2
>>> somelist = [15.8, [0.2, 1.7]]
>>> pprint.pprint(somelist)
[15.800000000000001, [0.20000000000000001, 1.7]]
>>> scitools.pprint2.pprint(somelist)
[15.8, [0.2, 1.7]]
>>> # default output is ’%g’, change this to
>>> scitools.pprint2.float_format = ’%.2e’
>>> scitools.pprint2.pprint(somelist)
[1.58e+01, [2.00e-01, 1.70e+00]]

As can be seen from this session, the pprint module writes floating-
point numbers with a lot of digits, in fact so many that we explicitly
see the round-off errors. Many find this type of output is annoying and
that the default output from the scitools.pprint2 module is more like
one would desire and expect.

The pprint and scitools.pprint2 modules also have a function
pformat, which works as the pprint function, but it returns a pretty
formatted string rather than printing the string:

s = pprint.pformat(somelist)
print s

This last print statement prints the same as pprint.pprint(somelist).

Manual Printing. Many will argue that tabular data such as those
stored in the nested table list are not printed in a particularly pretty
way by the pprint module. One would rather expect pretty output to
be a table with two nicely aligned columns. To produce such output
we need to code the formatting manually. This is quite easy: We loop
over each row, extract the two elements C and F in each row, and print
these in fixed-width fields using the printf syntax. The code goes as
follows:

for C, F in table:
print ’%5d %5.1f’ % (C, F)

2.1.9 Extracting Sublists

Python has a nice syntax for extracting parts of a list structure. Such
parts are known as sublists or slices:
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A[i:] is the sublist starting with index i in A and continuing to the
end of A:

>>> A = [2, 3.5, 8, 10]
>>> A[2:]
[8, 10]

A[i:j] is the sublist starting with index i in A and continuing up to
and including index j-1. Make sure you remember that the element
corresponding to index j is not included in the sublist:

>>> A[1:3]
[3.5, 8]

A[:i] is the sublist starting with index 0 in A and continuing up to and
including the element with index i-1:

>>> A[:3]
[2, 3.5, 8]

A[1:-1] extracts all elements except the first and the last (recall that
index -1 refers to the last element), and A[:] is the whole list:

>>> A[1:-1]
[3.5, 8]
>>> A[:]
[2, 3.5, 8, 10]

In nested lists we may use slices in the first index:

>>> table[4:]
[[0, 32.0], [5, 41.0], [10, 50.0], [15, 59.0], [20, 68.0],
[25, 77.0], [30, 86.0], [35, 95.0], [40, 104.0]]

Sublists are always copies of the original list, so if you modify the
sublist the original list remains unaltered and vice versa:

>>> l1 = [1, 4, 3]
>>> l2 = l1[:-1]
>>> l2
[1, 4]
>>> l1[0] = 100
>>> l1 # l1 is modified
[100, 4, 3]
>>> l2 # l2 is not modified
[1, 4]

The fact that slicing makes a copy can also be illustrated by the fol-
lowing code:

>>> B = A[:]
>>> C = A
>>> B == A
True
>>> B is A
False
>>> C is A
True
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The B == A boolean expression is true if all elements in B are equal to
the corresponding elements in A. The test B is A is true if A and B are
names for the same list. Setting C = A makes C refer to the same list
object as A, while B = A[:] makes B refer to a copy of the list referred
to by A.

Example. We end this information on sublists by writing out the part
of the table list of [C, F] rows (cf. Chapter 2.1.7) where the Celsius
degrees are between 10 and 35 (not including 35):

>>> for C, F in table[Cdegrees.index(10):Cdegrees.index(35)]:
... print ’%5.0f %5.1f’ % (C, F)
...

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0

You should always stop reading and convince yourself that you under-
stand why a code segment produces the printed output. In this latter
example, Cdegrees.index(10) returns the index corresponding to the
value 10 in the Cdegrees list. Looking at the Cdegrees elements, one
realizes (do it!) that the for loop is equivalent to

for C, F in table[6:11]:

This loop runs over the indices 6, 7, . . . , 10 in table.

2.1.10 Traversing Nested Lists

We have seen that traversing the nested list table could be done by a
loop of the form

for C, F in table:
# process C and F

This is natural code when we know that table is a list of [C, F] lists.
Now we shall address more general nested lists where we do not nec-
essarily know how many elements there are in each list element of the
list.

Suppose we use a nested list scores to record the scores of players
in a game: scores[i] holds a list of the historical scores obtained by
player number i. Different players have played the game a different
number of times, so the length of scores[i] depends on i. Some code
may help to make this clearer:

scores = []
# score of player no. 0:
scores.append([12, 16, 11, 12])
# score of player no. 1:



2.1 Loops and Lists for Tabular Data 69

scores.append([9])
# score of player no. 2:
scores.append([6, 9, 11, 14, 17, 15, 14, 20])

The list scores has three elements, each element corresponding to a
player. The element no. g in the list scores[p] corresponds to the score
obtained in game number g played by player number p. The length of
the lists scores[p] varies and equals 4, 1, and 8 for p equal to 0, 1, and
2, respectively.

In the general case we may have n players, and some may have
played the game a large number of times, making scores potentially
a big nested list. How can we traverse the scores list and write it
out in a table format with nicely formatted columns? Each row in the
table corresponds to a player, while columns correspond to scores. For
example, the data initialized above can be written out as

12 16 11 12
9
6 9 11 14 17 15 14 20

In a program, we must use two nested loops, one for the elements in
scores and one for the elements in the sublists of scores. The example
below will make this clear.

There are two basic ways of traversing a nested list: either we use
integer indices for each index, or we use variables for the list elements.
Let us first exemplify the index-based version:

for p in range(len(scores)):
for g in range(len(scores[p])):

score = scores[p][g]
print ’%4d’ % score,

print

With the trailing comma after the print string, we avoid a newline so
that the column values in the table (i.e., scores for one player) appear
at the same line. The single print command after the loop over c adds
a newline after each table row. The reader is encouraged to go through
the loops by hand and simulate what happens in each statement (use
the simple scores list initialized above).

The alternative version where we use variables for iterating over the
elements in the scores list and its sublists looks like this:

for player in scores:
for game in player:

print ’%4d’ % game,
print

Again, the reader should step through the code by hand and realize
what the values of player and game are in each pass of the loops.

In the very general case we can have a nested list with many indices:
somelist[i1][i2][i3].... To visit each of the elements in the list, we
use as many nested for loops as there are indices. With four indices,
iterating over integer indices look as
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for i1 in range(len(somelist)):
for i2 in range(len(somelist[i1])):

for i3 in range(len(somelist[i1][i2])):
for i4 in range(len(somelist[i1][i2][i3])):

value = somelist[i1][i2][i3][i4]
# work with value

The corresponding version iterating over sublists becomes

for sublist1 in somelist:
for sublist2 in sublist1:

for sublist3 in sublist2:
for sublist4 in sublist3:

value = sublist4
# work with value

We recommend to do Exercise 2.58 to get a better understanding of
nested for loops.

2.1.11 Tuples

Tuples are very similar to lists, but tuples cannot be changed. That is,
a tuple can be viewed as a “constant list”. While lists employ square
brackets, tuples are written with standard parentheses:

>>> t = (2, 4, 6, ’temp.pdf’) # define a tuple with name t

One can also drop the parentheses in many occasions:

>>> t = 2, 4, 6, ’temp.pdf’
>>> for element in ’myfile.txt’, ’yourfile.txt’, ’herfile.txt’:
... print element,
...
myfile.txt yourfile.txt herfile.txt

The for loop here is over a tuple, because a comma separated sequence
of objects, even without enclosing parentheses, becomes a tuple. Note
the trailing comma in the print statement. This comma suppresses
the final newline that the print command automatically adds to the
output string. This is the way to make several print statements build
up one line of output.

Much functionality for lists is also available for tuples, for example:

>>> t = t + (-1.0, -2.0) # add two tuples
>>> t
(2, 4, 6, ’temp.pdf’, -1.0, -2.0)
>>> t[1] # indexing
4
>>> t[2:] # subtuple/slice
(6, ’temp.pdf’, -1.0, -2.0)
>>> 6 in t # membership
True

Any list operation that changes the list will not work for tuples:
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>>> t If l = -1

TypeError: object does not support item assignment

»> t.append(O)

AttributeError: 'tuple' object has no attribute 'append'

»> del t [1]

TypeError: object doesn't support item deletion

Some list methods, like index, are not available for tuples.
So why do we need tuples when lists can do more than tuples?

• Tuples protect against accidental changes of their contents.
• Code based on tuples is faster than code based on lists.
• Tuples are frequently used in Python software that you certainly

will make use of, so you need to know this data type.

There is also a fourth argument, which is important for a data type
called dictionaries (introduced in Chapter 6.2): tuples can be used as
keys in dictionaries while lists can not.

2.2 Functions

In a computer language like Python, the term junction means more
than just a mathematical function. A function is a collection of state-
ments that you can execute wherever and whenever you want in the
program. You may send variables to the function to influence what is
getting computed by statements in the function, and the function may
return new objects. In particular, functions help to avoid duplicating
code snippets by putting all similar snippets in a common place. This
strategy saves typing and makes it easier to change the program later.
Functions are also often used to just split a long program into smaller.
more managablo pieces, so the program and your own thinking about it
become clearer. Python comes with lots of functions (math. sqrt, range,

and len arc examples we have met so far). This section outlines how
you can define your own functions.

2.2.1 Functions of One Variable

Let us start with making a Python function that evaluates a math-
ematical function, more precisely the function F( C) defined in (1.2):
F( C) = foC + :32. The corresponding Python function must take C as
argument and return the value F(C). The code for this looks like

71
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def F(C):
return (9.0/5)*C + 32

All Python functions begin with def, followed by the function name,
and then inside parentheses a comma-separated list of function argu-
ments. Here we have only one argument C. This argument acts as a
standard variable inside the function. The statements to be performed
inside the function must be indented. At the end of a function it is
common to return a value, that is, send a value “out of the function”.
This value is normally associated with the name of the function, as in
the present case where the returned value is F (C).

The def line with the function name and arguments is often referred
to as the function header , while the indented statements constitute the
function body .

To use a function, we must call7 it. Because the function returns a
value, we need to store this value in a variable or make use of it in
other ways. Here are some calls to F:

a = 10
F1 = F(a)
temp = F(15.5)
print F(a+1)
sum_temp = F(10) + F(20)

The returned object from F(C) is in our case a float object. The call
F(C) can therefore be placed anywhere in a code where a float object
would be valid. The print statement above is one example. As another
example, say we have a list Cdegrees of Celsius degrees and we want
to compute a list of the corresponding Fahrenheit degrees using the F

function above in a list comprehension:

Fdegrees = [F(C) for C in Cdegrees]

As an example of a slight variation of our F(C) function, we may
return a formatted string instead of a real number:

>>> def F2(C):
... F_value = (9.0/5)*C + 32
... return ’%.1f degrees Celsius corresponds to ’\
... ’%.1f degrees Fahrenheit’ % (C, F_value)
...
>>> s1 = F2(21)
>>> s1
’21.0 degrees Celsius corresponds to 69.8 degrees Fahrenheit’

The assignment to F_value demonstrates that we can create variables
inside a function as needed.

7 Sometimes the word invoke is used as an alternative to call.
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2.2.2 Local and Global Variables

Let us reconsider the F2(C) function from the previous section. The
variable F_value is a local variable in the function, and a local variable
does not exist outside the function. We can easily demonstrate this
fact by continuing the previous interactive session:

>>> c1 = 37.5
>>> s2 = F2(c1)
>>> F_value
...
NameError: name ’F_value’ is not defined

The surrounding program outside the function is not aware of F_value.
Also the argument to the function, C, is a local variable that we cannot
access outside the function:

>>> C
...
NameError: name ’C’ is not defined

On the contrary, the variables defined outside of the function, like s1,
s2, and c1 in the above session, are global variables. These can be
accessed everywhere in a program.

Local variables are created inside a function and destroyed when
we leave the function. To learn more about this fact, we may study
the following session where we write out F_value, C, and some global
variable r inside the function:

>>> def F3(C):
... F_value = (9.0/5)*C + 32
... print ’Inside F3: C=%s F_value=%s r=%s’ % (C, F_value, r)
... return ’%.1f degrees Celsius corresponds to ’\
... ’%.1f degrees Fahrenheit’ % (C, F_value)
...
>>> C = 60 # make a global variable C
>>> r = 21 # another global variable
>>> s3 = F3(r)
Inside F3: C=21 F_value=69.8 r=21
>>> s3
’21.0 degrees Celsius corresponds to 69.8 degrees Fahrenheit’
>>> C
60

This example illustrates that there are two C variables, one global,
defined in the main program with the value 60 (an int object), and one
local, living when the program flow is inside the F3 function. The value
of this C is given in the call to the F3 function (also an int object in this
case). Inside the F3 function the local C “hides” the global C variable in
the sense that when we refer to C we access the local variable8.

The more general rule, when you have several variables with the
same name, is that Python first tries to look up the variable name

8 The global C can technically be accessed as globals()[’C’], but one should avoid
working with local and global variables with the same names at the same time!
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among the local variables, then there is a search among global variables,
and finally among built-in Python functions. Here is a complete sample
program with several versions of a variable sum which aims to illustrate
this rule:

print sum # sum is a built-in Python function
sum = 500 # rebind the name sum to an int
print sum # sum is a global variable

def myfunc(n):
sum = n + 1
print sum # sum is a local variable
return sum

sum = myfunc(2) + 1 # new value in global variable sum
print sum

In the first line, there are no local variables, so Python searches for a
global value with name sum, but cannot find any, so the search proceeds
with the built-in functions, and among them Python finds a function
with name sum. The printout of sum becomes something like <built-in

function sum>.
The second line rebinds the global name sum to an int object. When

trying to access sum in the next print statement, Python searches
among the global variables (no local variables so far) and finds one. The
printout becomes 500. The call myfunc(2) invokes a function where sum

is a local variable. Doing a print sum in this function makes Python
first search among the local variables, and since sum is found there,
the printout becomes 3 (and not 500, the value of the global variable
sum). The value of the local variable sum is returned, added to 1, to
form an int object with value 4. This int object is then bound to the
global variable sum. The final print sum leads to a search among global
variables, and we find one with value 4.

The values of global variables can be accessed inside functions, but
the values cannot be changed unless the variable is declared as global:

a = 20; b = -2.5 # global variables

def f1(x):
a = 21 # this is a new local variable
return a*x + b # 21*x - 2.5

print a # yields 20

def f2(x):
global a
a = 21 # the global a is changed
return a*x + b # 21*x - 2.5

f1(3); print a # 20 is printed
f2(3); print a # 21 is printed

Note that in the f1 function, a = 21 creates a local variable a. As a
programmer you may think you change the global a, but it does not
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happen! Normally, this feature is advantageous because changing global
variables often leads to errors in programs.

2.2.3 Multiple Arguments

The previous F(C) and F2(C) functions are functions of one variable, C,
or as we phrase it in computer science: the functions take one argument
(C). Functions can have as many arguments as desired; just separate
the argument names by commas.

Consider the function y(t) in (1.1). Here is a possible Python func-
tion taking two arguments:

def yfunc(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

Note that g is a local variable with a fixed value, while t and v0 are
arguments and therefore also local variables. Examples on valid calls
are

y = yfunc(0.1, 6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)

The possibility to write argument=value in the call makes it easier to
read and understand the call statement. With the argument=value syn-
tax for all arguments, the sequence of the arguments does not matter in
the call, which here means that we may put v0 before t. When omit-
ting the argument= part, the sequence of arguments in the call must
perfectly match the sequence of arguments in the function definition.
The argument=value arguments must appear after all the arguments
where only value is provided (e.g., yfunc(t=0.1, 6) is illegal).

Whether we write yfunc(0.1, 6) or yfunc(v0=6, t=0.1), the argu-
ments are initialized as local variables in the function in the same way
as when we assign values to variables:

t = 0.1
v0 = 6

These statements are not visible in the code, but a call to a function
automatically initializes the arguments in this way.

Some may argue that yfunc should be a function of t only, because
we mathematically think of y as a function of t and write y(t). This is
easy to reflect in Python:

def yfunc(t):
g = 9.81
return v0*t - 0.5*g*t**2
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The main difference is that v0 now must be a global variable, which
needs to be initialized before we call yfunc. The next session demon-
strates what happens if we fail to initialize such a global variable:

>>> def yfunc(t):
... g = 9.81
... return v0*t - 0.5*g*t**2
...
>>> yfunc(0.6)
...
NameError: global name ’v0’ is not defined

The remedy is to define v0 as a global variable prior to calling yfunc:

>>> v0 = 5
>>> yfunc(0.6)
1.2342

So far our Python functions have typically computed some mathe-
matical function, but the usefulness of Python functions goes far be-
yond mathematical functions. Any set of statements that we want to
repeatedly execute under slightly different circumstances is a candidate
for a Python function. Say we want to make a list of numbers starting
from some value and stopping at another value, with increments of a
given size. With corresponding variables start=2, stop=8, and inc=2,
we should produce the numbers 2, 4, 6, and 8. Our tables in this chap-
ter typically needs such functionality for creating a list of C values or
a list of t values. Let us therefore write a function doing the task9,
together with a couple of statements that demonstrate how we call the
function:

def makelist(start, stop, inc):
value = start
result = []
while value <= stop:

result.append(value)
value = value + inc

return result

mylist = makelist(0, 100, 0.2)
print mylist # will print 0, 0.2, 0.4, 0.6, ... 99.8, 100

The makelist function has three arguments: start, stop, and inc, which
become local variables in the function. Also value and result are local
variables. In the surrounding program we define only one variable,
mylist, and this is then a global variable.

9 You might think that range(start, stop, inc) makes the makelist function re-
dundant, but range can only generate integers, while makelist can generate real
numbers too – and more, see Exercise 2.40.
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2.2.4 Multiple Return Values

Python functions may return more than one value. Suppose we are
interested in evaluating both y(t) defined in (1.1) and its derivative

dy

dt
= v0 − gt .

In the current application, y′(t) has the physical interpretation as the
velocity of the ball. To return y and y′ we simply separate their corre-
sponding variables by a comma in the return statement:

def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

When we call this latter yfunc function, we need two values on the
left-hand side of the assignment operator because the function returns
two values:

position, velocity = yfunc(0.6, 3)

Here is an application of the yfunc function for producing a nicely
formatted table of positions and velocities of a ball thrown up in the
air:

t_values = [0.05*i for i in range(10)]
for t in t_values:

pos, vel = yfunc(t, v0=5)
print ’t=%-10g position=%-10g velocity=%-10g’ % (t, pos, vel)

The format %-10g prints a real number as compactly as possible (deci-
mal or scientific notation) in a field of width 10 characters. The minus
(“-”) sign after the percentage sign implies that the number is left-
adjusted in this field, a feature that is important for creating nice-
looking columns in the output:

t=0 position=0 velocity=5
t=0.05 position=0.237737 velocity=4.5095
t=0.1 position=0.45095 velocity=4.019
t=0.15 position=0.639638 velocity=3.5285
t=0.2 position=0.8038 velocity=3.038
t=0.25 position=0.943437 velocity=2.5475
t=0.3 position=1.05855 velocity=2.057
t=0.35 position=1.14914 velocity=1.5665
t=0.4 position=1.2152 velocity=1.076
t=0.45 position=1.25674 velocity=0.5855

When a function returns multiple values, separated by a comma in
the return statement, a tuple (Chapter 2.1.11) is actually returned.
We can demonstrate that fact by the following session:

>>> def f(x):
... return x, x**2, x**4
...
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>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type ’tuple’>
>>> x, x2, x4 = f(2)

Note that storing multiple return values into separate variables, as we
do in the last line, is actually the same functionality as we use for
storing list elements in separate variables, see on page 58.

Our next example concerns a function aimed at calculating the sum

L(x;n) =
n∑

i=1

1

i

(
x

1 + x

)i

. (2.1)

It can be shown that L(x;n) is an approximation to ln(1 + x) for a
finite n and x ≥ 1. The approximation becomes exact in the limit:

ln(1 + x) = lim
n→∞L(x;n) .

To compute a sum in a Python program, we use a loop and add terms to
a “summing variable” inside the loop. This variable must be initialized
to zero outside the loop. For example, we can sketch the implementa-
tion of

∑n
i=1 c(i), where c(i) is some formula depending on i, as

s = 0
for i in range(1, n+1):

s += c(i)

For the specific sum (2.1) we just replace c(i) by the right term
(1/i)(x/(1 + x))i inside the for loop10:

s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i

It is natural to embed the computation of the sum in a function which
takes x and n as arguments and returns the sum:

def L(x, n):
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i
return s

Instead of just returning the value of the sum, we could return ad-
ditional information on the error involved in the approximation of
ln(1 + x) by L(x;n). The first neglected term in the sum provides

10 Observe the 1.0 numbers: These avoid integer division (i is int and x may be int).
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an indication of the error11. We could also return the exact error. The
new version of the L(x, n) function then looks as this:

def L(x, n):
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i
value_of_sum = s
first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)
from math import log
exact_error = log(1+x) - value_of_sum
return value_of_sum, first_neglected_term, exact_error

# typical call:
value, approximate_error, exact_error = L2(x, 100)

The next section demonstrates the usage of the L function to judge the
quality of the approximation L(x;n) to ln(1 + x).

2.2.5 Functions with No Return Values

Sometimes a function just performs a set of statements, and it is not
natural to return any values to the calling code. In such situations one
can simply skip the return statement. Some programming languages
use the terms procedure or subroutine for functions that do not return
anything.

Let us exemplify a function without return values by making a table
of the accuracy of the L(x;n) approximation to ln(1 + x) from the
previous section:

def table(x):
print ’\nx=%g, ln(1+x)=%g’ % (x, log(1+x))
for n in [1, 2, 10, 100, 500]:

value, next, error = L(x, n)
print ’n=%-4d %-10g (next term: %8.2e ’\

’error: %8.2e)’ % (n, value, next, error)

This function just performs a set of statements that we may want to
run several times. Calling

table(10)
table(1000)

gives the output :

x=10, ln(1+x)=2.3979
n=1 0.909091 (next term: 4.13e-01 error: 1.49e+00)
n=2 1.32231 (next term: 2.50e-01 error: 1.08e+00)
n=10 2.17907 (next term: 3.19e-02 error: 2.19e-01)
n=100 2.39789 (next term: 6.53e-07 error: 6.59e-06)
n=500 2.3979 (next term: 3.65e-24 error: 6.22e-15)

11 The size of the terms decreases with increasing n, and the first neglected term is
then bigger than all the remaining terms, but not necessarily bigger than their sum.
The first neglected term is therefore only an indication of the size of the total error
we make.
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x=1000, ln(1+x)=6.90875
n=1 0.999001 (next term: 4.99e-01 error: 5.91e+00)
n=2 1.498 (next term: 3.32e-01 error: 5.41e+00)
n=10 2.919 (next term: 8.99e-02 error: 3.99e+00)
n=100 5.08989 (next term: 8.95e-03 error: 1.82e+00)
n=500 6.34928 (next term: 1.21e-03 error: 5.59e-01)

From this output we see that the sum converges much more slowly
when x is large than when x is small. We also see that the error is an
order of magnitude or more larger than the first neglected term in the
sum. The functions L and table are found in the file lnsum.py.

When there is no explicit return statement in a function, Python
actually inserts an invisible return None statement. None is a special ob-
ject in Python that represents something we might think of as “empty
data” or “nothing”. Other computer languages, such as C, C++, and
Java, use the word “void” for a similar thing. Normally, one will call
the table function without assigning the return value to any variable,
but if we assign the return value to a variable, result = table(500),
result will refer to a None object.

The None value is often used for variables that should exist in a
program, but where it is natural to think of the value as conceptually
undefined. The standard way to test if an object obj is set to None or
not reads

if obj is None:
...

if obj is not None:
...

One can also use obj == None. The is operator tests if two names refer
to the same object, while == tests if the contents of two objects are the
same:

>>> a = 1
>>> b = a
>>> a is b # a and b refer to the same object
True
>>> c = 1.0
>>> a is c
False
>>> a == c # a and c are mathematically equal
True

2.2.6 Keyword Arguments

Some function arguments can be given a default value so that we may
leave out these arguments in the call, if desired. A typical function may
look as

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2
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The first two arguments, arg1 and arg2, are ordinary or positional
arguments, while the latter two are keyword arguments or named ar-
guments. Each keyword argument has a name (in this example kwarg1

and kwarg2) and an associated default value. The keyword arguments
must always be listed after the positional arguments in the function
definition.

When calling somefunc, we may leave out some or all of the keyword
arguments. Keyword arguments that do not appear in the call get their
values from the specified default values. We can demonstrate the effect
through some calls:

>>> somefunc(’Hello’, [1,2])
Hello [1, 2] True 0
>>> somefunc(’Hello’, [1,2], kwarg1=’Hi’)
Hello [1, 2] Hi 0
>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’)
Hello [1, 2] True Hi
>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’, kwarg1=6)
Hello [1, 2] 6 Hi

The sequence of the keyword arguments does not matter in the call.
We may also mix the positional and keyword arguments if we explicitly
write name=value for all arguments in the call:

>>> somefunc(kwarg2=’Hello’, arg1=’Hi’, kwarg1=6, arg2=[1,2],)
Hi [1, 2] 6 Hello

Example: Function with Default Parameters. Consider a function of t
which also contains some parameters, here A, a, and ω:

f(t; A, a, ω) = Ae−at sin(ωt) . (2.2)

We can implement f as a Python function where the independent vari-
able t is an ordinary positional argument, and the parameters A, a, and
ω are keyword arguments with suitable default values:

from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
return A*exp(-a*t)*sin(omega*t)

Calling f with just the t argument specified is possible:

v1 = f(0.2)

In this case we evaluate the expression e−0.2 sin(2π ·0.2). Other possible
calls include

v2 = f(0.2, omega=1)
v3 = f(1, A=5, omega=pi, a=pi**2)
v4 = f(A=5, a=2, t=0.01, omega=0.1)
v5 = f(0.2, 0.5, 1, 1)
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You should write down the mathematical expressions that arise from
these four calls. Also observe in the third line above that a positional
argument, t in that case, can appear in between the keyword arguments
if we write the positional argument on the keyword argument form
name=value. In the last line we demonstrate that keyword arguments
can be used as positional argument, i.e., the name part can be skipped,
but then the sequence of the keyword arguments in the call must match
the sequence in the function definition exactly.

Example: Computing a Sum with Default Tolerance. Consider the
L(x;n) sum and the Python implementation L(x, n) from Chap-
ter 2.2.4. Instead of specifying the number of terms in the sum, n,
it is better to specify a tolerence ε of the accuracy. We can use the first
neglected term as an estimate of the accuracy. This means that we sum
up terms as long as the absolute value of the next term is greater than
ε. It is natural to provide a default value for ε:

def L2(x, epsilon=1.0E-6):
x = float(x)
i = 1
term = (1.0/i)*(x/(1+x))**i
s = term
while abs(term) > epsilon: # abs(x) is |x|

i += 1
term = (1.0/i)*(x/(1+x))**i
s += term

return s, i

Here is an example involving this function to make a table of the ap-
proximation error as ε decreases:

from math import log
x = 10
for k in range(4, 14, 2):

epsilon = 10**(-k)
approx, n = L2(x, epsilon=epsilon)
exact = log(1+x)
exact_error = exact - approx
print ’epsilon: %5.0e, exact error: %8.2e, n=%d’ % \

(epsilon, exact_error, n)

The output becomes
epsilon: 1e-04, exact error: 8.18e-04, n=55
epsilon: 1e-06, exact error: 9.02e-06, n=97
epsilon: 1e-08, exact error: 8.70e-08, n=142
epsilon: 1e-10, exact error: 9.20e-10, n=187
epsilon: 1e-12, exact error: 9.31e-12, n=233

We see that the epsilon estimate is almost 10 times smaller than the
exact error, regardless of the size of epsilon. Since epsilon follows the
exact error quite well over many orders of magnitude, we may view
epsilon as a useful indication of the size of the error.
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2.2.7 Doc Strings

There is a convention in Python to insert a documentation string right
after the def line of the function definition. The documentation string,
known as a doc string , should contain a short description of the purpose
of the function and explain what the different arguments and return
values are. Interactive sessions from a Python shell are also common
to illustrate how the code is used. Doc strings are usually enclosed in
triple double quotes """, which allow the string to span several lines.

Here are two examples on short and long doc strings:

def C2F(C):
"""Convert Celsius degrees (C) to Fahrenheit."""
return (9.0/5)*C + 32

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).
x1, y1: another point on the line (floats).
return: coefficients a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/float(x1 - x0)
b = y0 - a*x0
return a, b

Note that the doc string must appear before any statement in the
function body.

There are several Python tools that can automatically extract doc
strings from the source code and produce various types of documen-
tation, see [5, App. B.2]. The doc string can be accessed in a code as
funcname.__doc__, where funcname is the name of the function, e.g.,

print line.__doc__

which prints out the documentation of the line function above:

Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (float objects).
x1, y1: another point on the line (float objects).
return: coefficients a, b for the line (y=a*x+b).

Doc strings often contain interactive sessions, copied from a Python
shell, to illustrate how the function is used. We can add such a session
to the doc string in the line function:

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0,y0) and (x1,y1).
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x0, y0: a point on the line (float).
x1, y1: another point on the line (float).
return: coefficients a, b (floats) for the line (y=a*x+b).

Example:
>>> a, b = line(1, -1, 4, 3)
>>> a
1.3333333333333333
>>> b
-2.333333333333333
"""
a = (y1 - y0)/float(x1 - x0)
b = y0 - a*x0
return a, b

A particularly nice feature is that all such interactive sessions in doc
strings can be automatically run, and new results are compared to the
results found in the doc strings. This makes it possible to use interactive
sessions in doc strings both for exemplifying how the code is used and
for testing that the code works.

2.2.8 Function Input and Output

It is a convention in Python that function arguments represent the
input data to the function, while the returned objects represent the
output data. We can sketch a general Python function as

def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
# modify io4, io5, io6; compute o1, o2, o3
return o1, o2, o3, io4, io5, io7

Here i1, i2, i3 are positional arguments representing input data; io4
and io5 are positional arguments representing input and output data;
i6 and io7 are keyword arguments representing input and input/output
data, respectively; and o1, o2, and o3 are computed objects in the
function, representing output data together with io4, io5, and io7. All
examples later in the book will make use of this convention.

2.2.9 Functions as Arguments to Functions

Programs doing calculus frequently need to have functions as argu-
ments in other functions. For example, for a mathematical function
f(x) we can have Python functions for

1. numerical root finding: solve f(x) = 0 approximately (Chap-
ters 3.6.2 and 5.1.9)

2. numerical differentiation: compute f ′(x) approximately (Ap-
pendix A and Chapters 7.3.2 and 9.2)

3. numerical integration: compute
∫ b
a f(x)dx approximately (Ap-

pendix A and Chapters 7.3.3 and 9.3)
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4. numerical solution of differential equations: dx
dt = f(x) (Appendix B

and Chapters 7.4 and 9.4)

In such Python functions we need to have the f(x) function as an
argument f. This is straightforward in Python and hardly needs any
explanation, but in most other languages special constructions must
be used for transferring a function to another function as argument.

As an example, consider a function for computing the second-order
derivative of a function f(x) numerically:

f ′′(x) ≈ f(x − h) − 2f(x) + f(x + h)

h2
, (2.3)

where h is a small number. The approximation (2.3) becomes exact
in the limit h → 0. A Python function for computing (2.3) can be
implemented as follows:

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

The f argument is like any other argument, i.e., a name for an object,
here a function object that we can call as we normally call function
objects. An application of diff2 can read

def g(t):
return t**(-6)

t = 1.2
d2g = diff2(g, t)
print "g’’(%f)=%f" % (t, d2g)

The Behaviour of the Numerical Derivative as h → 0. From mathe-
matics we know that the approximation formula (2.3) becomes more
accurate as h decreases. Let us try to demonstrate this expected fea-
ture by making a table of the second-order derivative of g(t) = t−6 at
t = 1 as h → 0:

for k in range(1,15):
h = 10**(-k)
d2g = diff2(g, 1, h)
print ’h=%.0e: %.5f’ % (h, d2g)

The output becomes
h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
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h=1e-13: 66613381477.50939
h=1e-14: 0.00000

With g(t) = t−6, the exact answer is g′′(1) = 42, but for h < 10−8

the computations give totally wrong answers! The problem is that for
small h on a computer, round-off errors in the formula (2.3) blow up
and destroy the accuracy. The mathematical result that (2.3) becomes
an increasingly better approximation as h gets smaller and smaller does
not hold on a computer! Or more precisely, the result holds until h in
the present case reaches 10−4.

The reason for the inaccuracy is that the numerator in (2.3) for
g(t) = t−6 and t = 1 contains subtraction of quantities that are al-
most equal. The result is a very small and inaccurate number. The
inaccuracy is magnified by h−2, a number that becomes very large for
small h. Swithing from the standard floating-point numbers (float) to
numbers with arbitrary high precision resolves the problem. Python
has a module decimal that can be used for this purpose. The file
highprecision.py solves the current problem using arithmetics based
on the decimal module. With 25 digits in x and h inside the diff2 func-
tion, we get accurate results for h ≤ 10−13. However, for most practical
applications of (2.3), a moderately small h, say 10−3 ≤ h ≤ 10−4, gives
sufficient accuracy and then round-off errors from float calculations
do not pose problems. Real-world science or engineering applications
usually have many parameters with uncertainty, making the end re-
sult also uncertain, and formulas like (2.3) can then be computed with
moderate accuracy without affecting the overall computational error.

2.2.10 The Main Program

In programs containing functions we often refer to a part of the pro-
gram that is called the main program. This is the collection of all the
statements outside the functions, plus the definition of all functions.
Let us look at a complete program:

from math import * # in main

def f(x): # in main
e = exp(-0.1*x)
s = sin(6*pi*x)
return e*s

x = 2 # in main
y = f(x) # in main
print ’f(%g)=%g’ % (x, y) # in main

The main program here consists of the lines with a comment in main.
The execution always starts with the first line in the main program.
When a function is encountered, its statements are just used to de-
fine the function – nothing gets computed inside the function before
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we explicitly call the function, either from the main program or from
another function. All variables initialized in the main program become
global variables (see Chapter 2.2.2).

The program flow in the program above goes as follows:

1. Import functions from the math module,
2. define a function f(x),
3. define x,
4. call f and execute the function body,
5. define y as the value returned from f,
6. print the string.

In point 4, we jump to the f function and execute the statement in-
side that function for the first time. Then we jump back to the main
program and assign the float object returned from f to the y variable.

More information on program flow and the jump between the main
program and functions is covered in Chapter 2.4.2 and Appendix D.1.

2.2.11 Lambda Functions

There is a quick one-line construction of functions that is sometimes
convenient:

f = lambda x: x**2 + 4

This so-called lambda function is equivalent to writing

def f(x):
return x**2 + 4

In general,

def g(arg1, arg2, arg3, ...):
return expression

can be written as

g = lambda arg1, arg2, arg3, ...: expression

Lambda functions are usually used to quickly define a function as
argument to another function. Consider, as an example, the diff2 func-
tion from Chapter 2.2.9. In the example from that chapter we want to
differentiate g(t) = t−6 twice and first make a Python function g(t)

and then send this g to diff2 as argument. We can skip the step with
defining the g(t) function and instead insert a lambda function as the
f argument in the call to diff2:

d2 = diff2(lambda t: t**(-6), 1, h=1E-4)
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Because lambda functions can be defined “on the fly” and thereby save
typing of a separate function with def and an intended block, lambda
functions are popular among many programmers.

Lambda functions may also take keyword arguments. For example,

d2 = diff2(lambda t, A=1, a=0.5: -a*2*t*A*exp(-a*t**2), 1.2)

2.3 If Tests

The flow of computer programs often needs to branch. That is, if a
condition is met, we do one thing, and if not, we do another thing. A
simple example is a function defined as

f(x) =

{
sin x, 0 ≤ x ≤ π
0, otherwise

(2.4)

In a Python implementation of this function we need to test on the
value of x, which can be done as displayed below:

def f(x):
if 0 <= x <= pi:

value = sin(x)
else:

value = 0
return value

The general structure of an if-else test is
if condition:

<block of statements, executed if condition is True>
else:

<block of statements, executed if condition is False>

When condition evaluates to true, the program flow branches into the
first block of statements. If condition is False, the program flow jumps
to the second block of statements, after the else: line. As with while

and for loops, the block of statements are indented. Here is another
example:

if C < -273.15:
print ’%g degrees Celsius is non-physical!’ % C
print ’The Fahrenheit temperature will not be computed.’

else:
F = 9.0/5*C + 32
print F

print ’end of program’

The two print statements in the if block are executed if and only if
C < -273.15 evaluates to True. Otherwise, we jump over the first two
print statements and carry out the computation and printing of F. The
printout of end of program will be performed regardless of the outcome
of the if test since this statement is not indented and hence neither a
part of the if block nor the else block.
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The else part of an if test can be skipped, if desired:

if condition:
<block of statements>

<next statement>

For example,

if C < -273.15:
print ’%s degrees Celsius is non-physical!’ % C

F = 9.0/5*C + 32

In this case the computation of F will always be carried out, since the
statement is not indented and hence not a part of the if block.

With the keyword elif, short for else if, we can have several mu-
tually exclusive if tests, which allows for multiple branching of the
program flow:

if condition1:
<block of statements>

elif condition2:
<block of statements>

elif condition3:
<block of statements>

else:
<block of statements>

<next statement>

The last else part can be skipped if it is not needed. To illustrate
multiple branching we will implement a “hat” function, which is widely
used in advanced computer simulations in science and industry. One
example of a “hat” function is

N(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0
x, 0 ≤ x < 1
2 − x, 1 ≤ x < 2
0, x ≥ 2

(2.5)

The solid line in Figure 4.11 on page 203 illustrates the shape of this
function. The Python implementation associated with (2.5) needs mul-
tiple if branches:

def N(x):
if x < 0:

return 0.0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0.0

This code corresponds directly to the mathematical specification,
which is a sound strategy that usually leads to fewer errors in pro-
grams. We could mention that there is another way of constructing
this if test that results in shorter code:
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def N(x):
if 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
else:

return 0

As a part of learning to program, understanding this latter sample
code is important, but we recommend the former solution because of
its direct similarity with the mathematical definition of the function.

A popular programming rule is to avoid multiple return statements
in a function – there should only be one return at the end. We can do
that in the N function by introducing a local variable, assigning values
to this variable in the blocks and returning the variable at the end.
However, we do not think an extra variable and an extra line make a
great improvement in such a short function. Nevertheless, in long and
complicated functions the rule can be helpful.

A variable is often assigned a value that depends on a boolean ex-
pression. This can be coded using a common if-else test:

if condition:
a = value1

else:
a = value2

Because this construction is often needed, Python provides a one-line
syntax for the four lines above:

a = (value1 if condition else value2)

The parentheses are not required, but recommended style. One exam-
ple is

def f(x):
return (sin(x) if 0 <= x <= 2*pi else 0)

Since the inline if test is an expression with a value, it can be used
in lambda functions:

f = lambda x: sin(x) if 0 <= x <= 2*pi else 0

The traditional if-else construction with indented blocks cannot be
used inside lambda functions because it is not just an expression
(lambda functions cannot have statements inside them, only a single
expression).
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2.4 Summary

2.4.1 Chapter Topics

While Loops. Loops are used to repeat a collection of program state-
ments several times. The statements that belong to the loop must be
consistently indented in Python. A while loop runs as long as a condi-
tion evaluates to True:

>>> t = 0; dt = 0.5; T = 2
>>> while t <= T:
... print t
... t += dt
...
0
0.5
1.0
1.5
2.0
>>> print ’Final t:’, t, ’; t <= T is’, t <= T
Final t: 2.5 ; t <= T is False

Lists. A list is used to collect a number of values or variables in an
ordered sequence.

>>> mylist = [t, dt, T, ’mynumbers.dat’, 100]

A list element can be any Python object, including numbers, strings,
functions, and other lists, for instance. Table 2.1 shows some important
list operations (only a subset of these are explained in the present
chapter).

Tuples. A tuple can be viewed as a constant list: no changes in the
contents of the tuple is allowed. Tuples employ standard parentheses
or no parentheses, and elements are separated with comma as in lists:

>>> mytuple = (t, dt, T, ’mynumbers.dat’, 100)
>>> mytuple = t, dt, T, ’mynumbers.dat’, 100

Many list operations are also valid for tuples. In Table 2.1, all opera-
tions can be applied to a tuple a, except those involving append, del,
remove, index, and sort.

An object a containing an ordered collection of other objects such
that a[i] refers to object with index i in the collection, is known as a
sequence in Python. Lists, tuples, strings, and arrays (Chapter 4) are
examples on sequences. You choose a sequence type when there is a
natural ordering of elements. For a collection of unordered objects a
dictionary (introduced in Chapter 6.2) is often more convenient.

For Loops. A for loop is used to run through the elements of a list or
a tuple:
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Table 2.1 Summary of important functionality for list objects.

a = [] initialize an empty list
a = [1, 4.4, ’run.py’] initialize a list
a.append(elem) add elem object to the end
a + [1,3] add two lists
a.insert(i, e) insert element e before index i
a[3] index a list element
a[-1] get last list element
a[1:3] slice: copy data to sublist (here: index 1, 2)
del a[3] delete an element (index 3)
a.remove(e) remove an element with value e
a.index(’run.py’) find index corresponding to an element’s value
’run.py’ in a test if a value is contained in the list
a.count(v) count how many elements that have the value v
len(a) number of elements in list a
min(a) the smallest element in a
max(a) the largest element in a
sum(a) add all elements in a
as = sorted(a) sort list a (return new list)
sorted(a) return sorted version of list a
reverse(a) return reversed sorted version of list a
b[3][0][2] nested list indexing
isinstance(a, list) is True if a is a list

>>> for elem in [10, 20, 25, 27, 28.5]:
... print elem,
...
10 20 25 27 28.5

The trailing comma after the print statement prevents the newline
character which print otherwise adds to the character.

The range function is frequently used in for loops over a sequence
of integers. Recall that range(start, stop, inc) does not include the
“end value” stop in the list.

>>> for elem in range(1, 5, 2):
... print elem,
...
1 3
>>> range(1, 5, 2)
[1, 3]

Pretty Print. To print a list a, print a can be used, but the pprint

and scitools.pprint2 modules and their pprint function give a nicer
layout of the output for long and nested lists. The scitools.pprint2

module has the possibility to better control the output of floating-point
numbers.

If Tests. The if-elif-else tests are used to “branch” the flow of state-
ments. That is, different sets of statements are executed depending on
whether a set of conditions is true or not.
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def f(x):
if x < 0:

value = -1
elif x >= 0 and x <= 1:

value = x
else:

value = 1
return value

User-Defined Functions. Functions are useful (i) when a set of com-
mands are to be executed several times, or (ii) to partition the program
into smaller pieces to gain better overview. Function arguments are lo-
cal variables inside the function whose values are set when calling the
function. Remember that when you write the function, the values of
the arguments are not known. Here is an example of a function for
polynomials of 2nd degree:

# function definition:
def quadratic_polynomial(x, a, b, c)

value = a*x*x + b*x + c
derivative = 2*a*x + b
return value, derivative

# function call:
x = 1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

The sequence of the arguments is important, unless all arguments are
given as name=value.

Functions may have no arguments and/or no return value(s):

def print_date():
"""Print the current date in the format ’Jan 07, 2007’."""
import time
print time.strftime("%b %d, %Y")

# call:
print_date()

A common error is to forget the parentheses: print_date is the function
object itself, while print_date() is a call to the function.

Keyword Arguments. Function arguments with default values are
called keyword arguments, and they help to document the meaning
of arguments in function calls. They also make it possible to specify
just a subset of the arguments in function calls.

from math import exp, sin, pi

def f(x, A=1, a=1, w=pi):
return A*exp(-a*x)*sin(w*x)

f1 = f(0)
x2 = 0.1
f2 = f(x2, w=2*pi)
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f3 f(x2, w=4*pi, A=10, a=O.l)
f4 f(w=4*pi, A=10, a=O.i, x=x2)

The sequence of the keyword arguments can be arbitrary, and the key-
word arguments that arc not listed in the call get their default values
according to the function definition. The "non-keyword arguments" are
called positional arguments, which is x in this example. Positional ar-
guments must be listed before the keyword arguments. However, also
a positional argument can appear as name=value in the call (sec the
last line above), and this syntax allows any positional argument to be
listed anywhere in the call.

Terminology. The important computer science terms in this chapter
are

• list,
• tuple,
• nested list (and nested tuple),
• sublist (subtuple) or slice,

• while loop,
• for loop,
• list comprehension,
• boolean expression,

• function,
• method,
• return statement,
• positional arguments,
• keyword arguments,
• local and global variables,

• doc strings,
• if tests (branching),
• the None object.

2.4.2 Summarizing Example: Tabulate a Function

Problem. Make a program for evaluating the formula (1.1) for time
points equally spaced by Llt as long as y ::> O. These time points and
their associated y values are to be stored in a nested list, to be printed
out on the screen. Also search through the list to find the maximum
y(t) value.

Solution. We first present the program solving the problem stated
above, and then we explain in detail how the program works. The code
is found in the file balLtable. py.
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g = 9.81; v0 = 5
dt = 0.25

def y(t):
return v0*t - 0.5*g*t**2

def table():
data = [] # store [t, y] pairs in a nested list
t = 0
while y(t) >= 0:

data.append([t, y(t)])
t += dt

return data

data = table()

for t, y in data:
print ’%5.1f %5.1f’ % (t, y)

# extract all y values from data:
y = [y for t, y in data]
print y
# find maximum y value:
ymax = 0
for yi in y:

if yi > ymax:
ymax = yi

print ’max y(t) =’, ymax

data = table() # this does not work now - why?

Recall that a program is executed from top to bottom, line by line,
but the program flow may “jump around” because of functions and
loops. Understanding the program flow in detail is a necessary and
important ability if (when!) you need to find errors in a program that
produces wrong results.

The present program starts with executing the first two lines, which
bring the variables g, v0, and dt into play. Thereafter, two functions y

and table are defined, but nothing inside these functions is computed.
The computations in the function bodies are performed when we call
the functions.

The first function call, data = table(), causes the program flow to
jump into the table function and execute the statements in this func-
tion. When entering the while loop, the boolean expression12 y(t) >=

0 is evaluated. This expression requires the evaluation of y(t), which
causes the program flow to jump to the y function. Inside this func-
tion, the argument t is a local variable that has the value 0, because
the local variable t in the table function has the value 0 in the first
call y(t). The expression in the return statement in the y function is
then evaluated to 0 and returned.

12 Some experienced programmers may criticize the table function for having an
unnecessary extra call to y(t) in each pass in the loop. Exercise 2.53 asks you to
rewrite the function such that there is only one call to y(t) in the loop. However, in
this summary section we have chosen to write code that is as easy to understand as
possible, instead of writing as computationally efficient code as possible. We believe
this strategy is beneficial for newcomers to programming.
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We are now back to the boolean condition in the while loop. Since
y(t) was evaluated to 0, the condition reads 0 >= 0, which is True.
Therefore we are to execute the block of statements inside the loop.
This block of statements is executed repeatedly until the loop condition
is False. In each pass of the loop, the condition y(t) >= 0 must be
evaluated, and this task causes a call to the y function and an associated
jump of the program flow. For some t value, y(t) will be negative, i.e.,
the loop condition is False and the program flow jumps to the first
statement after the loop. This statement is return data in the present
case.

The value of the call table() is now computed to be the object with
name data inside the table function. We assign this object to a new
global variable data in the statement data = table(). That is, there are
two data variables in this program, one local in the table function and
one global. The local data variable is demolished (along with the other
local variable, t) when the program flow leaves the table function.
Although the local data variable in the table function dies, the object
that it refers to survives, because we “send out” this object from the
function and bind it to a new, global name data in the main program.
As long as we have some name that refers to an object, the object is
alive and can be used. More aspects of this subject are discussed below.

The program flow proceeds to the for loop, where we run through all
the pairs of t, y values in the nested list data. Recall that all elements
of the data list are lists with two numbers, t and y.

The next statement applies a list comprehension to make a new list,
y, holding all the y values that are in data. Again, we pass through all
pairs y, t (i.e., elements) in data, but we place only the y part in the
new list.

The next step is to find the maximum y value. We first set the
maximum value ymax to the smallest relevant value, here it is 0 since
y ≥ 0. The for loop runs through all elements, and if an element is
larger than ymax, ymax refers to this new element. When all elements in
y are examined, ymax holds the largest value, and we can print it out.
Since finding the largest (or smallest) element in a list is a frequently
encountered task, Python has a special function max (or min) such that
we could have written ymax = max(y) and hence avoided the for loop
with the if test.

The final statement, data = table(), causes the program to abort
with an error message

File "ball_table.py", line 10, in table
while y(t) >= 0:

TypeError: ’list’ object is not callable

What has happended? The table function worked fine the first time
we called it! As the error message tells us, the problem lies in the while

loop line. You need some programming experience to understand what
such an error message means and what the problem can be.
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The global name y is originally used for a function in the program.
However, after the call to table, we use the name y for several types
of objects. First, y is used in the for loop and will there hold float

objects. In the list comprehension, y is used in an identical way inside
a for loop, and then y is the name for the resulting list! At the second
call to table, the global name y refers to a list. The first time we use
the global y inside the table function is in the loop condition y(t) >=

0. Here we try to call a function y, but y is a list, and the syntax of a
call y(t) is illegal if y is a list. That is why the error message states
that ’list’ object is not callable. Figure 2.3 illustrates the state of
variables in the program after the first table() call and at the end.

g 9.81

v0 5

y __name__ ’y’
function

table __name__ ’table’
function

dt 0.25

data 0 0 0

1 0.0

1 0 0.25

1 0.9434375

2 0 0.5

1 1.27375

3 0 0.75

1 0.9909375

4 0 1.0

1 0.095

(a)

yi 0.095

ymax 1.27375

g 9.81

v0 5

t 1.0

y 0 0.0

1 0.9434375

2 1.27375

3 0.9909375

4 0.095

table __name__ ’table’
function

dt 0.25

data 0 0 0

1 0.0

1 0 0.25

1 0.9434375

2 0 0.5

1 1.27375

3 0 0.75

1 0.9909375

4 0 1.0

1 0.095

(b)

Fig. 2.3 State of variables in ball_table.py (a) right after table() is called; (b) at
the end. Note that y refers to a function in (a) and a list in (b).
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How can we recover from this error? The simplest remedy is to give
the y function another name, e.g., yfunc. Doing so, the program works.
We still use the variable y for float and list objects, but this is okay
as long as no errors arise.

In programming languages such as Fortran, C, C++, Java, and C#,
any variable y is declared with a fixed type, and the problem that y is a
function and later a number or list cannot occur. This principle removes
some errors, but the flexibility of using the symbol y for different object
types, whose conceptual name is conveniently taken as “y”, makes the
program easier to read and understand. (There is a Python package
“Traits” that offers type checking of variables – in a more flexible way
than what is possible with compile-time type checking as in Fortran,
C, C++, Java, and C#.)

To better understand the flow of statements in a program, it can
be handy to use a debugger. Appendix D.1 explains in detail how we
can investigate the program flow in the present example with the aid
of Python’s built-in debugger.

2.4.3 How to Find More Python Information

This book contains only fragments of the Python language. When doing
your own projects or exercises you will certainly feel the need for look-
ing up more detailed information on modules, objects, etc. Fortunately,
there is a lot of excellent documentation on the Python programming
language. The primary reference is the official Python documentation
website: docs.python.org. Here you can find a Python tutorial, the
very useful Python Library Reference, an index of all modules that
come with the basic Python distribution, and a Language Reference,
to mention some. You should in particular discover the index of the
Python Library Reference. When you wonder what functions you can
find in a module, say the math module, you should go to this index,
find the “math” keyword, and press the link. This brings you right to
the official documentation of the math module. Similarly, if you want
to look up more details of the printf formatting syntax, go to the in-
dex and follow the “printf-style formatting” index. A word of caution
is probably necessary here: Reference manuals, such as the Python Li-
brary Reference, are very technical and written primarily for experts,
so it can be quite difficult for a newbie to understand the informa-
tion. An important ability is to browse such manuals and grab out the
key information you are looking for, without being annoyed by all the
text you do not understand. As with programming, reading manuals
efficiently requires a lot of training.

A tool somewhat similar to the Python Library Reference is the
pydoc program. In a terminal window you write
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Terminal

Unix/DOS> pydoc math

In Python there are two possibilities, either13

In [1]: !pydoc math

or

In [2]: import math
In [3]: help(math)

The documentation of the complete math module is shown as plain text.
If a specific function is wanted, we can ask for that directly, e.g., pydoc
math.tan. Since pydoc is very fast, many prefer pydoc over webpages,
but pydoc has often less information compared to the Python Library
Reference.

There are also numerous books about Python. Beazley [1] is an
excellent reference that improves and extends the information in the
Python Library Reference. The “Learning Python” book [8] has been
very popular for many years as an introduction to the language. There
is a special webpage http://wiki.python.org/moin/PythonBooks listing
most Python books on the market. A comprehensive book on the use
of Python for doing scientific research is [5].

Quick references, which list “all” Python functionality in compact
tabular form, are very handy. We recommend in particular the one by
Richard Gruet: http://rgruet.free.fr/PQR25/PQR2.5.html.

The website http://www.python.org/doc/ contains a list of useful
Python introductions and reference manuals.

2.5 Exercises

Exercise 2.1. Make a Fahrenheit–Celsius conversion table.
Modify the c2f_table_while.py program so that it prints out a table

with Fahrenheit degrees 0, 10, 20, . . . , 100 in the first column and the
corresponding Celsius degrees in the second column. Name of program
file: c2f_table_while.py. �
Exercise 2.2. Generate odd numbers.

Write a program that generates all odd numbers from 1 to n. Set n

in the beginning of the program and use a while loop to compute the
numbers. (Make sure that if n is an even number, the largest generated
odd number is n-1.) Name of program file: odd.py. �
13 Any command you can run in the terminal window can also be run inside IPython

if you start the command with an exclamation mark.
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Exercise 2.3. Store odd numbers in a list.
Modify the program from Exercise 2.2 to store the generated odd

numbers in a list. Start with an empty list and use a while loop where
you in each pass of the loop append a new element to the list. Fi-
nally, print the list elements to the screen. Name of program file:
odd_list1.py. �
Exercise 2.4. Generate odd numbers by the range function.

Solve Exercise 2.3 by calling the range function to generate a list of
odd numbers. Name of program file: odd_list2.py. �
Exercise 2.5. Simulate operations on lists by hand.

You are given the following program:

a = [1, 3, 5, 7, 11]
b = [13, 17]
c = a + b
print c
d = [e+1 for e in a]
print d
d.append(b[0] + 1)
d.append(b[-1] + 1)
print d

Go through each statement and explain what is printed by the program.
�
Exercise 2.6. Make a table of values from formula (1.1).

Write a program that prints a table of t and y(t) values from the
formula (1.1) to the screen. Use 11 uniformly spaced t values through-
out the interval [0, 2v0/g], and fix the value of v0. Name of program
file: ball_table1.py. �
Exercise 2.7. Store values from formula (1.1) in lists.

In a program, make a list t with 6 t values 0.1, 0.2, . . . , 0.6. Com-
pute a corresponding list y of y(t) values using formula (1.1). Write
out a nicely formatted table of t and y values. Name of program file:
ball_table2.py. �
Exercise 2.8. Work with a list.

Set a variable primes to a list containing the numbers 1, 3, 5, 7,
11, and 13. Write out each list element in a for loop. Assign 17 to a
variable p and add p to the end of the list. Print out the whole new
list. Name of program file: primes.py. �
Exercise 2.9. Generate equally spaced coordinates.

We want to generate x coordinates between 1 and 2 with spacing
0.01. The i-th coordinate, xi, is then 1 + ih where h = 0.01 and i runs
over integers 0, 1, . . . , 100. Compute the xi values and store them in
a list. Hint: Use a for loop, and append each new xi value to a list,
which is empty initially. Name of program file: coor1.py. �
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Exercise 2.10. Use a list comprehension to solve Exer. 2.9.
The problem is the same as in Exercise 2.9, but now we want the xi

values to be stored in a list using a list comprehension construct (see
Chapter 2.1.6). Name of program file: coor2.py. �
Exercise 2.11. Store data from Exer. 2.7 in a nested list.

After having computed the two lists of t and y values in the program
from Exercise 2.7, store the two lists in a new list t1. Write out a table
of t and y values by traversing the data in the t1 list. Thereafter, make
a list t2 which holds each row in the table of t and y values (t1 is a
list of table columns while t2 is a list of table rows, as explained in
Chapter 2.1.7). Write out the table by traversing the t2 list. Name of
program file: ball_table3.py. �
Exercise 2.12. Compute a mathematical sum.

The following code is supposed to compute the sum s =
∑M

k=1
1
k :

s = 0; k = 1; M = 100
while k < M:

s += 1/k
print s

This program does not work correctly. What are the three errors? (If
you try to run the program, nothing will happen on the screen. Type
Ctrl-C, i.e., hold down the Control (Ctrl) key and then type the c key,
to stop a program.) Write a correct program. Name of program file:
compute_sum_while.py.

There are two basic ways to find errors in a program: (i) read the
program carefully and think about the consequences of each statement,
and (ii) print out intermediate results and compare with hand calcula-
tions. First, try method (i) and find as many errors as you can. Then,
try method (ii) for M = 3 and compare the evolution of s with your
own hand calculations. �
Exercise 2.13. Simulate a program by hand.

Consider the following program for computing with interest rates:

initial_amount = 100
p = 5.5 # interest rate
amount = initial_amount
years = 0
while amount <= 1.5*initial_amount:

amount = amount + p/100*amount
years = years + 1

print years

(a)Explain with words what type of mathematical problem that is
solved by this program. Compare this computerized solution with
the technique your high school math teacher would prefer.

(b)Use a pocket calculator (or use an interactive Python shell as sub-
stitute) and work through the program by hand. Write down the
value of amount and years in each pass of the loop.
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(c)Change the value of p to 5. Why will the loop now run forever?
(See Exercise 2.12 for how to stop the program if you try to run it.)
Make the program more robust against such errors.

(d)Make use of the operator += wherever possible in the program.

Insert the text for the answers to (a) and (b) in a multi-line string in
the program file. Name of program file: interest_rate_loop.py. �
Exercise 2.14. Use a for loop in Exer. 2.12.

Rewrite the corrected version of the program in Exercise 2.12 using a
for loop over k values is used instead of a while loop. Name of program
file: compute_sum_for.py. �
Exercise 2.15. Index a nested lists.

We define the following nested list:

q = [[’a’, ’b’, ’c’], [’d’, ’e’, ’f’], [’g’, ’h’]]

Index this list to extract 1) the letter a; 2) the list [’d’, ’e’, ’f’];
3) the last element h; 4) the d element. Explain why q[-1][-2] has the
value g. Name of program file: index_nested_list.py. �
Exercise 2.16. Construct a double for loop over a nested list.

Consider the list from Exercise 2.15. We can visit all elements of q

using this nested for loop:

for i in q:
for j in range(len(i)):

print i[j]

What type of objects are i and j? Name of program file:
nested_list_iter.py. �
Exercise 2.17. Compute the area of an arbitrary triangle.

An arbitrary triangle can be described by the coordinates of its three
vertices: (x1, y1), (x2, y2), (x3, y3). The area of the triangle is given by
the formula

A =
1

2
[x2y3 − x3y2 − x1y3 + x3y1 + x1y2 − x2y1] . (2.6)

Write a function area(vertices) that returns the area of a triangle
whose vertices are specified by the argument vertices, which is a
nested list of the vertex coordinates. For example, vertices can be
[[0,0], [1,0], [0,2]] if the three corners of the triangle have coordi-
nates (0, 0), (1, 0), and (0, 2). Test the area function on a triangle with
known area. Name of program file: area_triangle.py. �
Exercise 2.18. Compute the length of a path.

Some object is moving along a path in the plane. At n points of
time we have recorded the corresponding (x, y) positions of the object:
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(x0, y0), (x1, y2), . . ., (xn−1, yn−1). The total length L of the path from
(x0, y0) to (xn−1, yn−1) is the sum of all the individual line segments
((xi−1, yi−1) to (xi, yi), i = 1, . . . , n − 1):

L =
n−1∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 . (2.7)

Make a function pathlength(x, y) for computing L according to
the formula. The arguments x and y hold all the x0, . . . , xn−1 and
y0, . . . , yn−1 coordinates, respectively. Test the function on a triangu-
lar path with the four points (1, 1), (2, 1), (1, 2), and (1, 1). Name of
program file: pathlength.py. �
Exercise 2.19. Approximate pi.

The value of π equals the circumference of a circle with radius 1/2.
Suppose we approximate the circumference by a polygon through N +1
points on the circle. The length of this polygon can be found using the
pathlength function from Exercise 2.18. Compute N +1 points (xi, yi)
along a circle with radius 1/2 according to the formulas

xi =
1

2
cos(2πi/N), yi =

1

2
sin(2πi/N), i = 0, . . . , N .

Call the pathlength function and write out the error in the approx-
imation of π for N = 2k, k = 2, 3, . . . , 10. Name of program file:
pi_approx.py. �
Exercise 2.20. Write a Fahrenheit-Celsius conversion table.

Given a temperature F in Fahrenheit degrees, the corresponding de-
grees in Celsius are found by solving (1.2) (on page 18) with respect to
C, yielding formula (2.9). Many people use an approximate formula for
quickly calculating the Celsius degrees: subtract 30 from the Fahrenheit
degrees and divide by two, i.e.,

C = (F − 30)/2 (2.8)

We want to produce a table that compares the exact formula (2.9) and
the rough approximation (2.8) for Fahrenheit degrees between 0 and
100 (in steps of, e.g., 10). Write a program for storing the F values, the
exact C values, and the approximate C values in a nested list. Print
out a nicely formatted table by traversing the nested list with a for

loop. Name of program file: f2c_shortcut_table.py. �
Exercise 2.21. Convert nested list comprehensions to nested standard
loops.

Rewrite the generation of the nested list q,
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q = [r**2 for r in [10**i for i in range(5)]]

by using standard for loops instead of list comprehensions. Name of
program file: listcomp2for.py. �
Exercise 2.22. Write a Fahrenheit–Celsius conversion function.

The formula for converting Fahrenheit degrees to Celsius reads

C =
5

9
(F − 32) . (2.9)

Write a function C(F) that implements this formula. To verify the im-
plementation of C(F), you can convert a Celsius temperature to Fahren-
heit and then back to Celsius again using the F(C) function from Chap-
ter 2.2.1 and the C(F) function implementing (2.9). That is, you can
check that a temperature c equals C(F(c)) (be careful with compar-
ing real numbers with ==, see Exercise 2.51). Name of program file:
c2f2c.py. �
Exercise 2.23. Write some simple functions.

Write three functions:

1. hw1, which takes no arguments and returns the string ’Hello,

World!’

2. hw2, which takes no arguments and returns nothing, but the string
’Hello, World!’ is printed in the terminal window

3. hw3, which takes two string arguments and prints these two argu-
ments separated by a comma

Use the following main program to test the three functions:

print hw1()
hw2()
hw3(’Hello ’, ’World!’)

Name of program: hw_func.py. �
Exercise 2.24. Write the program in Exer. 2.12 as a function.

Define a Python function s(M) that computes the sum s as defined
in Exercise 2.12. Name of program: compute_sum_func.py. �
Exercise 2.25. Implement a Gaussian function.

Make a Python function gauss(x, m=0, s=1) for computing the
Gaussian function (1.6) on page 45. Call gauss and print out the result
for x equal to −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, using default values for
m and s. Name of program file: Gaussian_function2.py. �
Exercise 2.26. Find the max and min values of a function.

Write a function maxmin(f, a, b, n=1000) that returns the maxi-
mum and minimum values of a mathematical function f(x) (evaluated
at n points) in the interval between a and b. The following test pro-
gram
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from math import cos, pi
print maxmin(cos, -pi/2, 2*pi)

should write out (1.0, -1.0).
The maxmin function can compute a set of n coordinates between a

and b stored in a list x, then compute f at the points in x and store
the values in another list y. The Python functions max(y) and min(y)

return the maximum and minimum values in the list y, respectively.
Name of program file: func_maxmin.py. �
Exercise 2.27. Explore the Python Library Reference.

Suppose you want to make a program for printing out sin−1 x for n
x values between 0 and 1. The math module has a function for comput-
ing sin−1 x, but what is the right name of this function? Read Chap-
ter 2.4.3 and use the math entry in the index of the Python Library
Reference to find out how to compute sin−1 x. Name of program file:
inverse_sine.py. �
Exercise 2.28. Make a function of the formula in Exer. 1.12.

Implement the formula (1.8) from Exercise 1.12 in a Python function
with three arguments: egg(M, To=20, Ty=70). The parameters ρ, K, c,
and Tw can be set as local (constant) variables inside the function. Let
t be returned from the function. Compute t for a soft and hard boiled
egg, of a small (M = 47 g) and large (M = 67 g) size, taken from the
fridge (To = 4 C) and from a hot room (T = 25 C). Name of program
file: egg_func.py. �
Exercise 2.29. Write a function for numerical differentiation.

The formula

f ′(x) ≈ f(x + h) − f(x − h)

2h
(2.10)

can be used to find an approximate derivative of a mathematical func-
tion f(x) if h is small. Write a function diff(f, x, h=1E-6) that re-
turns the approximation (2.10) of the derivative of a mathematical
function represented by a Python function f(x).

Apply (2.10) to differentiate f(x) = ex at x = 0, f(x) = e−2x2

at
x = 0, cos x at x = 2π, and f(x) = lnx at x = 1. Use h = 0.01. In
each case, write out the error, i.e., the difference between the exact
derivative and the result of (2.10). Name of program file: diff_f.py. �
Exercise 2.30. Write a function for numerical integration.

An approximation to the integral of a function f(x) over an interval
[a, b] can found by first approximating f(x) by the straight line that
goes through the end points (a, f(a)) and (b, f(b)), and then finding
the area under the straight line (which is the area of a trapezoid). The
resulting formula becomes∫ b

a
f(x)dx ≈ b − a

2
(f(a) + f(b)) . (2.11)
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Write a function integrate(f, a, b) that returns this approximation
to the integral. The argument f is a Python implementation f(x) of
the mathematical function f(x).

Compute the error, i.e., the difference between the approxmation
(2.11) and the exact result, for Using (2.11), compute the following

integrals
∫ ln 3
0 exdx,

∫ π
0 cos x dx,

∫ π
0 sinx dx, and

∫ π/2
0 sinx dx, In each

case, write out the error, i.e., the difference between the exact integral
and the approximation (2.11). Make rough sketches of (2.11) for each
integral in order to understand how the method behaves in the different
cases. Name of program file: int_f.py. �
Exercise 2.31. Improve the formula in Exer. 2.30.

We can easily improve the formula 2.11 from Exercise 2.30 by ap-
proximating the function f(x) by a straight line from (a, f(a)) to the
midpoint (c, f(c)) between a and b, and then from the midpoint to
(b, f(b)). The midpoint c equals 1

2(a + b). The area under the two
straight lines equals the area of two trapezoids. Derive a formula for
this area and implement the formula in a function integrate2(f, a,

b). Run the examples from Exercise 2.30 and see how much better the
new formula is. Name of program file: int2_f.py. �
Exercise 2.32. Compute a polynomial via a product.

Given n roots r0, r1, . . . , rn of a polynomial of degree n, the polyno-
mial p(x) can be computed by

p(x) =
n∏

i=0

(x − ri) = (x − r0)(x − r1) · · · (x − rn−1)(x − rn) . (2.12)

Store the roots r0, . . . , rn in a list and make a loop that computes the
product in (2.12). Test the program on a polynomial with roots −1, 1,
and 2. Name of program file: polyprod.py. �
Exercise 2.33. Implement the factorial function.

The factorial of n, written as n!, is defined as

n! = n(n − 1)(n − 2) · · · 2 · 1, (2.13)

with the special cases
1! = 1, 0! = 1 . (2.14)

For example, 4! = 4 · 3 · 2 · 1 = 24, and 2! = 2 · 1 = 2. Write a function
fact(n) that returns n!. Return 1 immediately if x is 1 or 0, otherwise
use a loop to compute n!. Name of program file: fact.py.

Remark. You can import a ready-made factorial function by

from scitools.std import factorial
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This factorial function offers many different implementations, with
different computational efficiency, for computing x! (see the source code
of the function for details). �
Exercise 2.34. Compute velocity and acceleration from position data;
one dimension.

Let x(t) be the position of an object moving along the x axis. The
velocity v(t) and acceleration a(t) can be approximately computed by
the formulas

v(t) ≈ x(t + Δt) − x(t − Δt)

2Δt
, a(t) ≈ x(t + Δt) − 2x(t) + x(t − Δt)

Δt2
,

(2.15)
where Δt is a small time interval. As Δ → 0, the above formulas
approach the first and second derivative of x(t), which coincides with
the well-known definitions of velocity and acceleration.

Write a function kinematics(x, t, dt=1E-6) for computing x, v, and
a time t, using the above formulas for v and a with Δt corresponding
to dt. Let the function return x, v, and a. Test the function with
the position function x(t) = e−(t−4)2 and the time point t = 5 (use
Δt = 10−5). Name of program: kinematics1.py. �
Exercise 2.35. Compute velocity and acceleration from position data;
two dimensions.

An object moves a long a path in the xy plane such that at time
t the object is located at the point (x(t), y(t)). The velocity vector in
the plane, at time t, can be approximated as

v(t) ≈
(

x(t + Δt) − x(t − Δt)

2Δt
,
y(t + Δt) − y(t − Δt)

2Δt

)
. (2.16)

The acceleration vector in the plane, at time t, can be approximated
as

a(t) ≈
(

x(t + Δt) − 2x(t) + x(t − Δt)

Δt2
,
y(t + Δt) − 2y(t) + y(t − Δt)

Δt2

)
.

(2.17)
Here, Δt is a small time interval.

Make a function kinematics(x, y, t, dt=1E-6) for computing the
velocity and acceleration of the object according to the formulas above
(t corresponds to t, and dt corresponds to Δt). The function should
return three 2-tuples holding the position, the velocity, and the acceler-
ation, all at time t. Test the function for the motion along a circle with
radius R and absolute velocity Rω: x(t) = R cos ωt and y(t) = R sinωt.
Compute the velocity and acceleration for t = 0 and t = π using R = 1
and ω = 2π. Name of program: kinematics2.py. �
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Exercise 2.36. Express a step function as a Python function.
The following“step” function is known as the Heaviside function and

is widely used in mathematics:

H(x) =

{
0, x < 0
1, x ≥ 0

(2.18)

Write a Python function H(x) that evaluates the formula for H(x).
Test your implementation for x = −1

2 , 0, 10. Name of program file:
Heaviside.py. �
Exercise 2.37. Rewrite a mathematical function.

We consider the L(x;n) sum as defined in Chapter 2.2.4 and the
corresponding function L2(x, epsilon) function from Chapter 2.2.6.
The sum L(x;n) can be written as

L(x;n) =
n∑

i=1

ci, ci =
1

i

(
x

1 + x

)i

.

Derive a relation between ci and ci−1,

ci = aci−1,

where a is an expression involving i and x. This relation between ci

and ci−1 means that we can start with term as c1, and then in each
pass of the loop implementing the sum

∑
i ci we can compute the next

term ci in the sum as

term = a*term

Rewrite the L2 function to make use of this alternative computation.
Compare the new version with the original one to verify the implemen-
tation. Name of program file: L2_recursive.py. �
Exercise 2.38. Make a table for approximations of cos x.

The function cos(x) can be approximated by the sum

C(x;n) =
n∑

j=0

cj , (2.19)

where

cj = −cj−1
x2

2j(2j − 1)
, j = 1, 2, . . . , n,

and c0 = 0. Make a Python function for computing C(x;n). (Hint:
Represent cj by a variable term, make updates term = -term*... inside
a for loop, and accumulate the term variable in a variable for the sum.)

Also make a function for writing out a table of the errors in the
approximation C(x;n) of cos(x) for some x and n values given as ar-
guments to the function. Let the x values run downward in the rows
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and the n values to the right in the columns. For example, a table for
x = 4π, 6π, 8π, 10π and n = 5, 25, 50, 100, 200 can look like

x 5 25 50 100 200
12.5664 1.61e+04 1.87e-11 1.74e-12 1.74e-12 1.74e-12
18.8496 1.22e+06 2.28e-02 7.12e-11 7.12e-11 7.12e-11
25.1327 2.41e+07 6.58e+04 -4.87e-07 -4.87e-07 -4.87e-07
31.4159 2.36e+08 6.52e+09 1.65e-04 1.65e-04 1.65e-04

Observe how the error increases with x and decreases with n. Name of
program file: cossum.py. �
Exercise 2.39. Implement Exer. 1.13 with a loop.

Make a function for evaluating S(t; n) as defined in Exercise 1.13 on
page 46, using a loop to sum up the n terms. The function should take
t, T , and n as arguments and return S(t; n) and the error in the approx-
imation of f(t). Make a main program that sets T = 2 and writes out a
table of the approximation errors for n = 1, 5, 20, 50, 100, 200, 500, 1000
and t = 1.01, 1.1, 1.8. Use a row for each n value and a column for each
t value. Name of program file: compute_sum_S.py. �
Exercise 2.40. Determine the type of objects.

Consider the following calls to the makelist function from page 76:

l1 = makelist(0, 100, 1)
l2 = makelist(0, 100, 1.0)
l3 = makelist(-1, 1, 0.1)
l4 = makelist(10, 20, 20)
l5 = makelist([1,2], [3,4], [5])
l6 = makelist((1,-1,1), (’myfile.dat’, ’yourfile.dat’))
l7 = makelist(’myfile.dat’, ’yourfile.dat’, ’herfile.dat’)

Determine in each case what type of objects that become elements in
the returned list and what the contents of value is after one pass in
the loop.

Hint: Simulate the program by hand and check out in an interactive
session what type of objects that result from the arithmetics. It is only
necessary to simulate one pass of the loop to answer the questions.
Some of the calls will lead to infinite loops if you really execute the
makelist calls on a computer.

This exercise demonstrates that we can write a function and have in
mind certain types of arguments, here typically int and float objects.
However, the function can be used with other (originally unintended)
arguments, such as lists and strings in the present case, leading to
strange and irrelevant behavior (the problem here lies in the boolean
expression value <= stop which is meaningless for some of the argu-
ments).

�
Exercise 2.41. Implement the sum function.

The standard Python function called sum takes a list as argument
and computes the sum of the elements in the list:
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>>> sum([1,3,5,-5])
4

Implement your own version of sum. Name of program: sum.py. �
Exercise 2.42. Find the max/min elements in a list.

Given a list a, the max function in Python’s standard library com-
putes the largest element in a: max(a). Similarly, min(a) returns the
smallest element in a. The purpose of this exercise is to write your own
max and min function. Use the following technique: Initialize a variable
max_elem by the first element in the list, then visit all the remaining
elements (a[1:]), compare each element to max_elem, and if greater,
make max_elem refer to that element. Use a similar technique to com-
pute the minimum element. Collect the two pieces of code in functions.
Name of program file: maxmin_list.py. �
Exercise 2.43. Demonstrate list functionality.

Create an interactive session where you demonstrate the effect of
each of the operations in Table 2.1 on page 92. Use IPython and log
the results (see Exercise 1.11). Name of program file: list_demo.py. �
Exercise 2.44. Write a sort function for a list of 4-tuples.

Below is a list of the nearest stars and some of their properties.
The list elements are 4-tuples containing the name of the star, the
distance from the sun in light years, the apparent brightness, and the
luminosity. The apparent brightness is how bright the stars look in
our sky compared to the brightness of Sirius A. The luminosity, or the
true brightness, is how bright the stars would look if all were at the
same distance compared to the Sun. The list data are found in the file
stars.list, which looks as follows:

data = [
(’Alpha Centauri A’, 4.3, 0.26, 1.56),
(’Alpha Centauri B’, 4.3, 0.077, 0.45),
(’Alpha Centauri C’, 4.2, 0.00001, 0.00006),
("Barnard’s Star", 6.0, 0.00004, 0.0005),
(’Wolf 359’, 7.7, 0.000001, 0.00002),
(’BD +36 degrees 2147’, 8.2, 0.0003, 0.006),
(’Luyten 726-8 A’, 8.4, 0.000003, 0.00006),
(’Luyten 726-8 B’, 8.4, 0.000002, 0.00004),
(’Sirius A’, 8.6, 1.00, 23.6),
(’Sirius B’, 8.6, 0.001, 0.003),
(’Ross 154’, 9.4, 0.00002, 0.0005),
]

The purpose of this exercise is to sort this list with respect to distance,
apparent brightness, and luminosity.

To sort a list data, one can call sorted(data), which returns the
sorted list (cf. Table 2.1). However, in the present case each element
is a 4-tuple, and the default sorting of such 4-tuples result in a list
with the stars appearing in alphabethic order. We need to sort with
respect to the 2nd, 3rd, or 4th element of each 4-tuple. If a tailored
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sort mechanism is necessary, we can provide our own sort function
as a second argument to sorted, as in sorted(data, mysort). Such a
tailored sort function mysort must take two arguments, say a and b,
and returns −1 if a should become before b in the sorted sequence, 1
if b should become before a, and 0 if they are equal. In the present
case, a and b are 4-tuples, so we need to make the comparison between
the right elements in a and b. For example, to sort with respect to
luminosity we write

def mysort(a, b):
if a[3] < b[3]:

return -1
elif a[3] > b[3]:

return 1
else:

return 0

Write the complete program which initializes the data and writes out
three sorted tables: star name versus distance, star name versus ap-
parent brightness, and star name versus luminosity. Name of program
file: sorted_stars_data.py. �
Exercise 2.45. Find prime numbers.

The Sieve of Eratosthenes is an algorithm for finding all prime num-
bers less than or equal to a number N . Read about this algorithm on
Wikipedia and implement it in a Python program. Name of program
file: find_primes.py. �
Exercise 2.46. Condense the program in Exer. 2.14.

The program in Exercise 2.14 can be greatly condensed by applying
the sum function to a list of all the elements 1/k in the sum

∑M
k=1

1
k :

print sum([1.0/k for k in range(1, M+1, 1)])

The list comprehension here first builds a list of all elements in the
sum, and this may consume a lot of memory in the computer. Python
offers an alternative syntax

print sum(1.0/k for k in xrange(1, M+1, 1))

where we get rid of the list produced by a list comprehension. We
also get rid of the list returned by range, because xrange generates a
sequence of the same integers as range, but the integers are not stored
in a list (they are generated as they are needed). For very large lists,
xrange is therefore more efficient than range.

The purpose of this exercise is to compare the efficiency of the two
calls to sum as listed above. Use the time module from Appendix E.6.1
to measure the CPU time spent by each construction. Write out M
and the CPU time for M = 104, 106, 108. (Your computer may be-
come very busy and “hang” in the last case because the list com-
prehension and range calls demand 2M numbers to be stored, which
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may exceed the computer’s memory capacity.) Name of program file:
compute_sum_compact.py. �
Exercise 2.47. Values of boolean expressions.

Explain the outcome of each of the following boolean expressions:

C = 41
C == 40
C != 40 and C < 41
C != 40 or C < 41
not C == 40
not C > 40
C <= 41
not False
True and False
False or True
False or False or False
True and True and False
False == 0
True == 0
True == 1

Note: It makes sense to compare True and False to the integers 0 and
1, but not other integers (e.g., True == 12 is False although the integer
12 evaluates to True in a boolean context, as in bool(12) or if 12). �
Exercise 2.48. Explore round-off errors from a large number of in-
verse operations.

Maybe you have tried to hit the square root key on a calculator
multiple times and then squared the number again an equal number of
times. These set of inverse mathematical operations should of course
bring you back to the starting value for the computations, but this
does not always happen. To avoid tedious pressing of calculator keys
we can let a computer automate the process. Here is an appropriate
program:

from math import sqrt
for n in range(60):

r = 2.0
for i in range(n):

r = sqrt(r)
for i in range(n):

r = r**2
print ’%d times sqrt and **2: %.16f’ % (n, r)

Explain with words what the program does. Then run the program.
Round-off errors are here completely destroying the calculations when
n is large enough! Investigate the case when we come back to 1 instead
of 2 by fixing the n value and printing out r in both for loops over
i. Can you now explain why we come back to 1 and not 2? Name of
program file: repeated_sqrt.py. �
Exercise 2.49. Explore what zero can be on a computer.

Type in the following code and run it:
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eps = 1.0
while 1.0 != 1.0 + eps:

print ’...............’, eps
eps = eps/2.0

print ’final eps:’, eps

Explain with words what the code is doing, line by line. Then examine
the output. How can it be that the “equation” 1 �= 1 + eps is not true?
Or in other words, that a number of approximately size 10−16 (the final
eps value when the loop terminates) gives the same result as if eps14

were zero? Name of program file: machine_zero.py.
If somebody shows you this interactive session

>>> 0.5 + 1.45E-22
0.5

and claims that Python cannot add numbers correctly, what is your
answer? �
Exercise 2.50. Resolve a problem with a function.

Consider the following interactive session:

>>> def f(x):
... if 0 <= x <= 2:
... return x**2
... elif 2 < x <= 4:
... return 4
... elif x < 0:
... return 0
...
>>> f(2)
4
>>> f(5)
>>> f(10)

Why do we not get any output when calling f(5) and f(10)? (Hint:
Save the f value in a variable r and write print r.) �
Exercise 2.51. Compare two real numbers on a computer.

Consider the following simple program inspired by Chapter 1.4.3:

a = 1/947.0*947
b = 1
if a != b:

print ’Wrong result!’

Try to run this example!
One should never compare two floating-point objects directly using

== or !=, because round-off errors quickly make two identical math-
ematical values different on a computer. A better result is to test if
|a − b| is sufficiently small, i.e., if a and b are “close enough” to be
considered equal. Modify the test according to this idea.

14 This nonzero eps value is called machine epsilon or machine zero and is an im-
portant parameter to know, especially when certain mathematical techniques are
applied to control round-off errors.
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Thereafter, read the documentation of the function float_eq from
SciTools: scitools.numpyutils.float_eq (see page 98 for how to bring
up the documentation of a module or a function in a module). Use
this function to check whether two real numbers are equal within a
tolerance. Name of program file: compare_float.py. �
Exercise 2.52. Use None in keyword arguments.

Consider the functions L(x, n) and L2(x, epsilon) from Chap-
ter 2.2.6, whose program code is found in the file lnsum.py. Let us
make a more flexible function L3 where we can either specify a toler-
ance epsilon or a number of terms n in the sum, and we can choose
whether we want the sum to be returned or the sum and the number of
terms. The latter set of return values is only meaningful with epsilon

and not n is specified. The starting point for all this flexibility is to
have some keyword arguments initialized to an “undefined” value that
can be recognized:

def L3(x, n=None, epsilon=None, return_n=False):

You can test if n is given using the phrase15

if n is not None:

A similar construction can be used for epsilon. Print error messages
for incompatible settings when n and epsilon are None (none given) or
not None (both given). Name of program file: L3_flexible.py. �
Exercise 2.53. Improve the program from Ch. 2.4.2.

The table function in the program from Chapter 2.4.2 evaluates y(t)
twice for the same value of the argument t. This waste of work has no
practical consequences in this little program because the y function is
so fast to calculate. However, mathematical computations soon lead
to programs that takes minutes, hours, days, and even weeks to run.
In those cases one should avoid repeating calculations. It is in general
considered a good habit to make programs efficient, at least to remove
obvious redundant calculations.

Write a new table function that has only one y(t) in the while loop.
(Hint: Store the y(t) value in a variable.)

How can you make the y function more efficient by reducing the num-
ber of arithmetic operations? (Hint: Factorize t and precompute 0.5*g

in a global variable.) Name of program file: ball_table_efficient.py.
�
Exercise 2.54. Interpret a code.

The function time in the module time returns the number of sec-
onds since a particular date (called the Epoch, which is January 1,

15 One can also apply if n != None, but the is operator is most common (it tests if
n and None are identical objects, not just objects with equal contents).
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1970 on many types of computers). Python programs can therefore use
time.time() to mimic a stop watch. Another function, time.sleep(n)
causes the program to “sleep” n seconds and is handy to insert a pause.
Use this information to explain what the following code does:

import time
t0 = time.time()
while time.time() - t0 < 10:

print ’....I like while loops!’
time.sleep(2)

print ’Oh, no - the loop is over.’

How many times is the print statement inside the loop executed? Now,
copy the code segment and change the < sign in the loop condition to a
> sign. Explain what happens now. Name of program: time_while.py.
�
Exercise 2.55. Explore problems with inaccurate indentation.

Type in the following program in a file and check carefully that you
have exactly the same spaces:

C = -60; dC = 2
while C <= 60:

F = (9.0/5)*C + 32
print C, F

C = C + dC

Run the program. What is the first problem? Correct that error. What
is the next problem? What is the cause of that problem? (See Exer-
cise 2.12 for how to stop a hanging program.)

The lesson learned from this exercise is that one has to be very care-
ful with indentation in Python programs! Other computer languages
usually enclose blocks belonging to loops and if-tests in curly braces,
parentheses, or BEGIN-END marks. Python’s convention with using
solely indentation contributes to visually attractive, easy-to-read code,
at the cost of requiring a pedantic attitude to blanks from the pro-
grammer. �
Exercise 2.56. Find an error in a program.

Consider the following program for computing

f(x) = erx sin(mx) + esx sin(nx),

def f(x, m, n, r, s):
return expsin(x, r, m) + expsin(x, s, n)

x = 2.5
print f(x, 0.1, 0.2, 1, 1)

from math import exp, sin

def expsin(x, p, q):
return exp(p*x)*sin(q*x)
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Running this code results in
NameError: global name ’expsin’ is not defined

What is the problem? Simulate the program flow by hand or use the
debugger to step from line to line. Correct the program. �
Exercise 2.57. Find programming errors.

What is wrong in the following code segments? Try first to find the
errors in each case by visual inspection of the code. Thereafter, type
in the code snippet and test it out in an interactive Python shell.

def f(x)
return 1+x**2;

Case 1:

def f(x):
term1 = 1

term2 = x**2
return term1 + term2

Case 2:

def f(x, a, b):
return a + b*x

print f(1), f(2), f(3)

Case 3:

def f(x, w):
from math import sin
return sin(w*x)

f = ’f(x, w)’
w = 10
x = 0.1
print f(x, w)

Case 4:

from math import *

def log(message):
print message

print ’The logarithm of 1 is’, log(1)

Case 5:

import time

def print_CPU_time():
print ’CPU time so far in the program:’, time.clock()

print_CPU_time;
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Case 6: �
Exercise 2.58. Simulate nested loops by hand.

Go through the code below by hand, statement by statement, and
calculate the numbers that will be printed.

n = 3
for i in range(-1, n):

if i != 0:
print i

for i in range(1, 13, 2*n):
for j in range(n):

print i, j

for i in range(1, n+1):
for j in range(i):

if j:
print i, j

for i in range(1, 13, 2*n):
for j in range(0, i, 2):

for k in range(2, j, 1):
b = i > j > k
if b:

print i, j, k

You may use a debugger, see Appendix D.1, to step through the code
and to see what happens. �
Exercise 2.59. Explore punctuation in Python programs.

Some of the following assignments work and some do not. Explain
in each case why the assignment works/fails and, if it works, what kind
of object x refers to and what the value is if we do a print x.

x = 1
x = 1.
x = 1;
x = 1!
x = 1?
x = 1:
x = 1,

Hint: Explore the statements in an interactive Python shell. �
Exercise 2.60. Investigate a for loop over a changing list.

Study the following interactive session and explain in detail what
happens in each pass of the loop, and use this explanation to under-
stand the output.

>>> numbers = range(10)
>>> print numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for n in numbers:
... i = len(numbers)/2
... del numbers[i]
... print ’n=%d, del %d’ % (n,i), numbers
...
n=0, del 5 [0, 1, 2, 3, 4, 6, 7, 8, 9]
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n=1, del 4 [0, 1, 2, 3, 6, 7, 8, 9]
n=2, del 4 [0, 1, 2, 3, 7, 8, 9]
n=3, del 3 [0, 1, 2, 7, 8, 9]
n=8, del 3 [0, 1, 2, 8, 9]

The message in this exercise is to never modify a list that is used in a
for loop. Modification is indeed technically possible, as we show above,
but you really need to know what you do – to avoid getting frustrated
by strange program behavior. �


