
Sequences and Difference Equations 5

From mathematics you probably know the concept of a sequence, which
is nothing but a collection of numbers with a specific order. A general
sequence is written as

x0, x1, x2, . . . , xn, . . . ,

One example is the sequence of all odd numbers:

1, 3, 5, 7, . . . , 2n + 1, . . .

For this sequence we have an explicit formula for the n-th term: 2n+1,
and n takes on the values 0, 1, 2, We can write this sequence more
compactly as (xn)∞n=0 with xn = 2n + 1. Other examples of infinite
sequences from mathematics are

1, 4, 9, 16, 25, . . . (xn)∞n=0, xn = (n + 1)2, (5.1)

1,
1

2
,

1

3
,

1

4
, . . . (xn)∞n=0, xn =

1

n + 1
. (5.2)

The former sequences are infinite, because they are generated from
all integers ≥ 0 and there are infinitely many such integers. Neverthe-
less, most sequences from real life applications are finite. If you put
an amount x0 of money in a bank, you will get an interest rate and
therefore have an amount x1 after one year, x2 after two years, and xN

after N years. This process results in a finite sequence of amounts

x0, x1, x2, . . . , xN , (xn)N
n=0 .

Usually we are interested in quite small N values (typically N ≤ 20 −
30). Anyway, the life of the bank is finite, so the sequence definitely
has an end.

235

236 5 Sequences and Difference Equations

For some sequences it is not so easy to set up a general formula for
the n-th term. Instead, it is easier to express a relation between two or
more consecutive elements. One example where we can do both things
is the sequence of odd numbers. This sequence can alternatively be
generated by the formula

xn+1 = xn + 2 . (5.3)

To start the sequence, we need an initial condition where the value of
the first element is specified:

x0 = 1 .

Relations like (5.3) between consecutive elements in a sequence is called
recurrence relations or difference equations. Solving a difference equa-
tion can be quite challenging in mathematics, but it is almost trivial
to solve it on a computer. That is why difference equations are so well
suited for computer programming, and the present chapter is devoted
to this topic.

The program examples regarding difference equations are found in
the folder src/diffeq.

5.1 Mathematical Models Based on Difference Equations

The objective of science is to understand complex phenomena. The
phenomenon under consideration may be a part of nature, a group of
social individuals, the traffic situation in Los Angeles, and so forth. The
reason for addressing something in a scientific manner is that it appears
to be complex and hard to comprehend. A common scientific approach
to gain understanding is to create a model of the phenomenon, and
discuss the properties of the model instead of the phenomenon. The
basic idea is that the model is easier to understand, but still complex
enough to preserve the basic features of the problem at hand1. Mod-
eling is, indeed, a general idea with applications far beyond science.
Suppose, for instance, that you want to invite a friend to your home
for the first time. To assist your friend, you may send a map of your
neighborhood. Such a map is a model: It exposes the most important
landmarks and leave out billions of details that your friend can do very
well without. This is the essence of modeling: A good model should be
as simple as possible, but still rich enough to include the important
structures you are looking for2.

1 “Essentially, all models are wrong, but some are useful.” –George E. P. Box, statis-
tician, 1919-.

2 ”Everything should be made as simple as possible, but not simpler.” –Albert Ein-
stein, physicist, 1879-1955.

5.1 Mathematical Models Based on Difference Equations 237

Certainly, the tools we apply to model a certain phenomenon differ a
lot in various scientific disciplines. In the natural sciences, mathematics
has gained a unique position as the key tool for formulating models.
To establish a model, you need to understand the problem at hand
and describe it with mathematics. Usually, this process results in a set
of equations, i.e., the model consists of equations that must be solved
in order to see how realistically the model describes a phenomenon.
Difference equations represent one of the simplest yet most effective
type of equations arising in mathematical models. The mathematics is
simple and the programming is simple, thereby allowing us to focus
more on the modeling part. Below we will derive and solve difference
equations for diverse applications.

5.1.1 Interest Rates

Our first difference equation model concerns how much money an initial
amount x0 will grow to after n years in a bank with annual interest
rate p. You learned in school the formula

xn = x0

(
1 +

p

100

)n
. (5.4)

Unfortunately, this formula arises after some limiting assumptions, like
that of a constant interest rate over all the n years. Moreover, the
formula only gives us the amount after each year, not after some months
or days. It is much easier to compute with interest rates if we set up
a more fundamental model in terms of a difference equation and then
solve this equation on a computer.

The fundamental model for interest rates is that an amount xn−1 at
some point of time tn−1 increases its value with p percent to an amount
xn at a new point of time tn:

xn = xn−1 +
p

100
xn−1 . (5.5)

If n counts years, p is the annual interest rate, and if p is constant, we
can with some arithmetics derive the following solution to (5.5):

xn =
(
1 +

p

100

)
xn−1 =

(
1 +

p

100

)2
xn−2 = . . . =

(
1 +

p

100

)n
x0 .

Instead of first deriving a formula for xn and then program this
formula, we may attack the fundamental model (5.5) in a program
(growth_years.py) and compute x1, x2, and so on in a loop:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)

238 5 Sequences and Difference Equations

x = zeros(len(index_set))

solution:
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (p/100.0)*x[n-1]
print x
plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

The output of x is

[100. 105. 110.25 115.7625 121.550625]

Programmers of mathematical software who are trained in making pro-
grams more efficient, will notice that it is not necessary to store all the
xn values in an array or use a list with all the indices 0, 1, . . . , N . Just
one integer for the index and two floats for xn and xn−1 are strictly
necessary. This can save quite some memory for large values of N .
Exercise 5.5 asks you to develop such a memory-efficient program.

Suppose now that we are interested in computing the growth of
money after N days instead. The interest rate per day is taken as
r = p/D if p is the annual interest rate and D is the number of days
in a year. The fundamental model is the same, but now n counts days
and p is replaced by r:

xn = xn−1 +
r

100
xn−1 . (5.6)

A common method in international business is to choose D = 360, yet
let n count the exact number of days between two dates (see footnote on
page 142). Python has a module datetime for convenient calculations
with dates and times. To find the number of days between two dates,
we perform the following operations:

>>> import datetime
>>> date1 = datetime.date(2007, 8, 3) # Aug 3, 2007
>>> date2 = datetime.date(2008, 8, 4) # Aug 4, 2008
>>> diff = date2 - date1
>>> print diff.days
367

We can modify the previous program to compute with days instead of
years:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # annual interest rate
r = p/360.0 # daily interest rate
import datetime
date1 = datetime.date(2007, 8, 3)
date2 = datetime.date(2011, 8, 3)
diff = date2 - date1
N = diff.days
index_set = range(N+1)
x = zeros(len(index_set))

solution:
x[0] = x0

5.1 Mathematical Models Based on Difference Equations 239

for n in index_set[1:]:
x[n] = x[n-1] + (r/100.0)*x[n-1]

print x
plot(index_set, x, ’ro’, xlabel=’days’, ylabel=’amount’)

Running this program, called growth_days.py, prints out 122.5 as the
final amount.

It is quite easy to adjust the formula (5.4) to the case where the
interest is added every day instead of every year. However, the strength
of the model (5.6) and the associated program growth_days.py becomes
apparent when r varies in time – and this is what happens in real life. In
the model we can just write r(n) to explicitly indicate the dependence
upon time. The corresponding time-dependent annual interest rate is
what is normally specified, and p(n) is usually a piecewise constant
function (the interest rate is changed at some specific dates and remains
constant between these days). The construction of a corresponding
array p in a program, given the dates when p changes, can be a bit
tricky since we need to compute the number of days between the dates
of changes and index p properly. We do not dive into these details now,
but readers who want to compute p and who is ready for some extra
brain training and index puzzling can attack Exercise 5.11. For now we
assume that an array p holds the time-dependent annual interest rates
for each day in the total time period of interest. The growth_days.py

program then needs a slight modification, typically,

p = zeros(len(index_set))
set up p (might be challenging!)
r = p/360.0 # daily interest rate
...
for n in index_set[1:]:

x[n] = x[n-1] + (r[n-1]/100.0)*x[n-1]

For the very simple (and not-so-relevant) case where p grows linearly
(i.e., daily changes) from 4 to 6 percent over the period of interest,
we have made a complete program in the file growth_days_timedep.py.
You can compare a simulation with linearly varying p between 4 and
6 and a simulation using the average p value 5 throughout the whole
time interval.

A difference equation with r(n) is quite difficult to solve mathemati-
cally, but the n-dependence in r is easy to deal with in the computerized
solution approach.

5.1.2 The Factorial as a Difference Equation

The difference equation

xn = nxn−1, x0 = 1 (5.7)

can quickly be solved recursively:

240 5 Sequences and Difference Equations

xn = nxn−1

= n(n − 1)xn−2

= n(n − 1)(n − 2)xn−3

= n(n − 1)(n − 2) · · · 1 .

The result xn is nothing but the factorial of n, denoted as n! (cf. Ex-
ercise 2.33). Equation (5.7) then gives a standard recipe to compute
n!.

5.1.3 Fibonacci Numbers

Every textbook with some material on sequences usually presents a
difference equation for generating the famous Fibonacci numbers3:

xn = xn−1 + xn−2, x0 = 1, x1 = 1, n = 2, 3, . . . (5.8)

This equation has a relation between three elements in the sequence,
not only two as in the other examples we have seen. We say that this
is a difference equation of second order, while the previous examples
involving two n levels are said to be difference equations of first or-
der. The precise characterization of (5.8) is a homogeneous difference
equation of second order. Such classification is not important when
computing the solution in a program, but for mathematical solution
methods by pen and paper, the classification helps to determine which
mathematical technique to use to solve the problem.

A straightforward program for generating Fibonacci numbers takes
the form (fibonacci1.py):

import sys
from numpy import zeros
N = int(sys.argv[1])
x = zeros(N+1, int)
x[0] = 1
x[1] = 1
for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]
print n, x[n]

Since xn is an infinite sequence we could try to run the program for
very large N . This causes two problems: The storage requirements of
the x array may become too large for the computer, but long before
this happens, xn grows in size far beyond the largest integer that can
be represented by int elements in arrays (the problem appears already
for N = 50). A possibility is to use array elements of type int64, which
allows computation of twice as many numbers as with standard int

elements (see the program fibonacci1_int64.py). A better solution is
to use float elements in the x array, despite the fact that the numbers

3 Fibonacci arrived at this equation when modelling rabbit populations.

5.1 Mathematical Models Based on Difference Equations 241

xn are integers. With float96 elements we can compute up to N =
23600 (see the program fibinacci1_float.py).

The best solution goes as follows. We observe, as mentioned after the
growth_years.py program and also explained in Exercise 5.5, that we
need only three variables to generate the sequence. We can therefore
work with just three standard int variables in Python:

import sys
N = int(sys.argv[1])
xnm1 = 1
xnm2 = 1
n = 2
while n <= N:

xn = xnm1 + xnm2
print ’x_%d = %d’ % (n, xn)
xnm2 = xnm1
xnm1 = xn
n += 1

Here xnm1 denotes xn−1 and xnm2 denotes xn−2. To prepare for the
next pass in the loop, we must shuffle the xnm1 down to xnm2 and store
the new xn value in xnm1. The nice thing with int objects in Python
(contrary to int elements in NumPy arrays) is that they can hold
integers of arbitrary size4. We may try a run with N set to 250:

x_2 = 2
x_3 = 3
x_4 = 5
x_5 = 8
x_6 = 13
x_7 = 21
x_8 = 34
x_9 = 55
x_10 = 89
x_11 = 144
x_12 = 233
x_13 = 377
x_14 = 610
x_15 = 987
x_16 = 1597
...
x_249 = 7896325826131730509282738943634332893686268675876375
x_250 = 12776523572924732586037033894655031898659556447352249

In mathematics courses you learn how to derive a formula for the
n-th term in a Fibonacci sequence. This derivation is much more com-
plicated than writing a simple program to generate the sequence, but
there is a lot of interesting mathematics both in the derivation and the
resulting formula!

5.1.4 Growth of a Population

Let xn−1 be the number of individuals in a population at time tn−1. The
population can consists of humans, animals, cells, or whatever objects
where the number of births and deaths is proportional to the number of
individuals. Between time levels tn−1 and tn, bxn individuals are born,

4 Note that int variables in other computer languages normally has a size limitation
like int elements in NumPy arrays.

242 5 Sequences and Difference Equations

and dxn individuals die, where b and d are constants. The net growth
of the population is then (b− d)xn. Introducing r = (b− d)100 for the
net growth factor measured in percent, the new number of individuals
become

xn = xn−1 +
r

100
xn−1 . (5.9)

This is the same difference equation as (5.5). It models growth of pop-
ulations quite well as long as there are optimal growing conditions
for each individual. If not, one can adjust the model as explained in
Chapter 5.1.5.

To solve (5.9) we need to start out with a known size x0 of the
population. The b and d parameters depend on the time difference
tn − tn−1, i.e., the values of b and d are smaller if n counts years than
if n counts generations.

5.1.5 Logistic Growth

The model (5.9) for the growth of a population leads to exponential in-
crease in the number of individuals as implied by the solution 5.4. The
size of the population increases faster and faster as time n increases,
and xn → ∞ when n → ∞. In real life, however, there is an upper
limit M of the number of individuals that can exist in the environment
at the same time. Lack of space and food, competition between indi-
viduals, predators, and spreading of contagious diseases are examples
on factors that limit the growth. The number M is usually called the
carrying capacity of the environment, the maximum population which
is sustainable over time. With limited growth, the growth factor r must
depend on time:

xn = xn−1 +
r(n − 1)

100
xn−1 . (5.10)

In the beginning of the growth process, there is enough resources and
the growth is exponential, but as xn approaches M , the growth stops
and r must tend to zero. A simple function r(n) with these properties
is

r(n) = �
(
1 − xn

M

)
. (5.11)

For small n, xn � M and r(n) ≈ �, which is the growth rate with
unlimited resources. As n → M , r(n) → 0 as we want. The model
(5.11) is used for logistic growth. The corresponding logistic difference
equation becomes

xn = xn−1 +
�

100
xn−1

(
1 − xn−1

M

)
. (5.12)

Below is a program (growth_logistic.py) for simulating N = 200 time
intervals in a case where we start with x0 = 100 individuals, a carrying

5.1 Mathematical Models Based on Difference Equations 243

capacity of M = 500, and initial growth of � = 4 percent in each time
interval:

from scitools.std import *
x0 = 100 # initial amount of individuals
M = 500 # carrying capacity
rho = 4 # initial growth rate in percent
N = 200 # number of time intervals
index_set = range(N+1)
x = zeros(len(index_set))

solution:
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (rho/100.0)*x[n-1]*(1 - x[n-1]/float(M))
print x
plot(index_set, x, ’r’, xlabel=’time units’,

ylabel=’no of individuals’, hardcopy=’tmp.eps’)

Figure 5.1 shows how the population stabilizes, i.e., that xn ap-
proaches M as N becomes large (of the same magnitude as M).

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200

no
 o

f i
nd

iv
id

ua
ls

time units

Fig. 5.1 Logistic growth of a population (� = 4, M = 500, x0 = 100, N = 200).

If the equation stabilizes as n → ∞, it means that xn = xn−1 in this
limit. The equation then reduces to

xn = xn +
�

100
xn

(
1 − xn

M

)
.

By inserting xn = M we see that this solution fulfills the equation. The
same solution technique (i.e., setting xn = xn−1) can be used to check
if xn in a difference equation approaches a limit or not.

Mathematical models like (5.12) are often easier to work with if
we scale the variables, as briefly described in Chapter 4.7.2. Basically,
this means that we divide each variable by a characteristic size of that
variable such that the value of the new variable is typically 1. In the
present case we can scale xn by M and introduce a new variable,

244 5 Sequences and Difference Equations

yn =
xn

M
.

Similarly, x0 is replaced by y0 = x0/M . Inserting xn = Myn in (5.12)
and dividing by M gives

yn = yn−1 + qyn−1 (1 − yn−1) , (5.13)

where q = �/100 is introduced to save typing. Equation (5.13) is sim-
pler than (5.12) in that the solution lies approximately between5 y0 and
1, and there are only two dimensionless input paramters to care about:
q and y0. To solve (5.12) we need knowledge of three parameters: x0,
�, and M .

5.1.6 Payback of a Loan

A loan L is to be paid back over N months. The payback in a month
consists of the fraction L/N plus the interest increase of the loan.
Let the annual interest rate for the loan be p percent. The monthly
interest rate is then p

12 . The value of the loan after month n is xn, and
the change from xn−1 can be modeled as

xn = xn−1 +
p

12 · 100
xn−1 −

(
p

12 · 100
xn−1 +

L

N

)
, (5.14)

= xn−1 − L

N
, (5.15)

for n = 1, . . . , N . The initial condition is x0 = L. A major difference
between (5.15) and (5.6) is that all terms in the latter are proportional
to xn or xn−1, while (5.15) also contains a constant term (L/N). We say
that (5.6) is homogeneous and linear, while (5.15) is inhomogeneous
(because of the constant term) and linear. The mathematical solution
of inhomogeneous equations are more difficult to find than the solution
of homogeneous equations, but in a program there is no big difference:
We just add the extra term −L/N in the formula for the difference
equation.

The solution of (5.15) is not particularly exciting6. What is more
interesting, is what we pay each month, yn. We can keep track of both
yn and xn in a variant of the previous model:

yn =
p

12 · 100
xn−1 +

L

N
, (5.16)

xn = xn−1 +
p

12 · 100
xn−1 − yn . (5.17)

5 Values larger than 1 can occur, see Exercise 5.21.
6 Use (5.15) repeatedly to derive the solution xn = L − nL/N .

5.1 Mathematical Models Based on Difference Equations 245

Equations (5.16)–(5.17) is a system of difference equations. In a com-
puter code, we simply update yn first, and then we update xn, inside
a loop over n. Exercise 5.6 asks you to do this.

5.1.7 Taylor Series as a Difference Equation

Consider the following system of two difference equations

en = en−1 + an−1, (5.18)

an =
x

n
an−1, (5.19)

with initial conditions e0 = 0 and a0 = 1. We can start to nest the
solution:

e1 = 0 + a0 = 0 + 1 = 1,

a1 = x,

e2 = e1 + a1 = 1 + x,

a2 =
x

2
a1 =

x2

2
,

e3 = e2 + a1 = 1 + x +
x2

2
,

e4 = 1 + x +
x2

2
+

x3

3 · 2 ,

e5 = 1 + x +
x2

2
+

x3

3 · 2 +
x4

4 · 3 · 2
The observant reader who has heard about Taylor series (see Chap-
ter A.4) will recognize this as the Taylor series of ex:

ex =
∞∑

n=0

xn

n!
. (5.20)

How do we derive a system like (5.18)–(5.19) for computing the
Taylor polynomial approximation to ex? The starting point is the sum∑∞

n=0
xn

n! . This sum is coded by adding new terms to an accumulation
variable in a loop. The mathematical counterpart to this code is a
difference equation

en+1 = en +
xn

n!
, e0 = 0, n = 0, 1, 2, (5.21)

or equivalently (just replace n by n − 1):

en = en−1 +
xn−1

n − 1!
, e0 = 0, n = 1, 2, 3, (5.22)

246 5 Sequences and Difference Equations

Now comes the important observation: the term xn/n! contains many
of the computations we already performed for the previous term
xn−1/(n − 1)! becase

xn =
x · x · · ·x

n(n − 1)(n − 2) · · · 1 , xn−1 =
x · x · · ·x

(n − 1)(n − 2)(n − 3) · · · 1 .

Let an = xn/n!. We see that we can go from an−1 to an by multiplying
an−1 by x/n:

x

n
an−1 =

x

n

xn−1

(n − 1)!

x

n
=

xn

n!
= an, (5.23)

which is nothing but (5.19). We also realize that a0 = 1 is the initial
condition for this difference equation. In other words, (5.18) sums the
Taylor polynomial, and (5.19) updates each term in the sum.

The system (5.18)–(5.19) is very easy to implement in a program and
constitutes an efficient way to compute (5.20). The function exp_diffeq

does the work7:

def exp_diffeq(x, N):
n = 1
an_prev = 1.0 # a_0
en_prev = 0.0 # e_0
while n <= N:

en = en_prev + an_prev
an = x/n*an_prev
en_prev = en
an_prev = an
n += 1

return en

This function along with a direct evaluation of the Taylor series for ex

and a comparison with the exact result for various N values can be
found in the file exp_Taylor_series_diffeq.py.

5.1.8 Making a Living from a Fortune

Suppose you want to live on a fortune F . You have invested the money
in a safe way that gives an annual interest of p percent. Every year you
plan to consume an amount cn, where n counts years. The development
of your fortune xn from one year to the other can then be modeled by

xn = xn−1 +
p

100
xn−1 − cn−1, x0 = F . (5.24)

A simple example is to keep c constant, say q percent of the interest
the first year:

xn = xn−1 +
p

100
xn−1 − pq

104
F, x0 = F . (5.25)

7 Observe that we do not store the sequences in arrays, but make use of the fact that
only the most recent sequence element is needed to calculate a new element.

5.1 Mathematical Models Based on Difference Equations 247

A more realistic model is to assume some inflation of I percent per
year. You will then like to increase cn by the inflation. We can extend
the model in two ways. The simplest and clearest way, in the author’s
opinion, is to track the evolution of two sequences xn and cn:

xn = xn−1 +
p

100
xn−1 − cn−1, x0 = F, c0 =

pq

104
F, (5.26)

(5.27)

cn = cn−1 +
I

100
cn−1 . (5.28)

This is a system of two difference equations with two unknowns. The
solution method is, nevertheless, not much more complicated than the
method for a difference equation in one unknown, since we can first
compute xn from (5.27) and then update the cn value from (5.28). You
are encouraged to write the program (see Exercise 5.7).

Another way of making a difference equation for the case with in-
flation, is to use an explicit formula for cn−1, i.e., solve (5.27) and end
up with a formula like (5.4). Then we can insert the explicit formula

cn−1 =

(
1 +

I

100

)n−1 pq

104
F

in (5.24), resulting in only one difference equation to solve.

5.1.9 Newton’s Method

The difference equation

xn = xn−1 − f(xn−1)

f ′(xn−1)
, x0 given, (5.29)

generates a sequence xn where, if the sequence converges (i.e., if
xn − xn−1 → 0), xn approaches a root of f(x). That is, xn → x,
where x solves the equation f(x) = 0. Equation (5.29) is the famous
Newton’s method for solving nonlinear algebraic equations f(x) = 0.
When f(x) is not linear, i.e., f(x) is not on the form ax + b with
constant a and b, (5.29) becomes a nonlinear difference equation. This
complicates analytical treatment of difference equations, but poses no
extra difficulties for numerical solution.

We can quickly sketch the derivation of (5.29). Suppose we want to
solve the equation

f(x) = 0

and that we already have an approximate solution xn−1. If f(x) were
linear, f(x) = ax+b, it would be very easy to solve f(x) = 0: x = −b/a.
The idea is therefore to approximate f(x) in the vicinity of x = xn−1

by a linear function, i.e., a straight line f(x) ≈ f̃(x) = ax + b. This

248 5 Sequences and Difference Equations

line should have the same slope as f(x), i.e., a = f ′(xn−1), and both
the line and f should have the same value at x = xn−1. From this
condition one can find b = f(xn−1) − xn−1f

′(xn−1). The approximate
function (line) is then

f̃(x)f(xn−1) + f ′(xn−1)(x − xn−1) . (5.30)

This expression is just the two first terms of a Taylor series approx-
imation to f(x) at x = xn−1. It is now easy to solve f̃(x) = 0 with
respect to x, and we get

x = xn−1 − f(xn−1)

f ′(xn−1)
. (5.31)

Since f̃ is only an approximation to f , x in (5.31) is only an approx-
imation to a root of f(x) = 0. Hopefully, the approximation is better
than xn−1 so we set xn = x as the next term in a sequence that we hope
converges to the correct root. However, convergence depends highly on
the shape of f(x), and there is no guarantee that the method will work.

The previous programs for solving difference equations have typically
calculated a sequence xn up to n = N , where N is given. When using
(5.29) to find roots of nonlinear equations, we do not know a suitable
N in advance that leads to an xn where f(xn) is sufficiently close to
zero. We therefore have to keep on increasing n until f(xn) < ε for
some small ε. Of course, the sequence diverges, we will keep on forever,
so there must be some maximum allowable limit on n, which we may
take as N .

It can be convenient to have the solution of (5.29) as a function for
easy reuse. Here is a first rough implementation:

def Newton(f, x, dfdx, epsilon=1.0E-7, N=100):
n = 0
while abs(f(x)) > epsilon and n <= N:

x = x - f(x)/dfdx(x)
n += 1

return x, n, f(x)

This function might well work, but f(x)/dfdx(x) can imply integer
division, so we should ensure that the numerator or denumerator is of
float type. There are also two function evaluations of f(x) in every
pass in the loop (one in the loop body and one in the while condition).
We can get away with only one evaluation if we store the f(x) in a local
variable. In the small examples with f(x) in the present course, twice
as many function evaluations of f as necessary does not matter, but the
same Newton function can in fact be used for much more complicated
functions, and in those cases twice as much work can be noticable.
As a programmer, you should therefore learn to optimize the code by
removing unnecessary computations.

5.1 Mathematical Models Based on Difference Equations 249

Another, more serious, problem is the possibility dividing by zero.
Almost as serious, is dividing by a very small number that creates a
large value, which might cause Newton’s method to diverge. Therefore,
we should test for small values of f ′(x) and write a warning or raise
an exception.

Another improvement is to add a boolean argument store to indicate
whether we want the (x, f(x)) values during the iterations to be stored
in a list or not. These intermediate values can be handy if we want to
print out or plot the convergence behavior of Newton’s method.

An improved Newton function can now be coded as

def Newton(f, x, dfdx, epsilon=1.0E-7, N=100, store=False):
f_value = f(x)
n = 0
if store: info = [(x, f_value)]
while abs(f_value) > epsilon and n <= N:

dfdx_value = float(dfdx(x))
if abs(dfdx_value) < 1E-14:

raise ValueError("Newton: f’(%g)=%g" % (x, dfdx_value))

x = x - f_value/dfdx_value

n += 1
f_value = f(x)
if store: info.append((x, f_value))

if store:
return x, info

else:
return x, n, f_value

Note that to use the Newton function, we need to calculate the deriva-
tive f ′(x) and implement it as a Python function and provide it as the
dfdx argument. Also note that what we return depends on whether we
store (x, f(x)) information during the iterations or not.

It is quite common to test if dfdx(x) is zero in an implementation of
Newton’s method, but this is not strictly necessary in Python since an
exception ZeroDivisionError is always raised when dividing by zero.

We can apply the Newton function to solve the equation8

e−0.1x2

sin(π
2 x) = 0:

from math import sin, cos, exp, pi
import sys
from Newton import Newton

def g(x):
return exp(-0.1*x**2)*sin(pi/2*x)

def dg(x):
return -2*0.1*x*exp(-0.1*x**2)*sin(pi/2*x) + \

pi/2*exp(-0.1*x**2)*cos(pi/2*x)

x0 = float(sys.argv[1])
x, info = Newton(g, x0, dg, store=True)

8 Fortunately you realize that the exponential function can never be zero, so the
solutions of the equation must be the zeros of the sine function, i.e., π

2
x = iπ for all

integers i = . . . ,−2, 1, 0, 1, 2, This gives x = 2i as the solutions.

250 5 Sequences and Difference Equations

print ’root:’, x
for i in range(len(info)):

print ’Iteration %3d: f(%g)=%g’ % \
(i, info[i][0], info[i][1])

The Newton function and this program can be found in the file
Newton.py. Running this program with an initial x value of 1.7 results
in the output

root: 1.999999999768449
Iteration 0: f(1.7)=0.340044
Iteration 1: f(1.99215)=0.00828786
Iteration 2: f(1.99998)=2.53347e-05
Iteration 3: f(2)=2.43808e-10

The convergence is fast towards the solution x = 2. The error is of the
order 10−10 even though we stop the iterations when f(x) ≤ 10−7.

Trying a start value of 3 we would expect the method to find either
nearby solution x = 2 or x = 4, but now we get

root: 42.49723316011362
Iteration 0: f(3)=-0.40657
Iteration 1: f(4.66667)=0.0981146
Iteration 2: f(42.4972)=-2.59037e-79

We have definitely solved f(x) = 0 in the sense that |f(x)| ≤ ε, where
ε is a small value (here ε ∼ 10−79). However, the solution x ≈ 42.5 is
not close to the solution (x = 42 and x = 44 are the solutions closest
to the computed x). Can you use your knowledge of how the Newton
method works and figure out why we get such strange behavior?

The demo program Newton_movie.py can be used to investigate the
strange behavior. This program takes five command-line arguments:
a formula for f(x), a formula for f ′(x) (or the word numeric, which
indicates a numerical approximation of f ′(x)), a guess at the root, and
the minimum and maximum x values in the plots. We try the following
case with the program:

Terminal

Newton_movie.py ’exp(-0.1*x**2)*sin(pi/2*x)’ numeric 3 -3 43

As seen, we start with x = 3 as the initial guess. In the first step of
the method, we compute a new value of the root, now x = 4.66667. As
we see in Figure 5.2, this root is near an extreme point of f(x) so that
the derivative is small, and the resulting straight line approximation
to f(x) at this root becomes quite flat. The result is a new guess at the
root: x42.5. This root is far away from the last root, but the second
problem is that f(x) is quickly damped as we move to increasing x
values, and at x = 42.5 f is small enough to fulfill the convergence
criterion. Any guess at the root out in this region would satisfy that
criterion.

You can run the Newton_movie.py program with other values of the
initial root and observe that the method usually finds the nearest roots.

5.1 Mathematical Models Based on Difference Equations 251

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 5 10 15 20 25 30 35 40

approximate root = 4.66667; f(4.66667) = 0.0981146

f(x)
approx. root
approx. line

Fig. 5.2 Failure of Newton’s method to solve e−0.1x2

sin(π
2
x) = 0. The plot corresponds

to the second root found (starting with x = 3).

5.1.10 The Inverse of a Function

Given a function f(x), the inverse function of f , say we call it g(x),
has the property that if we apply g to the value f(x), we get x back:

g(f(x)) = x .

Similarly, if we apply f to the value g(x), we get x:

f(g(x)) = x . (5.32)

By hand, you substitute g(x) by (say) y in (5.32) and solve (5.32) with
respect to y to find some x expression for the inverse function. For
example, given f(x) = x2 − 1, we must solve y2 − 1 = x with respect
to y. To ensure a unique solution for y, the x values have to be limited
to an interval where f(x) is monotone, say x ∈ [0, 1] in the present
example. Solving for y gives y =

√
1 + x, therefore and g(x) =

√
1 + x.

It is easy to check that f(g(x)) = (
√

1 + x)2 − 1 = x.
Numerically, we can use the“definition”(5.32) of the inverse function

g at one point at a time. Suppose we have a sequence of points x0 <
x1 < · · · < xN along the x axis such that f is monotone in [x0, xN]:
f(x0) > f(x1) > · · · > f(xN) or f(x0) < f(x1) < · · · < f(xN). For
each point xi, we have

f(g(xi)) = xi .

The value g(xi) is unknown, so let us call it γ. The equation

f(γ) = xi (5.33)

can be solved be respect γ. However, (5.33) is in general nonlinear if f
is a nonlinear function of x. We must then use, e.g., Newton’s method

252 5 Sequences and Difference Equations

to solve (5.33). Newton’s method works for an equation phrased as
“f(x) = 0”, which in our case is f(γ) − xi = 0, i.e., we seek the roots
of the function F (γ) ≡ f(γ) − xi. Also the derivative F ′(γ) is needed
in Newton’s method. For simplicity we may use an approximate finite
difference:

dF

dγ
≈ F (γ + h) − F (γ − h)

2h
.

As start value γ0, we can use the previously computed g value: gi−1.
We introduce the short notation γ = Newton(F, γ0) to indicate the
solution of F (γ) = 0 with initial guess γ0.

The computation of all the g0, . . . , gN values can now be expressed
by

gi = Newton(F, gi−1), i = 1, . . . , N, (5.34)

and for the first point we may use x0 as start value (for instance):

g0 = Newton(F, x0) . (5.35)

Equations (5.34)–(5.35) constitute a difference equation for gi, since
given gi−1, we can compute the next element of the sequence by (5.34).
Because (5.34) is a nonlinear equation in the new value gi, and (5.34)
is therefore an example of a nonlinear difference equation.

The following program computes the inverse function g(x) of f(x) at
some discrete points x0, . . . , xN . Our sample function is f(x) = x2−1:

from Newton import Newton
from scitools.std import *

def f(x):
return x**2 - 1

def F(gamma):
return f(gamma) - xi

def dFdx(gamma):
return (F(gamma+h) - F(gamma-h))/(2*h)

h = 1E-6
x = linspace(0.01, 3, 21)
g = zeros(len(x))

for i in range(len(x)):
xi = x[i]

compute start value (use last g[i-1] if possible):
if i == 0:

gamma0 = x[0]
else:

gamma0 = g[i-1]

gamma, n, F_value = Newton(F, gamma0, dFdx)
g[i] = gamma

plot(x, f(x), ’r-’, x, g, ’b-’,
title=’f1’, legend=(’original’, ’inverse’))

5.2 Programming with Sound 253

Note that with f(x) = x2 − 1, f ′(0) = 0, so Newton’s method di-
vides by zero and breaks down unless with let x0 > 0, so here we
set x0 = 0.01. The f function can easily be edited to let the program
compute the inverse of another function. The F function can remain
the same since it applies a general finite difference to approximate the
derivative of the f(x) function. The complete program is found in the
file inverse_function.py. A better implementation is suggested in Ex-
ercise 7.20.

5.2 Programming with Sound

Sound on a computer is nothing but a sequence of numbers. As an
example, consider the famous A tone at 440 Hz. Physically, this is
an oscillation of a tunefork, loudspeaker, string or another mechani-
cal medium that makes the surrounding air also oscillate and trans-
port the sound as a compression wave. This wave may hit our ears
and through complicated physiological processes be transformed to an
electrical signal that the brain can recognize as sound. Mathematically,
the oscillations are described by a sine function of time:

s(t) = A sin (2πft) , (5.36)

where A is the amplitude or strength of the sound and f is the fre-
quencey (440 Hz for the A in our example). In a computer, s(t) is
represented at discrete points of time. CD quality means 44100 sam-
ples per second. Other sample rates are also possible, so we introduce
r as the sample rate. An f Hz tone lasting for m seconds with sample
rate r can then be computed as the sequence

sn = A sin
(
2πf

n

r

)
, n = 0, 1, . . . , m · r . (5.37)

With Numerical Python this computation is straightforward and very
efficient. Introducing some more explanatory variable names than r,
A, and m, we can write a function for generating a note:

import numpy
def note(frequency, length, amplitude=1, sample_rate=44100):

time_points = numpy.linspace(0, length, length*sample_rate)
data = numpy.sin(2*numpy.pi*frequency*time_points)
data = amplitude*data
return data

5.2.1 Writing Sound to File

The note function above generates an array of float data representing
a note. The sound card in the computer cannot play these data, because

254 5 Sequences and Difference Equations

the card assumes that the information about the oscillations appears
as a sequence of two-byte integers. With an array’s astype method we
can easily convert our data to two-byte integers instead of floats:

data = data.astype(numpy.int16)

That is, the name of the two-byte integer data type in numpy is int16

(two bytes are 16 bits). The maximum value of a two-byte integer
is 215 − 1, so this is also the maximum amplitude. Assuming that
amplitude in the note function is a relative measure of intensity, such
that the value lies between 0 and 1, we must adjust this amplitude to
the scale of two-byte integers:

max_amplitude = 2**15 - 1
data = max_amplitude*data

The data array of int16 numbers can be written to a file and played
as an ordinary file in CD quality. Such a file is known as a wave file or
simply a WAV file since the extension is .wav. Python has a module
wave for creating such files. Given an array of sound, data, we have in
SciTools a module sound with a function write for writing the data to
a WAV file (using functionality from the wave module):

import scitools.sound
scitools.sound.write(data, ’Atone.wav’)

You can now use your favorite music player to play the Atone.wav file,
or you can play it from within a Python program using

scitools.sound.play(’Atone.wav’)

The write function can take more arguments and write, e.g., a stereo
file with two channels, but we do not dive into these details here.

5.2.2 Reading Sound from File

Given a sound signal in a WAV file, we can easily read this signal
into an array and mathematically manipulate the data in the array
to change the flavor of the sound, e.g., add echo, treble, or bass. The
recipe for reading a WAV file with name filename is

data = scitools.sound.read(filename)

The data array has elements of type int16. Often we want to compute
with this array, and then we need elements of float type, obtained by
the conversion

5.2 Programming with Sound 255

data = data.astype(float)

The write function automatically transforms the element type back to
int16 if we have not done this explicitly.

One operation that we can easily do is adding an echo. Mathemat-
ically this means that we add a damped delayed sound, where the
original sound has weight β and the delayed part has weight 1 − β,
such that the overall amplitude is not altered. Let d be the delay in
seconds. With a sampling rate r the number of indices in the delay
becomes dr, which we denote by b. Given an original sound sequence
sn, the sound with echo is the sequence

en = βsn + (1 − β)sn−b . (5.38)

We cannot start n at 0 since e0 = s0−b = s−b which is a value outside
the sound data. Therefore we define en = sn for n = 0, 1, . . . , b, and add
the echo thereafter. A simple loop can do this (again we use descriptive
variable names instead of the mathematical symbols introduced):

def add_echo(data, beta=0.8, delay=0.002, sample_rate=44100):
newdata = data.copy()
shift = int(delay*sample_rate) # b (math symbol)
for i in range(shift, len(data)):

newdata[i] = beta*data[i] + (1-beta)*data[i-shift]
return newdata

The problem with this function is that it runs slowly, especially when
we have sound clips lasting several seconds (recall that for CD quality
we need 44100 numbers per second). It is therefore necessary to vec-
torize the implementation of the difference equation for adding echo.
The update is then based on adding slices:

newdata[shift:] = beta*data[shift:] + \
(1-beta)*data[:len(data)-shift]

5.2.3 Playing Many Notes

How do we generate a melody mathematically in a computer program?
With the note function we can generate a note with a certain ampli-
tude, frequence, and duration. The note is represented as an array.
Putting sound arrays for different notes after each other will make up
a melody. If we have several sound arrays data1, data2, data3, . . ., we
can make a new array consisting of the elements in the first array fol-
lowed by the elements of the next array followed by the elements in
the next array and so forth:

256 5 Sequences and Difference Equations

data = numpy.concatenate((data1, data2, data3, ...))

Here is an example of creating a little melody (start of “Nothing
Else Matters” by Metallica) using constant (max) amplitude of all the
notes:

E1 = note(164.81, .5)
G = note(392, .5)
B = note(493.88, .5)
E2 = note(659.26, .5)
intro = numpy.concatenate((E1, G, B, E2, B, G))
high1_long = note(987.77, 1)
high1_short = note(987.77, .5)
high2 = note(1046.50, .5)
high3 = note(880, .5)
high4_long = note(659.26, 1)
high4_medium = note(659.26, .5)
high4_short = note(659.26, .25)
high5 = note(739.99, .25)
pause_long = note(0, .5)
pause_short = note(0, .25)
song = numpy.concatenate(
(intro, intro, high1_long, pause_long, high1_long,
pause_long, pause_long,
high1_short, high2, high1_short, high3, high1_short,
high3, high4_short, pause_short, high4_long, pause_short,
high4_medium, high5, high4_short))

scitools.sound.play(song)
scitools.sound.write(song, ’tmp.wav’)

We could send song to the add_echo function to get some echo, and
we could also vary the amplitudes to get more dynamics into the
song. You can find the generation of notes above as the function
Nothing_Else_Matters(echo=False) in the scitools.sound module.

5.3 Summary

5.3.1 Chapter Topics

Sequences. In general, a finite sequence can be written as

(xn)N
n=0, xn = f(n),

where f(n) is some expression involving n and possibly other parame-
ters. The coding of such a sequence takes the form

x = zeros(N+1)
for n in range(N+1):

x[n] = f(n)

Here, we store the whole sequence in an array, which is convenient if
we want to plot the evolution of the sequence (i.e., xn versus n). Occa-
sionally, this can require too much memory. Especially when checking
for convergence of xn toward some limit as N → ∞, N may be large

5.3 Summary 257

if the sequence converges slowly. The array can be skipped if we print
the sequence elements as they are computed:

for n in range(N+1):
print f(n)

Difference Equations. Equations involving more than one element of a
sequence are called difference equations. We have typically looked at
difference equations relating xn to the previous element xn−1:

xn = f(xn−1),

where f is some specified function. Any difference equation must have
an initial condition prescribing x0, say x0 = X. The solution of a
difference equation is a sequence. Very often, n corresponds to a time
parameter in applications.

We have also looked at systems of difference equations of the form

xn = f(xn−1, yn−1), x0 = X

yn = g(yn−1, xn−1, xn), y0 = Y

where f and g denote formulas involving already computed quantities.
Note that xn does not depend on yn, which means that we can first
compute xn and then yn:

index_set = range(N+1)
x = zeros(len(index_set))
y = zeros(len(index_set))
x[0] = X
y[0] = Y
for n in index_set[1:]:

x[n] = f(x[n-1], y[n-1])
y[n] = g(y[n-1], x[n], x[n-1])

Sound. Sound on a computer is a sequence of 2-byte integers. These can
be stored in an array. Creating the sound of a tone consist of sampling
a sine function and storing the values in an array (and converting to
2-byte integers). If we want to manipulate a given sound, say add some
echo, we convert the array elements to ordinary floating-point numbers
and peform mathematical operations on the array elements.

5.3.2 Summarizing Example: Music of a Sequence

Problem. The purpose of this summarizing example is to listen to
the sound generated by two mathematical sequences. The first one is
given by an explicit formula, constructed to oscillate around 0 with
decreasing amplitude:

258 5 Sequences and Difference Equations

xn = e−4n/N sin(8πn/N) . (5.39)

The other sequence is generated by the difference equation (5.13) for
logistic growth, repeated here for convenience:

xn = xn−1 + qxn−1 (1 − xn−1) , x = x0 . (5.40)

We let x0 = 0.01 and q = 2. This leads to fast initial growth toward the
limit 1, and then oscillations around this limit (this problem is studied
in Exercise 5.21).

The absolute value of the sequence elements xn are of size between
0 and 1, approximately. We want to transform these sequence elements
to tones, using the techniques of Chapter 5.2. First we convert xn to a
frequency the human ear can hear. The transformation

yn = 440 + 200xn (5.41)

will make a standard A reference tone out of xn = 0, and for the
maximum value of xn around 1 we get a tone of 640 Hz. Elements of the
sequence generated by (5.39) lie between -1 and 1, so the corresponding
frequences lie between 240 Hz and 640 Hz. The task now is to make a
program that can generate and play the sounds.

Solution. Tones can be generated by the note function from the
scitools.sound module. We collect all tones corresponding to all the
yn frequencies in a list tones. Letting N denote the number of sequence
elements, the relevant code segment reads

from scitools.sound import *
freqs = 440 + x*200
tones = []
duration = 30.0/N # 30 sec sound in total
for n in range(N+1):

tones.append(max_amplitude*note(freqs[n], duration, 1))
data = concatenate(tones)
write(data, filename)
data = read(filename)
play(filename)

It is illustrating to plot the sequences too,

plot(range(N+1), freqs, ’ro’)

To generate the sequences (5.39) and (5.40), we make two func-
tions, oscillations and logistic, respectively. These functions take
the number of sequence elements (N) as input and return the sequence
stored in an array.

In another function make_sound we compute the sequence, transform
the elements to frequencies, generate tones, write the tones to file, and
play the sound file.

5.3 Summary 259

As always, we collect the functions in a module and include a test
block where we can read the choice of sequence and the sequence length
from the command line. The complete module file look as follows:

from scitools.sound import *
from scitools.std import *

def oscillations(N):
x = zeros(N+1)
for n in range(N+1):

x[n] = exp(-4*n/float(N))*sin(8*pi*n/float(N))
return x

def logistic(N):
x = zeros(N+1)
x[0] = 0.01
q = 2
for n in range(1, N+1):

x[n] = x[n-1] + q*x[n-1]*(1 - x[n-1])
return x

def make_sound(N, seqtype):
filename = ’tmp.wav’
x = eval(seqtype)(N)
convert x values to frequences around 440:
freqs = 440 + x*200
plot(range(N+1), freqs, ’ro’)
generate tones:
tones = []
duration = 30.0/N # 30 sec sound in total
for n in range(N+1):

tones.append(max_amplitude*note(freqs[n], duration, 1))
data = concatenate(tones)
write(data, filename)
data = read(filename)
play(filename)

if __name__ == ’__main__’:
try:

seqtype = sys.argv[1]
N = int(sys.argv[2])

except IndexError:
print ’Usage: %s oscillations|logistic N’ % sys.argv[0]
sys.exit(1)

make_sound(N, seqtype)

This code should be quite easy to read at the present stage in the book.
However, there is one statement that deserves a comment:

x = eval(seqtype)(N)

The seqtype argument reflects the type of sequence and is a string that
the user provides on the command line. The values of the string equal
the function names oscillations and logistic. With eval(seqtype)

we turn the string into a function name. For example, if seqtype is
’logistic’, performing an eval(seqtype)(N) is the same as if we had
written logistic(N). This technique allows the user of the program to
choose a function call inside the code. Without eval we would need to
explicitly test on values:

260 5 Sequences and Difference Equations

if seqtype == ’logistic’:
x = logistic(N)

elif seqtype == ’oscillations’:
x = oscillations(N)

This is not much extra code to write in the present example, but if we
have a large number of functions generating sequences, we can save a
lot of boring if-else code by using the eval construction.

The next step, as a reader who have understood the problem and
the implementation above, is to run the program for two cases: the
oscillations sequence with N = 40 and the logistic sequence with
N = 100. By altering the q parameter to lower values, you get other
sounds, typically quite boring sounds for non-oscillating logistic growth
(q < 1). You can also experiment with other transformations of the
form (5.41), e.g., increasing the frequency variation from 200 to 400.

5.4 Exercises

Exercise 5.1. Determine the limit of a sequence.
Given the sequence

an =
7 + 1/n

3 − 1/n2
,

make a program that computes and prints out an for n = 1, 2, . . . , N .
Read N from the command line. Does an approach a finite limit when
n → ∞? Name of program file: sequence_limit1.py. �
Exercise 5.2. Determine the limit of a sequence.

Solve Exercise 5.1 when the sequence of interest is given by

Dn =
sin(2−n)

2−n
.

Name of program file: sequence_limit2.py. �
Exercise 5.3. Experience convergence problems.

Given the sequence

Dn =
f(x + h) − f(x)

h
, h = 2−n (5.42)

make a function D(f, x, N) that takes a function f(x), a value x, and
the number N of terms in the sequence as arguments, and returns an
array with the Dn values for n = 0, 1, . . . , N − 1. Make a call to the D

function with f(x) = sinx, x = 0, and N = 80. Plot the evolution of
the computed Dn values, using small circles for the data points.

Make another call to D where x = π and plot this sequence in a
separate figure. What would be your expected limit? Why do the com-

5.4 Exercises 261

putations go wrong for large N? (Hint: Print out the numerator and
denominator in Dn.) Name of program file: sequence_limits3.py. �
Exercise 5.4. Convergence of sequences with π as limit.

The following sequences all converge to π:

(an)∞n=1, an = 4
n∑

k=1

(−1)k+1

2k − 1
,

(bn)∞n=1, bn =

(
6

n∑
k=1

k−2

)1/2

,

(cn)∞n=1, cn =

(
90

n∑
k=1

k−4

)1/4

,

(dn)∞n=1, dn =
6√
3

n∑
k=0

(−1)k

3k(2k + 1)
,

(en)∞n=1, en = 16
n∑

k=0

(−1)k

52k+1(2k + 1)
− 4

n∑
k=0

(−1)k

2392k+1(2k + 1)
.

Make a function for each sequence that returns an array with the el-
ements in the sequence. Plot all the sequences, and find the one that
converges fastest toward the limit π. Name of program file: pi.py. �
Exercise 5.5. Reduce memory usage of difference equations.

Consider the program growth_years.py from Chapter 5.1.1. Since
xn depends on xn−1 only, we do not need to store all the N + 1 xn

values. We actually only need to store xn and its previous value xn−1.
Modify the program to use two variables for xn and not an array. Also
avoid the index_set list and use an integer counter for n and a while

instead. (Of course, without the arrays it is not possible to plot the
development of xn, so you have to remove the plot call.) Name of
program file: growth_years_efficient.py. �
Exercise 5.6. Development of a loan over N months.

Solve (5.16)–(5.17) for n = 1, 2, . . . , N in a Python function. Name
of program file: loan.py. �
Exercise 5.7. Solve a system of difference equations.

Solve (5.27)–(5.28) by generating the xn and cn sequences in
a Python function. Let the function return the computed se-
quences as arrays. Plot the xn sequence. Name of program file:
fortune_and_inflation1.py. �
Exercise 5.8. Extend the model (5.27)–(5.28).

In the model (5.27)–(5.28) the new fortune is the old one, plus the
interest, minus the consumption. During year n, xn is normally also

262 5 Sequences and Difference Equations

reduced with t percent tax on the earnings xn−1 − xn−2 in year n− 1.
Extend the model with an appropriate tax term, modify the program
from Exercise 5.7, and plot xn with tax (t = 28) and without tax
(t = 0). Name of program file: fortune_and_inflation2.py. �
Exercise 5.9. Experiment with the program from Exer. 5.8.

Suppose you expect to live for N years and can accept that the for-
tune xn vanishes after N years. Experiment with the program from
Exercise 5.8 for how large the initial c0 can be in this case. Choose
some appropriate values for p, q, I, and t. Name of program file:
fortune_and_inflation3.py. �
Exercise 5.10. Change index in a difference equation.

A mathematically equivalent equation to (5.5) is

xi+1 = xi +
p

100
xi, (5.43)

since the name of the index can be chosen arbitrarily. Suppose someone
has made the following program for solving (5.43) by a slight editing
of the program growth1.py:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)
x = zeros(len(index_set))

solution:
x[0] = x0
for i in index_set[1:]:

x[i+1] = x[i] + (p/100.0)*x[i]
print x
plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

This program does not work. Make a correct version, but keep the
difference equations in its present form with the indices i+1 and i.
Name of program file: growth1_index_ip1.py. �
Exercise 5.11. Construct time points from dates.

A certain quantity p (which may be an interest rate) is piecewise
constant and undergoes changes at some specific dates, e.g.,

p changes to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4.5 on Jan 4, 2009
4.75 on March 21, 2009
6.0 on April 1, 2009
5.0 on June 30, 2009
4.5 on Nov 1, 2009
2.0 on April 1, 2010

(5.44)

Given a start date d1 and an end date d2, fill an array p with the right p
values, where the array index counts days. Use the datetime module to

5.4 Exercises 263

compute the number of days between dates and store the information
about changes in p in a list of 2-tuples, where each 2-tuple holds the
date of change and the corresponding value of p. For the changes in p
given above, the list becomes

change_in_p = [(datetime.date(2009, 1, 4), 4.5),
(datetime.date(2009, 3, 21), 4.75),
(datetime.date(2009, 4, 1), 6.0),
(datetime.date(2009, 6, 30), 5.0),
(datetime.date(2009, 11, 1), 4.5),
(datetime.date(2010, 4, 1), 2.0)]

Name of program file: dates2days.py. �
Exercise 5.12. Solve nonlinear equations by Newton’s method.

Import the Newton function from the Newton.py file from Chap-
ter 5.1.9 to solve the following nonlinear algebraic equations:

sinx = 0, (5.45)

x = sinx, (5.46)

x5 = sinx, (5.47)

x4 sinx = 0, (5.48)

x4 = 0, (5.49)

x10 = 0, (5.50)

tanhx = x10 . (5.51)

Read the starting point x0 and the equation to be solved from the
command line (use StringFunction from Chapter 3.1.4 to convert the
formula for f(x) to a Python function). Print out the evolution of the
roots (based on the info list). You will need to carefully plot the f(x)
function to understand how Newton’s method will behave in each case
for different starting values x0. Find an x0 value for each equation so
that Newton’s method will converge toward the root x = 0. Name of
program file: Newton_examples.py. �
Exercise 5.13. Visualize the convergence of Newton’s method.

Let x0, x1, . . . , xN be the sequence of roots generated by New-
ton’s method applied to a nonlinear algebraic equation f(x) = 0
(cf. Chapter 5.1.9). In this exercise, the purpose is to plot
the sequences (xn)N

n=0 and (f(xn))N
n=0. Make a general function

Newton_plot(f, x, dfdx, epsilon=1E-7) for this purpose. The first
two arguments, f and dfdx, are Python functions representing the
f(x) function in the equation and its derivative f ′(x), respectively.
Newton’s method is run until |f(xN)| ≤ ε, and the ε value is the third
argument (epsilon). The Newton_plot function should make one plot
of (xn)N

n=0 and (f(xn))N
n=0 on the screen and one save to a PNG file.

(Hint: You can save quite some coding by calling the improved Newton

264 5 Sequences and Difference Equations

function from Chapter 5.1.9, which is available in the Newton module
in src/diffeq/Newton.py.)

Demonstrate the function on the equation x6 sinπx = 0, with
ε = 10−13. Try different starting values for Newton’s method: x0 =
−2.6,−1.2, 1.5, 1.7, 0.6. Compare the results with the exact solutions
x = . . . ,−2 − 1, 0, 1, 2, Name of program file: Newton2.py. �
Exercise 5.14. Implement the Secant method.

Newton’s method (5.29) for solving f(x) = 0 requires the derivative
of the function f(x). Sometimes this is difficult or inconvenient. The
derivative can be approximated using the last two approximations to
the root, xn−2 and xn−1:

f ′(xn−1) ≈ f(xn−1) − f(xn−2)

xn−1 − xn−2
.

Using this approximation in (5.29) leads to the Secant method:

xn = xn−1 − f(xn−1)(xn−1 − xn−2)

f(xn−1) − f(xn−2)
, x0, x1 given . (5.52)

Here n = 2, 3, Make a program that applies the Secant method to
solve x5 = sinx. Name of program file: Secant.py. �
Exercise 5.15. Test different methods for root finding.

Make a program for solving f(x) = 0 by Newton’s method (Chap-
ter 5.1.9), the Bisection method (Chapter 3.6.2), and the Secant
method (Exercise 5.14). For each method, the sequence of root approx-
imations should be written out (nicely formatted) on the screen. Read
f(x), a, b, x0, and x1 from the command line. Newton’s method starts
with x0, the Bisection method starts with the interval [a, b], whereas
the Secant method starts with x0 and x1.

Run the program for each of the equations listed in Exercise 5.12.
You should first plot the f(x) functions as suggested in that exercise so
you know how to choose x0, x1, a, and b in each case. Name of program
file: root_finder_examples.py. �
Exercise 5.16. Difference equations for computing sinx.

The purpose of this exercise is to derive and implement difference
equations for computing a Taylor polynomial approximation to sinx,
using the same ideas as in (5.18)–(5.19) for a Taylor polonomial ap-
proximation to ex in Chapter 5.1.7.

The Taylor series for sinx is presented in Exercise 4.16, Equa-
tion (4.19) on page 228. To compute S(x;n) efficiently, we try to com-
pute a new term from the last computed term. Let S(x;n) =

∑n
j=0 aj ,

where the expression for a term aj follows from the formula (4.19). De-
rive the following relation between two consecutive terms in the series,

5.4 Exercises 265

aj = − x2

(2j + 1)2j
aj−1 . (5.53)

Introduce sj = S(x; j − 1) and define s0 = 0. We use sj to accumulate
terms in the sum. For the first term we have a0 = x. Formulate a
system of two difference equations for sj and aj in the spirit of (5.18)–
(5.19). Implement this system in a function S(x, n), which returns
sn+1 and an+1. The latter is the first neglected term in the sum (since
sn+1 =

∑n
j=0 aj) and may act as a rough measure of the size of the error

in the approximation. Suggest how to test that the S(x, n) function
works correctly. Name of program file: sin_Taylor_series_diffeq.py.
�
Exercise 5.17. Difference equations for computing cos x.

Carry out the steps in Exercise 5.16, but do it for the Taylor se-
ries of cos x instead of sinx (look up the Taylor series for cos x in a
mathematics textbook or search on the Internet). Name of program
file: cos_Taylor_series_diffeq.py. �
Exercise 5.18. Make a guitar-like sound.

Given start values x0, x1, . . . , xp, the following diffference equation
is known to create guitar-like sound:

xn =
1

2
(xn−p + xn−p−1), n = p + 1, . . . , N . (5.54)

With a sampling rate r, the frequency of this sound is given by r/p.
Make a program with a function solve(x, p) which returns the solu-
tion array x of (5.54). To initialize the array x[0:p+1] we look at two
methods, which can be implemented in two alternative functions:

1. x0 = 1, x1 = x2 = · · · = xp = 0
2. x0, . . . , xp are uniformly distributed random numbers in [−1, 1]

Import max_amplitude, write, and play from the scitools.sound mod-
ule. Choose a sampling rate r and set p = r/440 to create a 440 Hz tone
(A). Create an array x1 of zeros with length 3r such that the tone will
last for 3 seconds. Initialize x1 according to method 1 above and solve
(5.54). Multiply the x1 array by max_amplitude. Repeat this process for
an array x2 of length 2r, but use method 2 for the initial values and
choose p such that the tone is 392 Hz (G). Concatenate x1 and x2, call
write and then play to play the sound. As you will experience, this
sound is amazingly similar to the sound of a guitar string, first playing
A for 3 seconds and then playing G for 2 seconds. (The method (5.54)
is called the Karplus-Strong algorithm and was discovered in 1979 by a
researcher, Kevin Karplus, and his student Alexander Strong, at Stan-
ford University.) Name of program file: guitar_sound.py. �

266 5 Sequences and Difference Equations

Exercise 5.19. Damp the bass in a sound file.
Given a sequence x0, . . . , xN−1, the following filter transforms the

sequence to a new sequence y0, . . . , yN−1:

yn =

⎧⎨
⎩

xn, n = 0
−1

4(xn−1 − 2xn + xn+1), 1 ≤ n ≤ N − 2
xn, n = N − 1

(5.55)

If xn represents sound, yn is the same sound but with the bass damped.
Load some sound file (e.g., the one from Exercise 5.18) or call

x = scitools.sound.Nothing_Else_Matters(echo=True)

to get a sound sequence. Apply the filter (5.55) and play the result-
ing sound. Plot the first 300 values in the xn and yn signals to see
graphically what the filter does with the signal. Name of program file:
damp_bass.py. �
Exercise 5.20. Damp the treble in a sound file.

Solve Exercise 5.19 to get some experience with coding a filter and
trying it out on a sound. The purpose of this exercise is to explore some
other filters that reduce the treble instead of the bass. Smoothing the
sound signal will in general damp the treble, and smoothing is typically
obtained by letting the values in the new filtered sound sequence be
an average of the neighboring values in the original sequence.

The simplest smoothing filter can apply a standard average of three
neighboring values:

yn =

⎧⎨
⎩

xn, n = 0
1
3(xn−1 + xn + xn+1), 1 ≤ n ≤ N − 2
xn, n = N − 1

(5.56)

Two other filters put less emphasis on the surrounding values:

yn =

⎧⎨
⎩

xn, n = 0
1
4(xn−1 + 2xn + xn+1), 1 ≤ n ≤ N − 2
xn, n = N − 1

(5.57)

yn =

⎧⎨
⎩

xn, n = 0
1
16(xn−2 + 4xn−1 + 6xn + 4xn+1 + xn+2), 1 ≤ n ≤ N − 2
xn, n = N − 1

(5.58)
Apply all these three filters to a sound file and listen to the result.
Plot the first 300 values in the xn and yn signals for each of the three
filters to see graphically what the filter does with the signal. Name of
program file: damp_treble.py. �

5.4 Exercises

Exercise 5.21. Demonstrate oscillatory solutions of (5.18).
Modify the growth_logistic. py program from Chapter 5.1.5 to solve

the equation (5.1:1) on page 244. Read the input parameters Yo, q, and
N from the command line.

Equation (5.1:1) has the solution Yn = 1 as n ---7 eXJ. Demonstrate, by
running the program, that this is the case when Yo = 0. :3, q = 1, and
N = .50.

For larger q values, Yn docs not approach a constant limit, but Yn
oscillates instead around the limiting value. Such oscillations arc some-
times observed in wildlife populations. Demonstrate oscillatory solu-
tions when q is changed to 2 and :1.

It could happen that Yn stabilizes at a constant level for larger N.
Demonstrate that this is not the case by running the program with
N = 1000. Name of program file: growth_logistic2 .py. <)

Exercise 5.22. Moke the proqram from Exer. 5.21 more jie:rible.
It is tedious to run a program like the one from Exercise .5.21 re-

peatedly for a wide range of input parameters. A better approach is
to lct the computer do the manual work. Modify the program from
Exercise 5.21 such that the computation of Yn and the plot is made in
a function. Let the title in the plot contain the parameters Yo and q

(N is easily visible from t.he rr axis). Also let the name of the hardcopy
reflect the values of Yo, q, and N. Then make loops over Yo and q to
perform the following more comprehensive set of experiments:

• Y = 0.D1,0.:1
• q = 0.1,1. 1.5, 1.8, 2, 2.5,:3

• N = 50

How does the initial condition (the value Yo) seem to influence the
solution'?

The keyword argument show=False can be used in the plot call if
you do not want all the plot windows to appear on the screen. Name
of program file: growth_logistic3. py. <)

Exercise 5.23. Simulate the price of uihcat.
The demand for wheat in ycar t is givcn by

where a < 0, > 0, and Pt is the price of wheat. Lct the supply of wheat
be

St = APt-l + B + In(l + pt-d,
where A and B are given constants. We assume that the price Pt adjusts
such that all the produced wheat is sold. That is, D, = St.

For A = 1, a = -:1, II. = 5, B = 0, find from numerical computations,
a stable price such that the production of wheat from year to year is
constant. That is, find P such that up + II. = Ap + B + In(l + pl.

267

268 5 Sequences and Difference Equations

Assume that in a very dry year the production of wheat is much
less than planned. Given that price this year, p0, is 4.5 and Dt =
St, compute in a program how the prices p1, p2, . . . , pN develop. This
implies solving the difference equation

apt + b = Apt−1 + B + ln(1 + pt−1) .

From the pt values, compute St and plot the points (pt, St) for t =
0, 1, 2, . . . , N . How do the prices move when N → ∞? Name of program
file: wheat.py. �

