Computing with Formulas

Our first examples on computer programming involve programs that
evaluate mathematical formulas. You will learn how to write and run
a Python program, how to work with variables, how to compute with
mathematical functions such as e and sinx, and how to use Python
for interactive calculations.

We assume that you are somewhat familiar with computers so that
you know what files and folders' are, how you move between folders,
how you change file and folder names, and how you write text and save
it in a file.

All the program examples associated with this chapter can be found
as files in the folder src/formulas. We refer to the preface for how to
download the folder tree src containing all the program files for this
book.

1.1 The First Programming Encounter: A Formula

The first formula we shall consider concerns the vertical motion of a
ball thrown up in the air. From Newton’s second law of motion one can
set up a mathematical model for the motion of the ball and find that
the vertical position of the ball, called y, varies with time ¢t according
to the following formula?:

L 9

y(t) = vot — S gt

> (1.1)

1 Another frequent word for folder is directory.
2 This formula neglects air resistance, which is usually small unless vg is large — see
Exercise 1.10.

1 Computing with Formulas

Here, vg is the initial velocity of the ball, g is the acceleration of gravity,
and t is time. Observe that the y axis is chosen such that the ball starts
at y =0 when t = 0.

To get an overview of the time it takes for the ball to move upwards
and return to y = 0 again, we can look for solutions to the equation
y=0:

1 1
vot — 59t2 = t(vo — igt) =0 : t=0o0rt=2v/g.
That is, the ball returns after 2vy/g seconds, and it is therefore rea-
sonable to restrict the interest of (1.1) to ¢t € [0, 2v¢/g].

1.1.1 Using a Program as a Calculator

Our first program will evaluate (1.1) for a specific choice of vy, g, and
t. Choosing vp = 5 m/s and g = 9.81 m/s? makes the ball come back
after t = 2vg/g ~ 1 s. This means that we are basically interested in
the time interval [0, 1]. Say we want to compute the height of the ball
at time ¢t = 0.6 s. From (1.1) we have

1
y:5-0.6—§~9.81-0.62

This arithmetic expression can be evaluated and its value can be
printed by a very simple one-line Python program:

print 5%0.6 - 0.5%9.81%0.6%%2

The four standard arithmetic operators are written as +, -, *, and
/ in Python and most other computer languages. The exponentiation
employs a double asterisk notation in Python, e.g., 0.62 is written as
0.6%%2,

Our task now is to create the program and run it, and this will be
described next.

1.1.2 About Programs and Programming

A computer program is just a sequence of instructions to the computer,
written in a computer language. Most computer languages look some-
what similar to English, but they are very much simpler. The number
of words and associated instructions is very limited, so to perform a
complicated operation we must combine a large number of different
types of instructions. The program text, containing the sequence of
instructions, is stored in one or more files. The computer can only do
exactly what the program tells the computer to do.

1.1 The First Programming Encounter: A Formula

Another perception of the word “program” is a file that can be run
(“double-clicked”) to perform a task. Sometimes this is a file with tex-
tual instructions (which is the case with Python), and sometimes this
file is a translation of all the program text to a more efficient and
computer-friendly language that is quite difficult to read for a human.
All the programs in this chapter consist of short text stored in a single
file. Other programs that you have used frequently, for instance Fire-
fox or Internet Explorer for reading web pages, consist of program text
distributed over a large number of files, written by a large number of
people over many years. One single file contains the machine-efficient
translation of the whole program, and this is normally the file that
you “double-click” on when starting the program. In general, the word
“program” means either this single file or the collection of files with
textual instructions.

Programming is obviously about writing programs, but this process
is more than writing the correct instructions in a file. First, we must
understand how a problem can be solved by giving a sequence of in-
structions to the computer. This is usually the most difficult thing with
programming. Second, we must express this sequence of instructions
correctly in a computer language and store the corresponding text in a
file (the program). Third, we must run the program, check the validity
of the results, and usually enter a fourth phase where errors in the pro-
gram must be found and corrected. Mastering this process requires a
lot of training, which implies making a large number of programs (ex-
ercises in this book, for instance) and getting the programs to work.

1.1.3 Tools for Writing Programs

Since programs consist of plain text, we need to write this text with the
help of another program that can store the text in a file. You have most
likely extensive experience with writing text on a computer, but for
writing your own programs you need special programs, called editors,
which preserve exactly the characters you type. The widespread word
processors, Microsoft Word being a primary example3, are aimed at
producing nice-looking reports. These programs format the text and
are not good tools for writing your own programs, even though they can
save the document in a pure text format. Spaces are often important in
Python programs, and editors for plain text give you complete control
of the spaces and all other characters in the program file.

3 Other examples are OpenOffice, TextEdit, iWork Pages, and BBEdit. Chapter 6.1.3
gives some insight into why such programs are not suitable for writing your own
Python programs.

1 Computing with Formulas

Emacs, XEmacs, and Vim are popular editors for writing programs
on Linux or Unix systems, including Mac* computers. On Windows
we recommend Notepad++ or the Window versions of Emacs or Vim.
None of these programs are part of a standard Windows installation.

A special editor for Python programs comes with the Python soft-
ware. This editor is called Idle and is usually installed under the name
idle (or idle-python) on Linux/Unix and Mac. On Windows, it is
reachable from the Python entry in the Start menu. Idle has a gentle
learning curve, but is mainly restricted to writing Python programs.
Completely general editors, such as Emacs and Vim, have a steeper
learning curve and can be used for any text files, including reports in
student projects.

1.1.4 Using ldle to Write the Program

Let us explain in detail how we can use Idle to write our one-line
program from Chapter 1.1.1. Idle may not become your favorite editor
for writing Python programs, yet we recommend to follow the steps
below to get in touch with Idle and try it out. You can simply replace
the Idle instructions by similar actions in your favorite editor, Emacs
for instance.

First, create a folder where your Python programs can be located.
Here we choose a folder name pyist under your home folder (note
that the third character is the number 1, not the letter 1 — the name
reflects your 1st try of Python). To write and run Python programs,
you will need a terminal window on Linux/Unix or Mac, sometimes
called a console window, or a DOS window on Windows. Launch such
a window and use the cd (change directory) command to move to the
pylst folder. If you have not made the folder with a graphical file
& folder manager you must create the folder by the command mkdir
pylst (mkdir stands for make directory).

The next step is to start Idle. This can be done by writing idle&
(Linux) or start idle (Windows) in the terminal window. Alterna-
tively, you can launch Idle from the Start menu on Windows. Fig-
ure 1.1 displays a terminal window where we create the folder, move
to the folder, and start Idle®.

If a window now appears on the screen, with “Python Shell” in the
title bar of the window, go to its File menu and choose New Window.

4 On Mac, you may want to download a more “Mac-like” editor such as the Really
Simple Text program.

5 The ampersand after idle is Linux specific. On Windows you have to write start
idle instead. The ampersand postfix or the start prefix makes it possible to con-
tinue with other commands in the terminal window while the program, here Idle,
is running. This is important for program testing where we often do a lot of edit-
and-run cycles, which means that we frequently switch between the editor and the
terminal window.

1.1 The First Programming Encounter: A Formula

Unix/D0S> mkdir pylst
Unix/DOS> cd pylst
Unix/D05> idlek

[1] 9239

unix/D05>]

Fig. 1.1 A terminal window on a Linux/Unix/Mac machine where we create a folder
(mkdir), move to the folder (cd), and start Idle.

The window that now pops up is the Idle editor (having the window
name “Untitled”). Move the cursor inside this window and write the
line

print 5%0.6 — 0.5%9.81%0.6%*2

followed by pressing the Return key. The Idle window looks as in Fig-
ure 1.2.

File Edit Fonmal Run Oplions Windows Help

5%0.6 - 0.5%9.81*%0.6%=2

Ln: 2/Col: 0

Fig. 1.2 An Idle editor window containing our first one-line program.

Your program is now in the Idle editor, but before you can run it,
the program text must be saved in a file. Choose File and then Save
As. As usual, such a command launches a new window where you can
fill in the name of the file where the program is to be stored. And
as always, you must first check that you are in the right folder, or
directory which is Idle’s word for the same thing. The upper line in
the file dialog window contains the folder name. Clicking on the bar
to the right (after the directory/folder name), gives a possibility to
move upwards in the folder hierarchy, and clicking on the folder icon
to the right of the bar, moves just one folder upwards. To go down
in the folder tree, you simply double-click a folder icon in the main
window of this dialog. You must now navigate to the py1st folder under
your home folder. If you started Idle from the terminal window, there

1 Computing with Formulas

is no need to navigate and change folder. Simply fill in the name of
the program. Any name will do, but we suggest that you choose the
name ball_numbers.py because this name is compatible with what we
use later in this book. The file extension .py is common for Python
programs, but not strictly required®.

Press the Save button and move back to the terminal window. Make
sure you have a new file ball_numbers.py here, by running the com-
mand 1s (on Linux/Unix and Mac) or dir (on Windows). The output
should be a text containing the name of the program file. You can now
jump to the paragraph “How to Run the Program”, but it might be a
good idea to read the warning below first.

Warning About Typing Program Text. Even though a program is just
a text, there is one major difference between a text in a program and
a text intended to be read by a human. When a human reads a text,
she or he is able to understand the message of the text even if the text
is not perfectly precise or if there are grammar errors. If our one-line
program was expressed as

write 5%0.6 — 0.5%9.81%0.6°2

most humans would interpret write and print as the same thing, and
many would also interpret 6°2 as 62. In the Python language, however,
write is a grammar error and 672 means an operation very different
from the exponentiation 6+*2. Our communication with a computer
through a program must be perfectly precise without a single grammar
error’. The computer will only do exactly what we tell it to do. Any
error in the program, however small, may affect the program. There is
a chance that we will never notice it, but most often an error causes
the program to stop or produce wrong results. The conclusion is that
computers have a much more pedantic attitude to language than what
(most) humans have.

Now you understand why any program text must be carefully typed,
paying attention to the correctness of every character. If you try out
program texts from this book, make sure that you type them in ezxactly
as you see them in the book. Blanks, for instance, are often important
in Python, so it is a good habit to always count them and type them
in correctly. Any attempt not to follow this advice will cause you frus-
trations, sweat, and maybe even tears.

6 Some editors, like Emacs, have many features that make it easier to write Python
programs, but these features will not be automatically available unless the program
file has a .py extension.

7 “Programming demands significantly higher standard of accuracy. Things don’t
simply have to make sense to another human being, they must make sense to a
computer.” -Donald Knuth [4, p. 18], computer scientist, 1938-.

1.1 The First Programming Encounter: A Formula

1.1.5 How to Run the Program

The one-line program above is stored in a file with name
ball_numbers.py. To run the program, you need to be in a termi-
nal window and in the folder where the ball_numbers.py file resides.
The program is run by writing the command python ball_numbers.py
in the terminal window®:

Terminal

Unix/DOS> python ball_numbers.py
1.2342

The program immediately responds with printing the result of its calcu-
lation, and the output appears on the next line in the terminal window.
In this book we use the prompt Unix/D0S> to indicate a command line in
a Linux, Unix, Mac, or DOS terminal window (a command line means
that we can run Unix or DOS commands, such as cd and python). On
your machine, you will likely see a different prompt. Figure 1.3 shows
what the whole terminal window may look like after having run the
program.

Unix/D0S> mkdir pylst

Unix/DOS> cd pylst

Unix/D0S> idlek

[1]1 9239

Unix/D05> 1s -s

total 4

4 ball_numbers.py

Unix/D0S> python ball_numbers.py
1.2342

Fig. 1.3 A terminal window on a Linux/Unix/Mac machine where we run our first
one-line Python program.

From your previous experience with computers you are probably
used to double-click on icons to run programs. Python programs can
also be run that way, but programmers usually find it more convenient
to run programs by typing commands in a terminal window. Why this
is so will be evident later when you have more programming experience.
For now, simply accept that you are going to be a programmer, and
that commands in a terminal window is an efficient way to work with
the computer.

Suppose you want to evaluate (1.1) for v9 = 1 and ¢t = 0.1. This is
easy: move the cursor to the Idle editor window, edit the program text
to

8 There are other ways of running Python programs, as explained in Appendix E.1.

1 Computing with Formulas

print 1x0.1 - 0.5%9.81%0.1%%2

Save the file, move back to the terminal window and run the program
as before:

Terminal

Unix/DOS> python ball_numbers.py
0.05095

We see that the result of the calculation has changed, as expected.

1.1.6 Verifying the Result

We should always carefully control that the output of a computer pro-
gram is correct. You will experience that in most of the cases, at least
until you are an experienced programmer, the output is wrong, and
you have to search for errors. In the present application we can simply
use a calculator to control the program. Setting ¢ = 0.6 and vp = 5 in
the formula, the calculator confirms that 1.2342 is the correct solution
to our mathematical problem.

1.1.7 Using Variables

When we want to evaluate y(¢) for many values of ¢, we must modify the
t value at two places in our program. Changing another parameter, like
Vg, is in principle straightforward, but in practice it is easy to modify
the wrong number. Such modifications would be simpler to perform
if we express our formula in terms of variables, i.e., symbols, rather
than numerical values. Most programming languages, Python included,
have variables similar to the concept of variables in mathematics. This
means that we can define v0, g, t, and y as variables in the program,
initialize the former three with numerical values, and combine these
three variables to the desired right-hand side expression in (1.1), and
assign the result to the variable y.

The alternative version of our program, where we use variables, may
be written as this text:

0 =5

9.81

0.6

vO*t - 0.5*gxt*x*x2
rint y

v
g
t
y
P

Figure 1.4 displays what the program looks like in the Idle editor win-
dow. Variables in Python are defined by setting a name (here vo, g,
t, or y) equal to a numerical value or an expression involving already
defined variables.

1.1 The First Programming Encounter: A Formula

File Edit Format Run Options Windows Help
$0="o7g1
grmads
t =0,6
y = vO*t - 0,5*g*t*x#2
v

|Ln: 6/Col: 0

Fig. 1.4 An Idle editor window containing a multi-line program with several variables.

Note that this second program is much easier to read because it is
closer to the mathematical notation used in the formula (1.1). The pro-
gram is also safer to modify, because we clearly see what each number
is when there is a name associated with it. In particular, we can change
t at one place only (the line t = 0.6) and not two as was required in
the previous program.

We store the program text in a file ball_variables.py. Running the
program,

Terminal

Unix/DOS> python ball_variables.py

results in the correct output 1.2342.

1.1.8 Names of Variables

Introducing variables with descriptive names, close to those in the
mathematical problem we are going to solve, is considered important
for the readability and reliability (correctness) of the program. Vari-
able names can contain any lower or upper case letter, the numbers
from 0 to 9, and underscore, but the first character cannot be a num-
ber. Python distinguishes between upper and lower case, so X is always
different from x. Here are a few examples on alternative variable names
in the present example?:

initial_velocity = 5

acceleration_of_gravity = 9.81

TIME = 0.6

VerticalPositionOfBall = initial_velocity*TIME - \
0.5*acceleration_of_gravity*TIME**2

print VerticalPositionOfBall

9 In this book we shall adopt the rule that variable names have lower case letters
where words are separated by an underscore. The first two declared variables have
this form.

10

1 Computing with Formulas

With such long variables names, the code for evaluating the formula
becomes so long that we have decided to break it into two lines. This
is done by a backslash at the very end of the line (make sure there are
no blanks after the backslash!).

We note that even if this latter version of the program contains
variables that are defined precisely by their names, the program is
harder to read than the one with variables v0, g, t, and yo0.

The rule of thumb is to use the same variable names as those ap-
pearing in a precise mathematical description of the problem to be
solved by the program. For all variables where there is no associated
precise mathematical description and symbol, one must use descriptive
variable names which explain the purpose of the variable. For example,
if a problem description introduces the symbol D for a force due to air
resistance, one applies a variable D also in the program. However, if the
problem description does not define any symbol for this force, one must
apply a descriptive name, such as air_resistance, resistance_force,
or drag_force.

1.1.9 Reserved Words in Python

Certain words are reserved in Python because they are used to build up
the Python language. These reserved words cannot be used as variable
names: and, as, assert, break, class, continue, def, del, elif, else,
except, False, finally, for, from, global, if, import, in, is, lambda,
None, nonlocal, not, or, pass, raise, return, True, try, with, while, and
yield. You may, for instance, add an underscore at the end to turn a
reserved word into a variable name. See Exercise 1.16 for examples on
legal and illegal variable names.

1.1.10 Comments

Along with the program statements it is often informative to provide
some comments in a natural human language to explain the idea behind
the statements. Comments in Python start with the # character, and
everything after this character on a line is ignored when the program is
run. Here is an example of our program with explanatory comments:

program for computing the height of a ball thrown up in the air
vO = 5 # initial velocity

g = 9.81 # acceleration of gravity

t =0.6 # time

y = vO*t - 0.5%gxt**2 # vertical position
print y

This program and the initial version on page 8 are identical when run
on the computer, but for a human the latter is easier to understand
because of the comments.

1.1 The First Programming Encounter: A Formula

Good comments together with well-chosen variable names are nec-
essary for any program longer than a few lines, because otherwise the
program becomes difficult to understand, both for the programmer and
others. It requires some practice to write really instructive comments.
Never repeat with words what the program statements already clearly
express. Use instead comments to provide important information that
is not obvious from the code, for example, what mathematical variable
names mean, what variables are used for, and general ideas that lie
behind a forthcoming set of statements.

1.1.11 Formatting Text and Numbers

Instead of just printing the numerical value of y in our introductory
program, we now want to write a more informative text, typically some-
thing like

At t=0.6 s, the height of the ball is 1.23 m.

where we also have control of the number of digits (here y is accurate
up to centimeters only).

Such output from the program is accomplished by a print state-
ment where we use something often known as printf formatting!®.
For a newcomer to programming, the syntax of printf formatting may
look awkward, but it is quite easy to learn and very convenient and
flexible to work with. The sample output above is produced by this
statement:

print ’At t=)g s, the height of the ball is %.2f m.’ % (t, y)

Let us explain this line in detail. The print statement now prints a
string: everything that is enclosed in quotes (either single: ’, or dou-
ble: ") denotes a string in Python. The string above is formatted using
printf syntax. This means that the string has various “slots”, start-
ing with a percentage sign, here %g and %.2f, where variables in the
program can be put in. We have two “slots” in the present case, and
consequently two variables must be put into the slots. The relevant
syntax is to list the variables inside standard parentheses after the
string, separated from the string by a percentage sign. The first vari-
able, t, goes into the first “slot”. This “slot” has a format specification
%g, where the percentage sign marks the slot and the following char-
acter, g, is a format specification. The g that a real number is to be
written as compactly as possible. The next variable, y, goes into the
second “slot”. The format specification here is .2f, which means a real
number written with two digits after comma. The f in the .2f format

10 This formatting was originally introduced by a function printf in the C program-
ming language.

11

12

1 Computing with Formulas

stands for float, a short form for floating-point number, which is the
term used for a real number on a computer.

For completeness we present the whole program, where text and
numbers are mixed in the output:

v0 = 5
g =9.81
t =0.6

y = vO*t - 0.5xgxt*x*x2
print ’At t=)g s, the height of the ball is %.2f m.’ % (t, y)

You can find the program in the file ball_outputl.py in the
src/formulas folder.

There are many more ways to specify formats. For example, e writes
a number in scientific notation, i.e., with a number between 1 and 10
followed by a power of 10, as in 1.2432 - 1073. On a computer such a
number is written in the form 1.2432e-03. Capital E in the exponent
is also possible, just replace e by E, with the result 1.2432E-03.

For decimal notation we use the letter £, as in %f, and the output
number then appears with digits before and/or after a comma, e.g.,
0.0012432 instead of 1.2432E-03. With the g format, the output will
use scientific notation for large or small numbers and decimal notation
otherwise. This format is normally what gives most compact output of
a real number. A lower case g leads to lower case e in scientific notation,
while upper case G implies E instead of e in the exponent.

One can also specify the format as 10.4f or 14.6E, meaning in the
first case that a float is written in decimal notation with four decimals
in a field of width equal to 10 characters, and in the second case a float
written in scientific notation with six decimals in a field of width 14
characters.

Here is a list of some important printf format specifications!!:
hs a string
%d an integer
%0xd an integer padded with x leading zeros
ht decimal notation with six decimals
he compact scientific notation, e in the exponent
%E compact scientific notation, E in the exponent
A compact decimal or scientific notation (with e)
%G compact decimal or scientific notation (with E)
hxz format z right-adjusted in a field of width x
h-xz format z left-adjusted in a field of width x
%.y2z format z with y decimals
hx.yz format z with y decimals in a field of width x
Wt the percentage sign (%) itself

The program printf_demo.py exemplifies many of these formats.
We may try out some formats by writing more numbers to the screen
in our program (the corresponding file is ball_output2.py):

1 For a complete specification of the possible printf-style format strings, follow the
link from the item “printf-style formatting” in the index of the Python Library
Reference.

1.2 Computer Science Glossary

0=5

9.81

0.6

vO*t — 0.bkgkt*x2

print nnn

At t=)f s, a ball with

initial velocity v0=Y.3E m/s

is located at the height %.2f m.
nun % (t , VO , y)

R <
o u

<

Observe here that we use a triple-quoted string, recognized by starting
and ending with three single or double quotes: m> or """. Triple-quoted
strings are used for text that spans several lines.

In the print statement above, we write t in the f format, which
by default implies six decimals; v0 is written in the .3E format, which
implies three decimals and the number spans as narrow field as possible;
and y is written with two decimals in decimal notation in as narrow
field as possible. The output becomes

Terminal

Unix/DOS> python ball_fmt2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

You should look at each number in the output and check the formatting
in detail.

The Newline Character. We often want a computer program to write
out text that spans several lines. In the last example we obtained such
output by triple-quoted strings. We could also use ordinary single-
quoted strings and a special character for indicating where line breaks
should occur. This special character reads \n, i.e., a backslash followed
by the letter n. The two print statements

print """y(t) is
the position of
our ball."""

print ’y(t) is\nthe position of\nour ball’

result in identical output:
y(t) is

the position of
our ball.

1.2 Computer Science Glossary
It is now time to pick up some important words that programmers

use when they talk about programming: algorithm, application, as-
signment, blanks (whitespace), bug, code, code segment, code snippet,

13

14

1 Computing with Formulas

debug, debugging, execute, executable, implement, implementation, in-
put, library, operating system, output, statement, syntax, user, verify,
and verification.

These words are frequently used in English in lots of contexts, yet they
have a precise meaning in computer science.

Program and code are interchangeable terms. A code/program seg-
ment is a collection of consecutive statements from a program. Another
term with similar meaning is code snippet. Many also use the word ap-
plication in the same meaning as program and code. A related term is
source code, which is the same as the text that constitutes the program.
You find the source code of a program in one or more text files'?2.

We talk about running a program, or equivalently executing a pro-
gram or ezxecuting a file. The file we execute is the file in which the
program text is stored. This file is often called an executable or an
application. The program text may appear in many files, but the ex-
ecutable is just the single file that starts the whole program when we
run that file. Running a file can be done in several ways, for instance,
by double-clicking the file icon, by writing the filename in a terminal
window, or by giving the filename to some program. This latter tech-
nique is what we have used so far in this book: we feed the filename to
the program python. That is, we execute a Python program by execut-
ing another program python, which interprets the text in our Python
program file.

The term library is widely used for a collection of generally useful
program pieces that can be applied in many different contexts. Hav-
ing access to good libraries means that you do not need to program
code snippets that others have already programmed (most probable
in a better way!). There are huge numbers of Python libraries. In
Python terminology, the libraries are composed of modules and pack-
ages. Chapter 1.4 gives a first glimpse of the math module, which con-
tains a set of standard mathematical functions for sin z, cos z, In z, €%,
sinhz, sin™! z, etc. Later, you will meet many other useful modules.
Packages are just collections of modules. The standard Python dis-
tribution comes with a large number of modules and packages, but
you can download many more from the Internet, see in particular
www.python.org/pypi. Very often, when you encounter a programming
task that is likely to occur in many other contexts, you can find a
Python module where the job is already done. To mention just one
example, say you need to compute how many days there are between
two dates. This is a non-trivial task that lots of other programmers
must have faced, so it is not a big surprise that Python comes with a
module datetime to do calculations with dates.

12 Note that text files normally have the extension .txt, while program files have an

extension related to the programming language, e.g., .py for Python programs. The
content of a .py file is, nevertheless, plain text as in a .txt file.

1.2 Computer Science Glossary

The recipe for what the computer is supposed to do in a program is
called algorithm. In the examples in the first couple of chapters in this
book, the algorithms are so simple that we can hardly distinguish them
from the program text itself, but later in the book we will carefully set
up an algorithm before attempting to implement it in a program. This
is useful when the algorithm is much more compact than the resulting
program code. The algorithm in the current example consists of three
steps:

1. initialize the variables v, g, and ¢ with numerical values,
2. evaluate y according to the formula (1.1),
3. print the y value to the screen.

The Python program is very close to this text, but some less expe-
rienced programmers may want to write the tasks in English before
translating them to Python.

The implementation of an algorithm is the process of writing and
testing a program. The testing phase is also known as verification: Af-
ter the program text is written we need to wverify that the program
works correctly. This is a very important step that will receive sub-
stantial attention in the present book. Mathematical software produce
numbers, and it is normally quite a challenging task to verify that the
numbers are correct.

An error in a program is known as a bug'3, and the process of lo-
cating and removing bugs is called debugging. Many look at debugging
as the most difficult and challenging part of computer programming.

Programs are built of statements. There are many types of state-
ments:

vO = 3
is an assignment statement, while
print y

is a print statement. It is common to have one statement on each
line, but it is possible to write multiple statements on one line if the
statements are separated by semi-colon. Here is an example:

vO = 3; g=9.81; t =0.6
y = vO*t - 0.5xgkt*x*2
print y

Although most newcomers to computer programming will think they
understand the meaning of the lines in the above program, it is im-
portant to be aware of some major differences between notation in a

13 In the very early days of computing, computers were built of a large number of
tubes, which glowed and gave off heat. The heat attracted bugs, which caused
short circuits. “Debugging” meant shutting down the computer and cleaning out
the dead bugs.

15

16

1 Computing with Formulas

computer program and notation in mathematics. When you see the
equality sign “=” in mathematics, it has a certain interpretation as an
equation (z+2 = 5) or a definition (f(z) = #2+1). In a computer pro-
gram, however, the equality sign has a quite different meaning, and it is
called an assignment. The right-hand side of an assignment contains an
expression, which is a combination of values, variables, and operators.
When the expression is evaluated, it results in a value that the variable
on the left-hand side will refer to. We often say that the right-hand side
value is assigned to the variable on the left-hand side. In the current
context it means that we in the first line assign the number 3 to the
variable v0, 9.81 to g, and 0.6 to t. In the next line, the right-hand side
expression vOxt - 0.5*gxt**2 is first evaluated, and the result is then
assigned to the y variable.
Consider the assignment statement

y=y+3

This statement is mathematically false, but in a program it just means
that we evaluate the right-hand side expression and assign its value to
the variable y. That is, we first take the current value of y and add 3.
The value of this operation is assigned to y. The old value of y is then
lost.

You may think of the = as an arrow, y <- y+3, rather than an equality
sign, to illustrate that the value to the right of the arrow is stored in
the variable to the left of the arrow!4. An example will illustrate the
principle of assignment to a variable:

y =3

print y

y=y+4

print y

Y = y*y

print y
Running this program results in three numbers: 3, 7, 49. Go through
the program and convince yourself that you understand what the result
of each statement becomes.

A computer program must have correct syntar, meaning that the
text in the program must follow the strict rules of the computer lan-
guage for constructing statements. For example, the syntax of the print
statement is the word print, followed by one or more spaces, followed
by an expression of what we want to print (a Python variable, text
enclosed in quotes, a number, for instance). Computers are very picky
about syntax! For instance, a human having read all the previous pages
may easily understand what this program does,

4 The R (or S or S-PLUS) programming languages for statistical computing actually

use an arrow, while other languages such as Algol, Simula, and Pascal use := to
explicitly state that we are not dealing with a mathematical equality.

1.2 Computer Science Glossary

myvar = 5.2
prinnt Myvar

but the computer will find two errors in the last line: prinnt is an
unknown instruction and Myvar is an undefined variable. Only the first
error is reported (a syntax error), because Python stops the program
once an error is found. All errors that Python finds are easy to remove.
The difficulty with programming is to remove the rest of the errors,
such as errors in formulas or the sequence of operations.

Blanks may or may not be important in Python programs. In Chap-
ter 2.1.2 you will see that blanks are in some occasions essential for
a correct program. Around = or arithmetic operators, however, blanks
do not matter. We could hence write our program from Chapter 1.1.7
as

v0=3;g=9.81;t=0.6;y=v0*t-0.5*g*t**2;print y

This is not a good idea because blanks are essential for easy reading
of a program code, and easy reading is essential for finding errors, and
finding errors is the difficult part of programming. The recommended
layout in Python programs specifies one blank around =, +, and -, and
no blanks around *, /, and **. Note that the blank after print is es-
sential: print is a command in Python and printy is not recognized
as any valid command. (Python would look at printy as an undefined
variable.) Computer scientists often use the term whitespace when re-
ferring to a blank!®.

When we interact with computer programs, we usually provide some
information to the program and get some information out. It is common
to use the term input data, or just input, for the information that
must be known on beforehand. The result from a program is similarly
referred to as output data, or just output. In our example, vy, g, and
t constitute input, while y is output. All input data must be assigned
values in the program before the output can be computed. Input data
can be explicitly initialized in the program, as we do in the present
example, or the data can be provided by user through keyboard typing
while the program is running, as we explain in Chapter 3. Output data
can be printed in the terminal window, as in the current example,
displayed as graphics on the screen, as done in Chapter 4, or stored in
a file for later access, as explained in Chapter 6.

The word user usually has a special meaning in computer science:
It means a human interacting with a program. You are a user of a
text editor for writing Python programs, and you are a user of your

15 More precisely, blank is the character produced by the space bar on the keyboard,
while whitespace denotes any character(s) that, if printed, do not print ink on the
paper: a blank, a tabulator character (produced by backslash followed by t), or a
newline character (produced by backslash followed by n). The newline character is
explained on page 13.

17

18

1 Computing with Formulas

own programs. When you write programs, it is difficult to imagine how
other users will interact with the program. Maybe they provide wrong
input or misinterpret the output. Making user-friendly programs is very
challenging and depends heavily on the target audience of users. The
author had the average reader of the book in mind as a typical user
when developing programs for this book.

A central part of a computer is the operating system. This is actu-
ally a collection of programs that manages the hardware and software
resources on the computer. There are three major operating systems
today: Windows, Macintosh (called Mac for short), and Unix. Sev-
eral versions of Windows have appeared since the 1990s: Windows 95,
98, 2000, ME, XP, and Vista. Unix was invented already in 1970 and
comes in many different versions. Nowadays, two open source imple-
mentations of Unix, Linux and Free BSD Unix, are most common. The
latter forms the core of the Mac OS X operating system on Macintosh
machines, while Linux exists in slightly different flavors: Red Hat, De-
bian, Ubuntu, and Suse to mention the most important distributions.
We will use the term Unix in this book as a synonym for all the operat-
ing systems that inherit from classical Unix, such as Solaris, Free BSD,
Mac OS X, and any Linux variant. Note that this use of Unix also in-
cludes Macintosh machines, but only newer machines as the older ones
run an Apple-specific Mac operating system. As a computer user and
reader of this book, you should know exactly which operating system
you have. In particular, Mac users must know if their operating system
is Unix-based or not.

The user’s interaction with the operation system is through a set of
programs. The most widely used of these enable viewing the contents
of folders or starting other programs. To interact with the operating
system, as a user, you can either issue commands in a terminal window
or use graphical programs. For example, for viewing the file contents
of a folder you can run the command 1s in a Unix terminal window
or dir in a DOS (Windows) terminal window. The graphical alterna-
tives are many, some of the most common are Windows Explorer on
Windows, Nautilus and Konqueror on Unix, and Finder on Mac. To
start a program, it is common to double-click on a file icon or write
the program’s name in a terminal window.

1.3 Another Formula: Celsius-Fahrenheit Conversion

Our next example involves the formula for converting temperature
measured in Celsius degrees to the corresponding value in Fahrenheit
degrees:

P §C+32 (1.2)

1.3 Another Formula: Celsius-Fahrenheit Conversion

In this formula, C is the amount of degrees in Celsius, and F is the
corresponding temperature measured in Fahrenheit. Our goal now is
to write a computer program which can compute F' from (1.2) when
C' is known.

1.3.1 Potential Error: Integer Division

Straightforward Coding of the Formula. A straightforward attempt at

coding the formula (1.2) goes as follows!¢:

c=21
F = (9/5)*C + 32
print F

When run, this program prints the value 53. You can find the program
in the file c2f _v1.py'” in the src/formulas folder — as all other programs
from this chapter.

Verifying the Results. Testing the correctness is easy in this case since

we can evaluate the formula on a calculator: % -21 432 is 69.8, not 53.

What is wrong? The formula in the program looks correct!

Float and Integer Division. The error in our program above is one
of the most common errors in mathematical software and is not at all
obvious for a newcomer to programming. In many computer languages,
there are two types of divisions: float division and integer division.
Float division is what you know from mathematics: 9/5 becomes 1.8
in decimal notation.

Integer division a/b with integers (whole numbers) a and b results
in an integer that is truncated (or mathematically, “rounded down”).
More precisely, the result is the largest integer ¢ such that bc < a. This
implies that 9/5 becomes 1 since 1 -5 =5 < 9 while 2-5 =10 > 9.
Another example is 1/5, which becomes 0 since 0-5 < 1 (and 1-5 > 1).
Yet another example is 16/6, which results in 2 (try 2-6 and 3 -6 to
convince yourself). Many computer languages, including Fortran, C,
C++, Java, and Python, interpret a division operation a/b as integer
division if both operands a and b are integers. If either a or b is a real
(floating-point) number, a/b implies the standard mathematical float
division.

The problem with our program is the coding of the formula (9/5)*C
+ 32. This formula is evaluated as follows. First, 9/5 is calculated. Since

16 The parentheses around 9/5 are not strictly needed, i.e., (9/5)*C is computation-
ally identical to 9/5%C, but parentheses remove any doubt that 9/5*%C could mean
9/ (5*C). Chapter 1.3.4 has more information on this topic.

17 The v1 part of the name stands for “version 1”. Throughout this book, we will often
develop several trial versions of a program, but remove the version number in the
final version of the program.

19

20

1 Computing with Formulas

9 and 5 are interpreted by Python as integers (whole numbers), 9/5 is
a division between two integers, and Python chooses by default integer
division, which results in 1. Then 1 is multiplied by C, which equals 21,
resulting in 21. Finally, 21 and 32 are added with 53 as result.

We shall very soon present a correct version of the temperature
conversion program, but first it may be advantageous to introduce a
frequently used word in Python programming: object.

1.3.2 Objects in Python
When we write
c=21

Python interprets the number 21 on the right-hand side of the assign-
ment as an integer and creates an int (for integer) object holding the
value 21. The variable C acts as a name for this int object. Similarly, if
we write C = 21.0, Python recognizes 21.0 as a real number and there-
fore creates a float (for floating-point) object holding the value 21.0
and lets C be a name for this object. In fact, any assignment statement
has the form of a variable name on the left-hand side and an object on
the right-hand side. One may say that Python programming is about
solving a problem by defining and changing objects.

At this stage, you do not need to know what an object really is,
just think of an int object as a collection, say a storage box, with
some information about an integer number. This information is stored
somewhere in the computer’s memory, and with the name C the pro-
gram gets access to this information. The fundamental issue right now
is that 21 and 21.0 are identical numbers in mathematics, while in a
Python program 21 gives rise to an int object and 21.0 to a float
object.

There are lots of different object types in Python, and you will later
learn how to create your own customized objects. Some objects contain
a lot of data, not just an integer or a real number. For example, when
we write

print ’A text with an integer ’%d and a float %f’ % (2, 2.0)

a str (string) object, without a name, is first made of the text between
the quotes and then this str object is printed. We can alternatively do
this in two steps:

s = ’A text with an integer %d and a float %f’ % (2, 2.0)
print s

1.3 Another Formula: Celsius-Fahrenheit Conversion

1.3.3 Avoiding Integer Division

As a quite general rule of thumb, one should avoid integer division
in mathematical formulas'®. There are several ways to do this, as we
describe in Appendix E.2. The simplest remedy in Python is to insert
a statement that simply turns off integer division. A more widely ap-
plicable method, also in other programming languages than Python,
is to enforce one of the operands to be a float object. In the current
example, there are several ways to do this:

(9.0/5)*C + 32
(9/5.0)*C + 32
float(C)*9/5 + 32

T
nnn

In the first two lines, one of the operands is written as a decimal num-
ber, implying a float object and hence float division. In the last line,
float (C)*9 means float times int, which results in a float object, and
float division is guaranteed.

A related construction,

F = float(C)*(9/5) + 32

does not work correctly, because 9/5 is evaluated by integer division,
yielding 1, before being multiplied by a float representation of C (see
next section for how compound arithmetic operations are calculated).
In other words, the formula reads F=C+32, which is wrong.

We now understand why the first version of the program does not
work and what the remedy is. A correct program is

C=21
F = (9.0/5)*C + 32
print F

Instead of 9.0 we may just write 9. (the dot implies a float interpre-
tation of the number). The program is available in the file c2f.py. Try
to run it — and observe that the output becomes 69.8, which is correct.

Comment. We could easily have run into problems in our very first
programs if we instead of writing the formula %th as 0.5¥gxt**x2 wrote
(1/2) *gxt*+2. Explain the problem!

1.3.4 Arithmetic Operators and Precedence

Formulas in Python programs are usually evaluated in the same way
as we would evaluate them mathematically. Python proceeds from left
to right, term by term in an expression (terms are separated by plus
18 Some mathematical algorithms do make use of integer division, but in those cases

you should use a double forward slash, //, as division operator, because this is
Python’s way of explicitly indicating integer division.

21

22

1 Computing with Fermulas

or minus). In each term, power operations such as a?

, coded as axxb,
has precedence over multiplication and divisicn. As in mathematics, we
can nse parentheses to dictate the way a formula is evaluated. Below
are two illustrations of these principles.

e 5/9+2+a*+4/2: First 5/9 is evaluated (as integer division, giving 0
as result), then a? (a%+4) is evaluated, then 2 is multiplicd with o?,
that result is divided by 2, and the answer is added to the result of
the first term. The answer is therefore ax#4.

® 5/(9+2) xa¥*(4/2): First % is evaluated (as integer division, yield
ing (1), then 1/2 is computed (as integer division, yielding 2), then
a*+2 is calculated, and that number is multiplied by the result of
5/(9+2). The answer is thus always zero.

As evident from these two examples, it is casy to unintentionally get
integer division in formulas. Although integer division can be tuurned
off in Python, we think it is important to be strongly aware of the
integer division concept aud to develop good programming liabits (o
avoid it. The reason is that this concept appears in so many common
computer languages that it is better to learn as early as possible how
to deal with the problem rather than using a Python-specific feature
to remove the problem.

1.4 Evaluating Standard Mathematical Functions

Mathematical formulas frequently involve functions such as sin, cos,
tan, sinh. cosh, exp, log, cte. On a pocket calculator vou have spe-
cial buttons for such functions. Similarly, in a program you alse have
ready-made functionality for cvaluating these types of mathematical
functions. One could in principle write one’s own program for evaluat-
ing, e.g., the sin(x) function, but how to do this in an efficient way is
a non-trivial topic. Experts have worked on this problem for decades
and implementad their best recipes in pieces of software that we should
reuse. This section tells you how to reach sin, cos, and similar functions
in a Python context.

1.4.1 Example: Using the Square Root Function

Problem. Consider the vertical motion of a ball in (1.1) on page 1. We
now ask the question: How long time does it take for the ball to reach
the height 3.7 The answer is straightforward to derive. When 4 = .
we have

Loy
yC:'UUt—igt ;

1.4 Evaluating Standard Mathematical Functions

We recognize that this equation is a quadratic equation which we must
solve with respect to t. Rearranging,

1

ith - "UOt + Ye = 07
and using the well-known formula for the two solutions of a quadratic
equation, we find

t = (Uo - \/m> /g9, ta= (’Uo + /g — 29%) /g. (1.3)

There are two solutions because the ball reaches the height 1. on its
way up (t = t1) and on its way down (t =ty > t1).

The Program. To evaluate the expressions for ¢; and ts from (1.3)
in a computer program, we need access to the square root function.
In Python, the square root function and lots of other mathematical
functions, such as sin, cos, sinh, exp, and log, are available in a module
called math. We must first import the module before we can use it,
that is, we must write import math. Thereafter, to take the square root
of a variable a, we can write math.sqrt(a). This is demonstrated in a
program for computing ¢; and to:

vO = 5
g =9.81
yc = 0.2

import math

tl = (vO - math.sqrt(vO**2 - 2x*g*yc))/g

t2 = (vO + math.sqrt(vO**2 - 2*g*yc))/g

print ’At t=Yg s and %g s, the height is %g m.’ % (t1, t2, yc)

The output from this program becomes
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

You can find the program as the file ball_yc.py in the src/formulas
folder.

Two Ways of Importing a Module. The standard way to import a
module, say math, is to write

import math

and then access individual functions in the module with the module
name as prefix as in

x = math.sqrt(y)

People working with mathematical functions often find math.sqrt (y)
less pleasing than just sqrt(y). Fortunately, there is an alternative im-
port syntax that allows us to skip the module name prefix. This alter-
native syntax has the form “from module import function”. A specific
example is

23

24

1 Computing with Formulas

from math import sqrt

Now we can work with sqrt directly, without the math. prefix. More
than one function can be imported:

from math import sqrt, exp, log, sin
Sometimes one just writes

from math import *

to import all functions in the math module. This includes sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, exp, log (base e), log10 (base 10),
sqrt, as well as the famous numbers e and pi. Importing all functions
from a module, using the asterisk (*) syntax, is convenient, but this
may result in a lot of extra names in the program that are not used.
It is in general recommended not to import more functions than those
that are really used in the program®®.

With a from math import sqrt statement we can write the formulas

for the roots in a more pleasing way:

t1
t2

(vO - sqrt(vO**2 - 2xg*yc))/g
(vO + sqrt(vO**2 - 2xgxyc))/g

Import with New Names. Imported modules and functions can be given
new names in the import statement, e.g.,

import math as m
m is now the name of the math module
v = m.sin(m.pi)

from math import log as 1ln
v = 1n(5)

from math import sin as s, cos as c, log as 1ln
v = s(x)*c(x) + 1n(x)

In Python, everything is an object, and variables refer to objects, so
new variables may refer to modules and functions as well as numbers
and strings. The examples above on new names can also be coded by
introducing new variables explicitly:

m = math

In = m.log
S = m.sin
C = m.cos

19 Nevertheless, of convenience we often use the from module import * syntax in this
book.

1.4 Evaluating Standard Mathematical Functions

1.4.2 Example: Using More Mathematical Functions

Our next examples involves calling some more mathematical functions
from the math module. We look at the definition of the sinh(x) function:

sinh(z) = = (e —e™™) . (1.4)
We can evaluate sinh(z) in three ways: i) by calling math.sinh, ii) by
computing the right-hand side of (1.4), using math.exp, or iii) by com-
puting the right-hand side of (1.4) with the aid of the power expressions
math.e**x and math.ex*(-x). A program doing these three alternative

calculations is found in the file 3sinh.py. The core of the program looks
like this:

from math import sinh, exp, e, pi

X = 2%pi
rl = sinh(x)
r2 = 0.5*%(exp(x) - exp(-x))

r3 = 0.5%(e**x - e*x(-x))
print r1, r2, r3

The output from the program shows that all three computations give
identical results:
267.744894041 267.744894041 267.744894041

1.4.3 A First Glimpse of Round-Off Errors

The previous example computes a function in three different yet math-
ematically equivalent ways, and the output from the print statement
shows that the three resulting numbers are equal. Nevertheless, this is
not the whole story. Let us try to print out r1, r2, r3 with 16 decimals:

print ’%.16f %.16f %.16f’ % (rl,r2,r3)

This statement leads to the output
267.7448940410164369 267 .7448940410164369 267.7448940410163232

Now r1 and r2 are equal, but r3 is different! Why is this so?

Our program computes with real numbers, and real numbers need
in general an infinite number of decimals to be represented exactly.
The computer truncates the sequence of decimals because the storage
is finite. In fact, it is quite standard to keep only 16 digits in a real
number on a computer. Exactly how this truncation is done is not
explained in this book?". For now the purpose is to notify the reader
that real numbers on a computer often have a small error. Only a few
real numbers can be represented exactly with 16 digits, the rest of the
real numbers are only approximations.

20 Instead, you can search for “floating point number” on wikipedia.org.

25

26

1 Computing with Formulas

For this reason, most arithmetic operations involve inaccurate real
numbers, resulting in inaccurate calculations. Think of the following
two calculations: 1/49-49 and 1/51-51. Both expressions are identical
to 1, but when we perform the calculations in Python,

print ’%.16f %.16f° % (1/49.0%49, 1/51.0%51)

the result becomes
0.9999999999999999 1.0000000000000000

The reason why we do not get exactly 1.0 as answer in the first case, is
because 1/49 is not correctly represented in the computer. Also 1/51
has an inexact representation, but the error does not propagate to the
final answer.

To summarize, errors®! in floating-point numbers may propagate
through mathematical calculations and result in answers that are only
approximations to the exact underlying mathematical values. The er-
rors in the answers are commonly known as round-off errors. As soon
as you use Python interactively as explained in the next section, you
will encounter round-off errors quite often.

Python has a special module decimal which allows real numbers to
be represented with adjustable accuracy so that round-off errors can
be made as small as desired. However, we will hardly use this module??
because approximations implied by many mathematical methods ap-
plied throughout this book normally lead to (much) larger errors than
those caused by round-off.

2

1.5 Interactive Computing

A particular convenient feature of Python is the ability to execute
statements and evaluate expressions interactively. The environments
where you work interactively with programming are commonly known
as Python shells. The simplest Python shell is invoked by just typing
python at the command line in a terminal window. Some messages
about Python are written out together with a prompt >>>, after which
you can issue commands. Let us try to use the interactive shell as a
calculator. Type in 3%4.5-0.5 and then press the Return key to see
Python’s response to this expression:

Unix/D0OS> python

Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)

[GCC 4.1.2 (Ubuntu 4.1.2-Oubuntu4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> 3%¥4.5-0.5

13.0

21 Exercise 2.49 on page 112 estimates the size of the errors.
22 See the last paragraph of Chapter 2.2.9 for an example.

1.5 Interactive Computing

The text on a line after >>> is what we write (shell input) and the
text without the >>> prompt is the result that Python calculates (shell
output). It is easy, as explained below, to recover previous input and
edit the text. This editing feature makes it convenient to experiment
with statements and expressions.

1.5.1 Calculating with Formulas in the Interactive Shell

The program from Chapter 1.1.7 can be typed in, line by line, in the
interactive shell:

>>> v0 =5

>>> g =9.81

>>> t = 0.6

>>> y vO*t - 0.5*g¥tx*x2
>>> print y

1.2342

We can now easily calculate an y value corresponding to another (say)
v0 value: hit the up arrow key?? to recover previous statements, repeat
pressing this key until the v0 = 5 statement is displayed. You can then
edit the line, say you edit the statement to

>>> v0 = 6

Press return to execute this statement. You can control the new value
of v0 by either typing just vO or print vO:

>>> v0

6

>>> print vO
6

The next step is to recompute y with this new v0 value. Hit the up
arrow key multiple times to recover the statement where y is assigned,
press the Return key, and write y or print y to see the result of the
computation:

>>> y = vOxt - 0.5xgxtxx2
>>> y

1.8341999999999996

>>> print y

1.8342

The reason why we get two slightly different results is that typing just
y prints out all the decimals that are stored in the computer (16), while
print y writes out y with fewer decimals. As mentioned on page 25,
computations on a computer often suffer from round-off errors. The
present calculation is no exception. The correct answer is 1.8342, but
23 This key works only if Python was compiled with the Readline library. In case the

key does not work, try the editing capabilities in another Python shell, for example,
IPython (see Chapter 1.5.3).

27

28

1 Computing with Formulas

round-off errors lead to a number that is incorrect in the 16th decimal.
The error is here 4 - 10716,

1.5.2 Type Conversion

Often you can work with variables in Python without bothering about
the type of objects these variables refer to. Nevertheless, we encoun-
tered a serious problem in Chapter 1.3.1 with integer division, which
forced us to be careful about the types of objects in a calculation. The
interactive shell is very useful for exploring types. The following ex-
ample illustrates the type function and how we can convert an object
from one type to another.

First, we create an int object bound to the name C and check its
type by calling type(C):

>>> C =21
>>> type(C)
<type ’int’>

We convert this int object to a corresponding float object:

>>> C = float(C) # type conversion
>>> type(C)

<type ’float’>

>>> C

21.0

In the statement C = float(C) we create a new object from the original
object referred to by the name C and bind it to the same name C. That
is, C refers to a different object after the statement than before. The
original int with value 21 cannot be reached anymore (since we have
no name for it) and will be automatically deleted by Python.

We may also do the reverse operation, i.e., convert a particular float
object to a corresponding int object:

>>> C = 20.9

>>> type(C)

<type ’float’>

>>> D = int(C) # type conversion

>>> type (D)

<type ’int’>

>>> D

20 # decimals are truncated :-/

In general, one can convert a variable v to type MyType by writing
v=MyType (v), if it makes sense to do the conversion.

In the last input we tried to convert a float to an int, and this oper-
ation implied stripping off the decimals. Correct conversion according
to mathematical rounding rules can be achieved with help of the round
function:

1.5 Interactive Computing

>>> round(20.9)

21.0

>>> int (round(20.9))
21

1.5.3 IPython

There exist several improvements of the standard Python shell pre-
sented in the previous section. The author advocates the IPython shell
as the preferred interactive shell. You will then need to have IPython
installed. Typing ipython in a terminal window starts the shell. The
(default) prompt in IPython is not >>> but In [X]:, where X is the
number of the present input command. The most widely used features
of IPython are summarized below.

Running Programs. Python programs can be run from within the

shell:

In [1]: run ball_variables.py
1.2342

This command requires that you have taken a cd to the folder where
the ball_variables.py program is located and started IPython from
there.

On Windows you may, as an alternative to starting IPython from
a DOS window, double click on the IPython desktop icon or use the
Start menu. In that case, you must move to the right folder where your
program is located. This is done by the os.chdir (change directory)
command. Typically, you write something like

In [1]: import os
In [2]: os.chdir(r’C:\Documents and Settings\me\My Documents\div’)
In [3]: run ball_variables.py

if the ball_variables.py program is located in the folder div under My
Documents of user me. Note the r before the quote in the string: it is
required to let a backslash really mean the backslash character.

We recommend to run all your Python programs from the IPython
shell. Especially when something goes wrong, IPython can help you to
examine the state of variables so that you become quicker to locate
bugs. In the rest of the book, we just write the program name and the
output when we illustrate the execution of a program:

Terminal

ball_variables.py
1.2342

You then need to write run before the program name if you execute
the program in IPython, or if you prefer to run the program from the

29

30

1 Computing with Formulas

Unix/DOS command prompt in a terminal window, you need to write
python prior to the program name. Appendix E.1 describes various
other ways to run a Python program.

Quick Recovery of Previous Output. The results of the previous state-
ments in an interactive IPython session are available in variables of
the form _iX (underscore, i, and a number X), where X is 1 for the
last statement, 2 for the second last statement, and so forth. Short
forms are _ for _i1, __ for _i2, and ___ for _i3. The output from the
In [1] input above is 1.2342. We can now refer to this number by an
underscore and, e.g., multiply it by 10:

In [2]: _*10
Out[2]: 12.341999999999999

Output from Python statements or expressions in IPython are pre-
ceded by Out [X] where X is the command number corresponding to the
previous In [X] prompt. When programs are executed, as with the run
command, or when operating system commands are run (as shown be-
low), the output is from the operating system and then not preceded
by any 0ut[X] label.

TAB Completion. Pressing the TAB key will complete an in-
completely typed variable name. For example, after defining
my_long_variable_name = 4, write just my at the In [4]: prompt
below, and then hit the TAB key. You will experience that my is imme-
diately expanded to my_long_variable_name. This automatic expansion
feature is called TAB completion and can save you from quite some

typing.
In [3]: my_long variable_name = 4

In [4]: my_long_variable_name
Out[4]: 4

Recovering Previous Commands. You can “walk” through the com-
mand history by typing Ctrl-p or the up arrow for going backward or
Ctrl-n or the down arrow for going forward. Any command you hit
can be edited and re-executed.

Running Uniz/Windows Commands. Operating system commands can
be run from IPython. Below we run the three Unix commands date,
1s (list files), and mkdir (make directory):

In [5]: date
Thu Nov 18 11:06:16 CET 2010

In [6]: 1s
myfile.py yourprog.py

In [7]: mkdir mytestdir

1.6 Complex Numbers

If you have defined Python variables with the same name as operat-
ing system commands, e.g., date=30, you must write !date to run the
corresponding operating system command.

IPython can do much more than what is shown here, but the ad-
vanced features and the documentation of them probably do not make
sense before you are more experienced with Python — and with reading
manuals.

Remark. In the rest of the book we will apply the >>> prompt in
interactive sessions instead of the input and output prompts as used
by IPython, simply because all Python books and electronic manuals
use >>> to mark input in interactive shells. However, when you sit by
the computer and want to use an interactive shell, we recommend to
use [Python, and then you will see the In [X] prompt instead of >>>.

1.6 Complex Numbers

Suppose 22 = 2. Then most of us are able to find out that = /2 is
a solution to the equation. The more mathematically interested reader
will also remark that x = —+/2 is another solution. But faced with the
equation 2 = —2, very few are able to find a proper solution without
any previous knowledge of complex numbers. Such numbers have many
applications in science, and it is therefore important to be able to use
such numbers in our programs.

On the following pages we extend the previous material on comput-
ing with real numbers to complex numbers. The text is optional, and
readers without knowledge of complex numbers can safely drop this
section and jump to Chapter 1.7.

A complex number is a pair of real numbers a and b, most often
written as a+bi, or a+1b, where i is called the imaginary unit and acts
as a label for the second term. Mathematically, i = v/—1. An important
feature of complex numbers is definitely the ability to compute square
roots of negative numbers. For example, v/—2 = v/2i (i.e., v/2v/—1).
The solutions of 22 = —2 are thus z; = +v/2i and 2o = —v/2i.

There are rules for addition, subtraction, multiplication, and divi-
sion between two complex numbers. There are also rules for raising a
complex number to a real power, as well as rules for computing sin z,
cos z, tan z, €%, In z, sinh z, cosh z, tanh z, etc. for a complex number
z = a + ib. We assume in the following that you are familiar with the
mathematics of complex numbers, at least to the degree encountered
in the program examples.

letu=a+biand v=c+di

31

32

1 Computing with Formulas

u=v : a=c b=d
—u=—-a—UW

u* =a—bi (complex conjugate)
utv=(a+c)+ (b+d)i
u—v=_(a—c)+ (b—d)i

uwv = (ac — bd) + (be + ad)i
-

lu| = Va2 + b2

e = cosq+ising

1.6.1 Complex Arithmetics in Python

Python supports computation with complex numbers. The imaginary
unit is written as j in Python, instead of ¢ as in mathematics. A com-
plex number 2 — 3i is therefore expressed as (2-3j) in Python. We
remark that the number ¢ is written as 1j, not just j. Below is a sam-
ple session involving definition of complex numbers and some simple

arithmetics:

>>> u = 2.5 + 3j # create a complex number
>>> v = 2 # this is an int
>>>w=u+v # complex + int

>>> w

(4.5+33)

>>> a = -2

>>> b = 0.5

>>> s = a + bxlj # create a complex number from two floats
>>> s = complex(a, b) # alternative creation
>>> s

(-2+0.53)

>>> s*y # complex*complex
(-10.5-3.75j)

>>> s/w # complex/complex

(-0.25641025641025639+0.28205128205128205j)

A complex object s has functionality for extracting the real and imag-
inary parts as well as computing the complex conjugate:

>>> s.real

-2.0

>>> s.imag

0.5

>>> s.conjugate()
(-2-0.53)

1.6.2 Complex Functions in Python

Taking the sine of a complex number does not work:

1.6 Complex Numbers

>>> from math import sin
>>> r = sin(w)
Traceback (most recent call last):
File "<input>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)

The reason is that the sin function from the math module only works
with real (float) arguments, not complex. A similar module, cmath,
defines functions that take a complex number as argument and return
a complex number as result. As an example of using the cmath module,
we can demonstrate that the relation sin(ai) = isinh a holds:

>>> from cmath import sin, sinh
>>> r1 = sin(8j)

>>> rl

1490.4788257895502j

>>> r2 = 1j*sinh(8)

>>> r2

1490.4788257895502j

Another relation, e’ = cos q + isin g, is exemplified next:

>>> q =8 # some arbitrary number

>>> exp(1j*q)
(-0.14550003380861354+0.989358246623381793)
>>> cos(q) + 1j*sin(q)
(-0.14550003380861354+0.989358246623381793)

1.6.3 Unified Treatment of Complex and Real Functions

The cmath functions always return complex numbers. It would be nice
to have functions that return a float object if the result is a real
number and a complex object if the result is a complex number. The
Numerical Python package (see more about this package in Chapter 4)
has such versions of the basic mathematical functions known from math
and cmath. By taking a

from numpy.lib.scimath import x*

one gets access to these flexible versions of mathematical functions?*.

A session will illustrate what we obtain.
Let us first use the sqrt function in the math module:

>>> from math import sqrt

>>> sqrt(4) # float

2.0

>>> sqrt(-1) # illegal

Traceback (most recent call last):
File "<input>", line 1, in ?

ValueError: math domain error

24 The functions also come into play by a from scipy import * statement or from
scitools.std import *. The latter is used as a standard import later in the book.

33

34

1 Computing with Formulas

If we now import sqrt from cmath,

>>> from cmath import sqrt

the previous sqrt function is overwritten by the new one. More pre-
cisely, the name sqrt was previously bound to a function sqrt from the
math module, but is now bound to another function sqrt from the cmath
module. In this case, any square root results in a complex object:

>>> sqrt(4) # complex
(2+03)

>>> sqrt(-1) # complex
1]

If we now take

>>> from numpy.lib.scimath import =*

we import (among other things) a new sqrt function. This function is
slower than the versions from math and cmath, but it has more flexibility
since the returned object is float if that is mathematically possible,
otherwise a complex is returned:

>>> sqrt(4) # float
2.0

>>> sqrt(-1) # complex
13

As a further illustration of the need for flexible treatment of both
complex and real numbers, we may code the formulas for the roots of
a quadratic function f(z) = az? + bz + ¢

>>> a =1; b =2; ¢ =100 # polynomial coefficients
>>> from numpy.lib.scimath import sqrt

>>> r1 = (-b + sqrt(b**2 - 4xaxc))/(2*a)
>>> r2 = (-b - sqrt(b**2 - 4xaxc))/(2*a)
>>> r1

(-1+9.949874371073)

>>> r2

(-1-9.949874371073)

Using the up arrow, we may go back to the definitions of the coefficients
and change them so the roots become real numbers:

>>>a=1; b=4; c =1 # polynomial coefficients

Going back to the computations of r1 and r2 and performing them
again, we get

>>> ril

-0.267949192431

>>> r2
-3.73205080757

That is, the two results are float objects. Had we applied sqrt from
cmath, r1 and r2 would always be complex objects, while sqrt from the
math module would not handle the first (complex) case.

1.7 Summary

1.7 Summary

1.7.1 Chapter Topics

Program Files. Python programs must be made by a pure text editor
such as Emacs, Vim, Notepad++ or similar. The program text must
be saved in a text file, with a name ending with the extension .py. The
filename can be chosen freely, but stay away from names that coincide
with modules or keywords in Python, in particular do not use math.py,
time.py, random.py, os.py, sys.py, while.py, for.py, if.py, class.py,
def.py, to mention some forbidden filenames.

Programs Must Be Accurate! A program is a collection of statements
stored in a text file. Statements can also be executed interactively in a
Python shell. Any error in any statement may lead to termination of
the execution or wrong results. The computer does exactly what the
programmer tells the computer to do!

Variables. The statement

some_variable = obj

defines a variable with the name some_variable which refers to an ob-
ject obj. Here obj may also represent an expression, say a formula,
whose value is a Python object. For example, 1+2.5 involves the addi-
tion of an int object and a float object, resulting in a float object.
Names of variables can contain upper and lower case English letters,
underscores, and the digits from 0 to 9, but the name cannot start with
a digit. Nor can a variable name be a reserved word in Python.

If there exists a precise mathematical description of the problem to
be solved in a program, one should choose variable names that are
in accordance with the mathematical description. Quantities that do
not have a defined mathematical symbol, should be referred to by de-
scriptive variables names, i.e., names that explain the variable’s role
in the program. Well-chosen variable names are essential for making a
program easy to read, easy to debug, and easy to extend. Well-chosen
variable names also reduce the need for comments.

Comment Lines. Everything after # on a line is ignored by Python and
used to insert free running text, known as comments. The purpose of
comments is to explain, in a human language, the ideas of (several)
forthcoming statements so that the program becomes easier to under-
stand for humans. Some variables whose names are not completely
self-explanatory also need a comment.

Object Types. There are many different types of objects in Python. In
this chapter we have worked with

35

36

1 Computing with Fermulas

e integers (whole numbers, ohject type int):

x10
XYZ

=
2

¢ floats (decimal numbers, object type £loat):

max_temperature = 3.0
MinTemp = 1/6.0

s strings {pieces of text, object type str):

a = ’This is a piece of text\nover two lines.’

b = "Strings are enclosed in single or double quotes.”
¢ = """Iriple-quoted strings can

span

several lines.

(-t

e complex numbers (object type complex):

a=2.5+ 3j
real = 6; imag = 3.1
b = complex(real, imag)

Operators. Operators in arithimetic expressions follow the rules from
mathematics: power is cvaluated before multiplication and division,
while the latter two are evaluated before addition and subtraction.
These rules are overriden by parentheses. We suggest to use parentheses
to group and clarify mathematical expressions, also when not strictly
needed.

—tkk kg /2D

—(t**2)*(g/2) # equivalent

—tax (2%g) /2 # a different formula!

fe B0 e B0 = B

a/b + c + a*c # yields 31.0

af(b + c) + a*c # yields 25.5

a/(b + c + a)*c # yields 1.6666666666666665

Particular attention must be paid to coding fractions, since the division
operator / often needs extra parentheses that are not necessary in the
mathematical notation for fractions (compare bfc with a/(b+c) and
a/b+c)‘

Comemon Matheralical Functions, The math module conlains common
mathematical functions for real numbers. Modules must be imported
before they can be used:

import math
a = math.sin(math.pi*1.5)

1.7 Summary

or

from math import *
a = sin(pix1.5)

or

from math import sin, pi
a = sin(pix*1.5)

Print. To print the result of calculations in a Python program to a
terminal window, we apply the print command, i.e., the word print
followed by a string enclosed in quotes, or just a variable:

print "A string enclosed in double quotes"
print a

Several objects can be printed in one statement if the objects are sep-
arated by commas. A space will then appear between the output of
each object:

>>>a =5.0; b=-5.0; c=1.9856; d = 33

>>> print ’a is’, a, ’b is’, b, ’c and 4 are’, c, d

a is 5.0 b is -5.0 ¢ and d are 1.9856 33

The printf syntax enables full control of the formatting of real numbers
and integers:

>>> print ’a=Yg, b=%12.4E, c=%.2f, d=%5d’ % (a, b, c, d)
a=5, b= -5.0000E+00, c=1.99, d= 33

Here, a, b, and c are of type float and formatted as compactly as
possible (%g for a), in scientific notation with 4 decimals in a field of
width 12 (%12.4E for b), and in decimal notation with two decimals in
as compact field as possible (%.2f for c). The variable d is an integer
(int) written in a field of width 5 characters (%5d).

Integer Division. A common error in mathematical computations is
to divide two integers, because this results in integer division. Any
number written without decimals is treated as an integer. To avoid
integer division, ensure that every division involves at least one real
number, e.g., 9/5 is written as 9.0/5, 9./5, 9/5.0, or 9/5..

Complex Numbers. Values of complex numbers are written as (X+Yj),
where X is the value of the real part and Y is the value of the imaginary
part. One example is (4-0.2j). If the real and imaginary parts are
available as variables r and i, a complex number can be created by
complex(r, i).

The cmath module must be used instead of math if the argument
is a complex variable. The numpy package offers similar mathematical
functions, but with a unified treatment of real and complex variables.

1 Computing with Fermulas

Terminology. Some Python and computer science terms briefly covered
in this chapter are

e object: anything that a variable (name) can refer to®® (number,
string, function, module, ...)

e variable: namc of an object

e statement: an instruction to the computer, usually written on a
line in a Python program (multiple statemenss on a line must be
scparated by scmicolons}

e expression: a combination of numbers, text, variables, and operators
that results in a new object, when being evaluated

e assigpnment: a statement binding an evaluated expression (object)
to a variable (name)

e algorithm: detailed recipe for how to solve a problem by program-

ming

code: program text (or synonym for program)

implementation: same as code

executahle: the file we run to start the program

verification: providing evidence that the program works correctly

debugging: locating and correcting errors in a program

1.7.2 Summarizing Example: Trajectory of a Ball

Problem. The formula {1.1) computes the height of a ball in vertical
motion. What if we throw the ball with an initial velocity having an
angle ¢ with the horizontal? This problem can be solved by basic high
school physics as you are encouraged to do in Exercise 1.14. The ball
will follow a trajectory y = f(x) through the air?%, where

N P 1 ga? f T

iz = oo —mm—kyo‘ (1.5)
In this expression, z is a horizontal coordinate, g is the acceleration
of gravity, vg is the size of the initial velocity which makes an angle ¢
with the x axis, and (0,y) is the initial position of the ball. Qur pro-
gramming goal is to make a program for evaluating (1.5). The program
should write out the value of all the involved variables and what their
units are.

Solution. We use the Sl system and assume that vy is given in km/h;
g = 9.81m/ 52; x, y, and ¥ are measured in meters; and # in degrees.

25 3ut objects can cxist without being bound to a name: print ’Helle!® first makces
a string object of the texl in quoles and then the contenls of this siring object,
without a name, is printed.

This formmla neglects air resistance. ixercise 1.10 explores how important air re-
sistance is. For a soft kick {vg = 10 km/h) of a football, the gravity force is about
120 times larger than the air resistance. For a hard kick, air resistance may be as
important as gravity.

26

1.7 Summary 39

The program has naturally four parts: initialization of input data, im-
port of functions and 7 from math, conversion of vy and 6 to m/s and
radians, respectively, and evaluation of the right-hand side expression
n (1.5). We choose to write out all numerical values with one decimal.
The complete program is found in the file ball_trajectory.py:

g =9.81 # m/s**2

v0 = 15 # km/h
theta = 60 # degrees

x =0.5 # m

yo =1 #m

print nn n\

vO0 = %.1f km/h

theta = %d degrees

yo =%.1fm

X = %.1f m\

mne % (vO, theta, yO, x)

from math import pi, tan, cos

convert vO to m/s and theta to radians:
v0 = v0/3.6

theta = theta*pi/180

y = x*tan(theta) - 1/(2%v0x*2)*g*x**2/((cos(theta))**2) + yO

print ’y =%.1fm %y

The backslash in the triple-quoted multi-line string makes the string
continue on the next line without a newline. This means that removing
the backslash results in a blank line above the v0 line and a blank
line between the x and y lines in the output on the screen. Another
point to mention is the expression 1/(2*v0*#*2), which might seem as a
candidate for unintended integer division. However, the conversion of
v0 to m/s involves a division by 3.6, which results in v0 being float,
and therefore 2xv0**2 being float. The rest of the program should be
self-explanatory at this stage in the book.

We can execute the program in IPython or an ordinary terminal
window and watch the output:

ball_trajectory.py
v0 = 15.0 km/h
theta = 60 degrees
yO =1.0m
X =0.5m
y =0.7m

1.7.3 About Typesetting Conventions in This Book

This version of the book applies different design elements for different
types of “computer text”. Complete programs and parts of programs
(snippets) are typeset with a light blue background. A snippet looks
like this:

40

1 Computing with Formulas

a = sqrt(4*p + c)
print ’a =’, a

A complete program has an additional vertical line to the left:

c=21
F = (9.0/5)*C + 32
print F

As a reader of this book, you may wonder if a code shown is a complete
program you can try out or if it is just a part of a program (a snippet) so
that you need to add surrounding statements (e.g., import statements)
to try the code out yourself. The appearance of a vertical line to the
left or not will then quickly tell you what type of code you see.

An interactive Python session is typeset as

>>> from math import *
>>p=1; c=-1.5
>>> a = sqrt(4*p + c)

Running a program, say ball_yc.py, in the terminal window, followed
by some possible output is typeset as?”

ball_yc.py

At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

Sometimes just the output from a program is shown, and this output
appears as plain “computer text”:

h=0.2

order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

Files containing data are shown in a similar way in this book:

date Oslo London Berlin Paris Rome Helsinki

01.05 18 21.2 20.2 13.7 15.8 15
01.06 21 13.2 14.9 18 24 20
01.07 13 14 16 25 26.2 14.5

1.8 Exercises

What Does It Mean to Solve an Exercise?

The solution to most of the exercises in this book is a Python program.
To produce the solution, you first need understand the problem and

27 Recall from Chapter 1.5.3 that we just write the program name. A real execution

demands prefixing the program name by python in a DOS/Unix terminal window,
or by run if you run the program from an interactive IPython session. We refer
to Appendix E.1 for more complete information on running Python programs in
different ways.

1.8 Exercises

what the program is supposed to do, and then you need to understand
how to translate the problem description into a series of Python state-
ments. Equally important is the verification (testing) of the program.
A complete solution to a programming exercises therefore consists of
two parts: the program text and a demonstration that the program
works correctly. Some simple programs, like the ones in the first two
exercises below, have so simple output that the verification can just be
to run the program and record the output.

In cases where the correctness of the output is not obvious, it is
necessary to provide information together with the output to “prove”
that the result is correct. This can be a calculation done separately
on a calculator, or one can apply the program to a special simple test
with known results. The requirement is to provide evidence that the
program works as intended.

The sample run of the program to check its correctness can be in-
serted at the end of the program as a triple-quoted string?®. The con-
tents of the string can be text from the run in the terminal window, cut
and pasted to the program file by the aid of the mouse. Alternatively,
one can run the program and direct the output to a file??:

Terminal

Unix/DOS> python myprogram.py > result

Afterwards, use the editor to insert the file result inside the string.

As an example, suppose we are to write a program for converting
Fahrenheit degrees to Celsius. The solution process can be divided into
three steps:

1. Establish the mathematics to be implemented: solving (1.2) with
respect to C' gives the conversion formula

5
— 2(F-32).
C=5F-32)

2. Coding of the formula in Python: ¢ = (5.0/9)*(F - 32)

3. Establish a test case: from the c2f.py program in Chapter 1.3.3 we
know that C = 21 corresponds to F' = 69.8. We can therefore, in
our new program, set F' = 69.8 and check that C' = 21. The output
from a run can be appended as a triple quoted string at the end of
the program.

28 Alternatively, the output lines can be inserted as comments, but using a multi-line
string requires less typing. (Technically, a string object is created, but not assigned
to any name or used for anything in the program — but for a human the text in the
string contains useful information.)

29 The redirection to files does not work if the program is run inside IPython. In a
DOS terminal window you may also choose to redirect output to a file, because cut
and paste between the DOS window and the program window does not work by
default unless you right-click the top bar, choose Properties and tick off Quick Edit
Mode.

41

1 Computing with Formulas

An appropriate complete solution to the exercise is then

Convert from Fahrenheit degrees to Celsius degrees:
F =69.8

C = (6.0/9)%(F - 32)

print C

2

Sample run:
python f2c.py
21.0

230

Another way of documenting the output from your own program
is to use the pyreport program, which formats the code nicely and
inserts the result of all output from the program in the resulting report.
Applying pyreport to the f2c.py program is very simple:

Terminal

Unix/DOS> pyreport f2c.py

The result is a file £2c.pdf which you can print. Figure 1.5 displays
what the printed file looks like. You can also generate a web page
instead of a PDF file3C:

Terminal

Unix/DOS> pyreport -t html f2c.py

The result now is a file £2c.html which you can load into a web browser.
The pyreport program can do much more than shown in Figure 1.5. For
example, mathematical formulas and graphics can easily be inserted in
the resulting document3?.

home/some/user/intro-programming/work/f2c.py 1
2 F =69.8
3 C= (5.0/9)*(F - 32)
4 print C
21.0

Fig. 1.5 Output from pyreport.

Exercise 1.1. Compute 1+1.

The first exercise concerns some basic mathematics: Write a
Python program for printing the result of 1+1. Name of program file:
1plusl.py. o

30 The -t option specifies the output file type, which here is html — the common
language in web pages. By default, the output from pyreport is PDF. Many other
formats and options are possible, just write pyreport to see the possibilities.

31 You can search for “pyreport” on google — the first hit leads you to a description of
the program.

1.8 Exercises

Exercise 1.2. Write a “Hello, World!” program.

Almost all books about programming languages start with a very
simple program that prints the text “Hello, World!” to the screen. Make
such a program in Python. Name of program file: hello_world.py. <

Exercise 1.3. Convert from meters to British length units.

Make a program where you set a length given in meters and then
compute and write out the corresponding length measured in inches,
in feet, in yards, and in miles. Use that one inch is 2.54 c¢m, one foot is
12 inches, one yard is 3 feet, and one British mile is 1760 yards. As a
verification, a length of 640 meters corresponds to 25196.85 inches,
2099.74 feet, 699.91 yards, or 0.3977 miles. Name of program file:

length_conversion.py. <o

Exercise 1.4. Compute the mass of various substances.

The density of a substance is defined as ¢ = m/V, where m is the
mass of a volume V. Compute and print out the mass of one liter of
each of the following substances whose densities in g/cm?® are found
in the file src/files/densities.dat: iron, air, gasoline, ice, the human
body, silver, and platinum: 21.4. Name of program file: 1liter.py. ¢

Exercise 1.5. Compute the growth of money in a bank.
Let p be a bank’s interest rate in percent per year. An initial amount
A has then grown to
p n
A+ &)

100
after n years. Make a program for computing how much money 1000
euros have grown to after three years with 5% interest rate. Name of
program file: interest_rate.py. o

Exercise 1.6. Find error(s) in a program.
Suppose somebody has written a simple one-line program for com-
puting sin(1):

x=1; print ’sin(%g)=%g’ % (x, sin(x))
Type in this program and try to run it. What is the problem? o

Exercise 1.7. Type in program text.
Type the following program in your editor and execute it. If your
program does not work, check that you have copied the code correctly.

from math import pi

h=5.0 # height
b=2.0 # base
r =1.5 # radius

area_parallelogram = h*b
print ’The area of the parallelogram is %.3f’ % area_parallelogram

43

a4

1 Computing with Formulas

area_square = b**2
print ’The area of the square is %g’ ' area_square

area_circle = pixr**2
print ’The area of the circle is 8.3f’ ¥ area_circle

volume_cone = 1.0/3*pikr**2xh
print ’The volume of the cone is %.3f’) volume_cone

Name of program file: formulas_shapes.py. o

Exercise 1.8. Type in programs and debug them.
Type these short programs in your editor and execute them. When
they do not work, identify and correct the erroneous statements.

(a)Does sin?(z) + cos?(x) = 17

from math import sin, cos
x = pi/4

1_val = sin"2(x) + cos"2(x)
print 1_VAL

Name of program file: sin2_plus_cos2.py

(b)Work with the expressions for movement with constant acceleration:

0 = 3 m/s

1s

2 m/s**2

vOxt + 1/2 a*xt*x*2
print s

G

Name of program file: acceleration.py

(c) Verify these equations:
(a4 b)?* =a* +2ab+b?

(a—b)?=a%—2ab+b?

a=3,3 b=5,3

a2 = axx2

b2 = b**x2

eql_sum = a2 + 2ab + b2
eg2_sum = a2 - 2ab + b2
eql_pow = (a + b)**2
eq2_pow = (a - b)**2

print ’First equation: Y%g
print ’Second equation: %h

%g’, % (eql_sum, eql_pow)
%h’, % (eq2_pow, eq2_pow)

Name of program file: a_pm_b_sqr.py o

Exercise 1.9. Fvaluate a Gaussian function.
The bell-shaped Gaussian function,

1.8 Exercises

fla) = — 1G=a) (16)
xT) = s exp | — . , .

is one of the most widely used functions in science and technol-
ogy32. The parameters m and s are real numbers, where s must be
greater than zero. Make a program for evaluating this function when
m = 0, s = 2, and ¢z = 1. Verify the program’s result by compar-
ing with hand calculations on a calculator. Name of program file:
Gaussian_functionl.py. <o

Exercise 1.10. Compute the air resistance on a football.
The drag force, due to air resistance, on an object can be expressed
as

1
Fy= §C’DQAV2, (1.7)

where g is the density of the air, V is the velocity of the object, A is
the cross-sectional area (normal to the velocity direction), and Cp is
the drag coeflicient, which depends heavily on the shape of the object
and the roughness of the surface.

The gravity force on an object with mass m is I, = mg, where
g=9.81ms2.

Make a program that computes the drag force and the gravity force
on an object. Write out the forces with one decimal in units of Newton
(N = kgm/s?). Also print the ratio of the drag force and the gravity
force. Define Cp, 0, A, V, m, g, Fy, and Fj as variables, and put a
comment with the corresponding unit.

As a computational example, you can initialize all variables with
values relevant for a football kick. The density of air is o = 1.2 kg m~3.
For any ball, we have obviously that A = ma?, where a is the radius of
the ball, which can be taken as 11 cm for a football. The mass of the
ball is 0.43 kg. C'p can be taken as 0.2.

Use the program to calculate the forces on the ball for a hard kick,
V = 120 km/h and for a soft kick, V' = 10 km/h (it is easy to mix
inconsistent units, so make sure you compute with V expressed in
m/s). Name of program file: kick.py. o

Exercise 1.11. Define objects in IPython.
Start ipython and give the following command, which will store the
interactive session to a file mysession.log:

32 The function is named after Carl Friedrich Gauss, 1777-1855, who was a German
mathematician and scientist, now considered as one of the greatest scientists of all
time. He contributed to many fields, including number theory, statistics, mathemat-
ical analysis, differential geometry, geodesy, electrostatics, astronomy, and optics.
Gauss introduced the function (1.6) when he analyzed probabilities related to as-
tronomical data.

45

46

1 Computing with Formulas

In [1]: logstart -r -o mysession.log

Thereafter, define an integer, a real number, and a string in IPython.
Apply the type function to check that each object has the right type.
Print the three objects using printf syntax. Finally, type logoff to end
the recording of the interactive session:

In [8]: %logoff

Leave IPython and restart it with the -logplay mysession.log on the
command line. IPython will now re-execute the input statements in the
logfile mysession.log so that you get back the variables you declared.
Print out the variables to demonstrate this fact. o

Exercise 1.12. How to cook the perfect egg.

As an egg cooks, the proteins first denature and then coagulate.
When the temperature exceeds a critical point, reactions begin and
proceed faster as the temperature increases. In the egg white the pro-
teins start to coagulate for temperatures above 63 C, while in the yolk
the proteins start to coagulate for temperatures above 70 C. For a soft
boiled egg, the white needs to have been heated long enough to coag-
ulate at a temperature above 63 C, but the yolk should not be heated
above 70 C. For a hard boiled egg, the center of the yolk should be
allowed to reach 70 C.

The following formula expresses the time ¢ it takes (in seconds) for
the center of the yolk to reach the temperature 7}, (in Celsius degrees):

M2/30p1/3 T, — Ty
t=————-In |0.76——~—| . 1.8
Kn2(4rn/3)23 [T, - Tw] (18)

Here, M, p, ¢, and K are properties of the egg: M is the mass,
p is the density, ¢ is the specific heat capacity, and K is thermal
conductivity. Relevant values are M = 47 g for a small egg and
M = 67 g for a large egg, p = 1.038 gecm™3, ¢ = 3.7 Jg ' K~!, and
K =5.4-10"2 Wem ™! KL, Furthermore, T, is the temperature (in C
degrees) of the boiling water, and T, is the original temperature (in C
degrees) of the egg before being put in the water. Implement the for-
mula in a program, set T, = 100 C and T, = 70 C, and compute ¢ for a
large egg taken from the fridge (7, = 4 C) and from room temperature
(T, = 20 C). Name of program file: egg.py. o

Exercise 1.13. Evaluate a function defined by a sum.
The piecewise constant function

1, 0<t<T/2,
f(t) =10, t=T/2, (19)
-1, T/2<t<T

1.8 Exercises

can be approximated by the sum

n

4 1 22— D)t
S(t;n):;zm_lsm T (1.10)
i=1
4 (. 27rt+1 . 67Tt+1, 107rt+
=—(sin—+4+ -sin— 4+ —sin — + - - -
T T3 TEMTT

(1.11)

It can be shown that S(t;n) — f(t) as n — oco. Write a program that
prints out the value of S(aT’;n) for « = 0.01, T = 27, and n = 1, 2, 3, 4.
Let s (= S(t;n)), t, alpha, and T be variables in the program. A new
S, corresponding to a new n, should be computed by adding one term
to the previous value of S, i.e., by a statement like S = S + term. Run
the program also for o = 1/4. Does the approximation S(aT’;4) seem
to be better for « = 1/4 than for « = 0.017 Name of program file:

compare_func_sum.py.

Remark. This program is very tedious to write for large n, but with
a loop, introduced in the next chapter (see Exercise 2.39), we can just
code the generic term parameterized by 4 in (1.10). This approach
yields a short program that can be used to evaluate S(t;n) for any
n. Exercise 4.20 extends such an implementation with graphics for
displaying how well S(¢;n) approximates f(t) for some values of n. A
sum of sine and/or cosine functions, as in (1.10), is called a Fourier
series. Approximating a function by a Fourier series is a very important
technique in science and technology. o

Exercise 1.14. Derive the trajectory of a ball.

The purpose of this exercise is to explain how Equation (1.5) for the
trajectory of a ball arises from basic physics. There is no programming
in this exercise, just physics and mathematics.

The motion of the ball is governed by Newton’s second law:

F, =may (1.12)
F, =ma, (1.13)

where F, and F, are the sum of forces in the z and y directions,
respectively, a; and a, are the accelerations of the ball in the x and y
directions, and m is the mass of the ball. Let (z(t), y(t)) be the position
of the ball, i.e., the horisontal and vertical corrdinate of the ball at time
t. There are well-known relations between acceleration, velocity, and
position: the acceleration is the time derivative of the velocity, and the
velocity is the time derivative of the position. Therefore we have that

47

48

1 Computing with Formulas

d*x
d%y

If we assume that gravity is the only important force on the ball, F, = 0
and Fy, = —mg.

Integrate the two components of Newton’s second law twice. Use the
initial conditions on velocity and position,

d

ﬁx(()) = vg cos 0, (1.16)

%y(()) = vp sin 0, (1.17)
y(0) = yo, (1.19)

to determine the four integration constants. Write up the final expres-
sions for x(t) and y(¢). Show that if § = /2, i.e., the motion is purely
vertical, we get the formula (1.1) for the y position. Also show that if
we eliminate ¢, we end up with the relation (1.5) between the x and y
coordinates of the ball. You may read more about this type of motion
in a physics book, e.g., [6]. o

Exercise 1.15. Find errors in the coding of formulas.

Some versions of our program for calculating the formula (1.2) are
listed below. Determine which versions that will not work correctly and
explain why in each case.

C = 21; F = 9/5%C + 32; print F
C=21.0; F = (9/5)*xC + 32; print F
C=21.0; F = 9%C/5 + 32; print F
C=21.0; F= 9.x(C/5.0) + 32; print F
C=21.0; F= 9.0xC/5.0 + 32; print F
C = 21; F = 9%C/5 + 32; print F
C=21.0; F = (1/5)*9%C + 32; print F
C = 21; F = (1./5)%9*C + 32; print F

Exercise 1.16. Find errors in Python statements.
Try the following statements in an interactive Python shell. Explain
why some statements fail and correct the errors.

la = 2
al = b

x =2

=X+ 4 # is it 67
from Math import tan
print tan(pi)
pi = "3.14159’
print tan(gi)
C = A*x3%*2%%3
_ = ((c-78564)/c + 32))
discount = 12
AMOUNT = 120.-
amount = 120%

1.8 Exercises

address = hpl@simula.no

and = duck

class = ’INF1100, gr 2"
continue_ = x > 0
bartype = un Ilj OI’db&I' nnn

rev = fox = True
Norwegian = [’a human language’]
true = fox is rev in Norwegian

Hint: It might be wise to test the values of the expressions on the right-
hand side, and the validity of the variable names, seperately before you
put the left- and right-hand sides together in statements. The last two
statements work, but explaining why goes beyond what is treated in

this chapter.

Exercise 1.17. Find errors in the coding of a formula.

Given a quadratic equation,
ar? +br+c=0,

the two roots are

I T2 =

2a 2a

Why does the following program not work correctly?

a=2; b=1; c =2
from math import sqrt
q = sqrt(bxb - 4*ax*c)
x1 = (b + q)/2*a

x2 = (b - q)/2*a
print x1, x2

b+ Vb — dac —b— Vb? — dac

<

(1.20)

Hint: Compute all terms in (1.20) with the aid of a calculator, and
compare with the corresponding intermediate results computed in the
program (you need to add some print statements to see the result of

q, -b+q, and 2xa).

o

49

