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Recall our first program for evaluating the formula (1.2) on page 18 in
Chapter 1:

C = 21
F = (9/5)*C + 32
print F

In this program, C is input data in the sense that C must be known
before the program can perform the calculation of F. The results pro-
duced by the program, here F, constitute the output data.

Input data can be hardcoded in the program as we do above. That
is, we explicitly set variables to specific values (C = 21). This program-
ming style may be suitable for small programs. In general, however, it
is considered good practice to let a user of the program provide input
data when the program is running. There is then no need to modify
the program itself when a new set of input data is to be explored1.

This chapter starts with describing three different ways of reading
data into a program: (i) letting the user answer questions in a dialog in
the terminal window (Chapter 3.1), (ii) letting the user provide input
on the command line (Chapter 3.2), and (iii) letting the user write
input data in a graphical interface (Chapter 3.4). A fourth method is
to read data from a file, but this topic is left for Chapter 6.

Even if your program works perfectly, wrong input data from the
user may cause the program to produce wrong answers or even crash.
Checking that the input data are correct is important, and Chapter 3.3
tells you how to do this with so-called exceptions.

The Python programming environment is organized as a big col-
lection of modules. Organizing your own Python software in terms of

1 Programmers know that any modification of the source code has a danger of intro-
ducing errors, so it is a good rule to change as little as possible in a program that
works.
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120 3 Input Data and Error Handling

modules is therefore a natural and wise thing to do. Chapter 3.5 tells
you how easy it is to make your own modules.

All the program examples from the present chapter are available in
files in the src/input folder.

3.1 Asking Questions and Reading Answers

One of the simplest ways of getting data into a program is to ask the
user a question, let the user type in an answer, and then read the text
in that answer into a variable in the program. These tasks are done by
calling a function with name raw_input. A simple example involving
the temperature conversion program above will quickly show how to
use this function.

3.1.1 Reading Keyboard Input

We may ask the user a question C=? and wait for the user to enter
a number. The program can then read this number and store it in a
variable C. These actions are performed by the statement

C = raw_input(’C=? ’)

The raw_input function always returns the user input as a string ob-
ject. That is, the variable C above refers to a string object. If we want
to compute with this C, we must convert the string to a floating-point
number: C = float(C). A complete program for reading C and comput-
ing the corresponding degrees in Fahrenheit now becomes

C = raw_input(’C=? ’)
C = float(C)
F = (9./5)*C + 32
print F

In general, the raw_input function takes a string as argument, dis-
plays this string in the terminal window, waits until the user presses the
Return key, and then returns a string object containing the sequence
of characters that the user typed in.

The program above is stored in a file called c2f_qa.py (the qa part
of the name reflects “question and answer”). We can run this program
in several ways, as described in Chapter 1.1.5 and Appendix E.1. The
convention in this book is to indicate the execution by writing the
program name only, but for a real execution you need to do more:
write run before the program name in an interactive IPython session,
or write python before the program name in a terminal session. Here is
the execution of our sample program and the resulting dialog with the
user:
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Terminal

c2f_qa.py
C=? 21
69.8

In this particular example, the raw_input function reads the characters
21 from the keyboard and returns the string ’21’, which we refer to by
the variable C. Then we create a new float object by float(C) and let
the name C refer to this float object, with value 21.

You should now try out Exercises 3.1, 3.4, and 3.6 to make sure you
understand how raw_input behaves.

3.1.2 The Magic “eval” Function

Python has a function eval, which takes a string as argument and
evaluates this string as a Python expression. This functionality can
be used to turn input into running code on the fly. To realize what it
means, we invoke an interactive session:

>>> r = eval(’1+2’)
>>> r
3
>>> type(r)
<type ’int’>

The result of r = eval(’1+2’) is the same as if we had written r = 1+2

directly:

>>> r = 1+2
>>> r
3
>>> type(r)
<type ’int’>

In general, any valid Python expression stored as text in a string s can
be turned into Python code by eval(s). Here is an example where the
string to be evaluated is ’2.5’, which causes Python to see r = 2.5

and make a float object:

>>> r = eval(’2.5’)
>>> r
2.5
>>> type(r)
<type ’float’>

If we put a string, enclosed in quotes, inside the expression string,
the result is a string object:

>>>
>>> r = eval(’"math programming"’)
>>> r
’math programming’
>>> type(r)
<type ’str’>
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Note that we must use two types of quotes: first double quotes to mark
math programming as a string object and then another set of quotes,
here single quotes (but we could also have used triple single quotes), to
embed the text "math programming" inside a string. It does not matter
if we have single or double quotes as inner or outer quotes, i.e., ’"..."’
is the same as "’...’", because ’ and " are interchangeable as long as
a pair of either type is used consistently.

Writing just

>>> r = eval(’math programming’)

is the same as writing

>>> r = math programming

which is an invalid expression. Python will in this case think that math

and programming are two (undefined) variables, and setting two vari-
ables next to each other with a space in between is invalid Python
syntax. However,

>>> r = ’math programming’

is valid syntax, as this is how we initialize a string r in Python. To
repeat, if we put the valid syntax ’math programming’ inside a string,

s = "’math programming’"

eval(s) will evaluate the text inside the double quotes as ’math

programming’, which yields a string.
Let us proceed with some more examples. We can put the initializa-

tion of a list inside quotes and use eval to make a list object:

>>> r = eval(’[1, 6, 7.5]’)
>>> r
[1, 6, 7.5]
>>> type(r)
<type ’list’>

Again, the assignment to r is equivalent to writing

>>> r = [1, 6, 7.5]

We can also make a tuple object by using tuple syntax (standard
parentheses instead of brackets):

>>> r = eval(’(-1, 1)’)
>>> r
(-1, 1)
>>> type(r)
<type ’tuple’>

Another example reads
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>>> from math import sqrt
>>> r = eval(’sqrt(2)’)
>>> r
1.4142135623730951
>>> type(r)
<type ’float’>

At the time we run eval(’sqrt(2)’), this is the same as if we had
written

>>> r = sqrt(2)

directly, and this is valid syntax only if the sqrt function is defined.
Therefore, the import of sqrt prior to running eval is important in
this example.

So, why is the eval function so useful? Recall the raw_input function,
which always returns a string object, which we often must explicitly
transform to a different type, e.g., an int or a float. Sometimes we
want to avoid specifying one particular type. The eval function can
then be of help: we feed the returned string from raw_input to eval and
let the latter function interpret the string and convert it to the right
object. An example may clarify the point. Consider a small program
where we read in two values and add them. The values could be strings,
floats, integers, lists, and so forth, as long as we can apply a + operator
to the values. Since we do not know if the user supplies a string, float,
integer, or something else, we just convert the input by eval, which
means that the user’s syntax will determine the type. The program
goes as follows (add_input.py):

i1 = eval(raw_input(’Give input: ’))
i2 = eval(raw_input(’Give input: ’))
r = i1 + i2
print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

Observe that we write out the two supplied values, together with the
types of the values (obtained by eval), and the sum. Let us run the
program with an integer and a real number as input:

Terminal

add_input.py
Give input: 4
Give input: 3.1
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 7.1

The string ’4’, returned by the first call to raw_input, is interpreted
as an int by eval, while ’3.1’ gives rise to a float object.

Supplying two lists also works fine:

Terminal

add_input.py
Give input: [-1, 3.2]
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Give input: [9,-2,0,0]
<type ’list’> + <type ’list’> becomes <type ’list’>
with value [-1, 3.2000000000000002, 9, -2, 0, 0]

If we want to use the program to add two strings, the strings must
be enclosed in quotes for eval to recognize the texts as string objects
(without the quotes, eval aborts with an error):

Terminal

add_input.py
Give input: ’one string’
Give input: " and another string"
<type ’str’> + <type ’str’> becomes <type ’str’>
with value one string and another string

Not all objects are meaningful to add:

Terminal

add_input.py
Give input: 3.2
Give input: [-1,10]
Traceback (most recent call last):
File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: unsupported operand type(s) for +: ’float’ and ’list’

Another important example on the usefulness of eval is to turn
formulas, given as input, into mathematics in the program. Consider
the program

formula = raw_input(’Give a formula involving x: ’)
x = eval(raw_input(’Give x: ’))
from math import * # make all math functions available
result = eval(formula)
print ’%s for x=%g yields %g’ % (formula, x, result)

First, we ask the reader to provide a formula, e.g., 2*sin(x)+1. The
result is a string object referred to by the formula variable. Then,
we ask for an x value, typically a real number resulting in a float

object. The key statement involves eval(formula), which in the present
example evaluates the expression 2*sin(x)+1. The x variable is defined,
and the sin function is also defined because of the import statement.
Let us try to run the program:

Terminal

eval_formula.py
Give a formula involving x: 2*sin(x)+1
Give x: 3.14
2*sin(x)+1 for x=3.14 yields 1.00319

Another important application of eval occurs in Chapter 3.2.1.
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3.1.3 The Magic “exec”Function

Having presented eval for turning strings into Python code, we take
the opportunity to also describe the related exec function to execute a
string containing arbitrary Python code, not only an expression. Sup-
pose the user can write a formula as input to the program, and that
we want to turn this formula into a callable Python function. That is,
writing sin(x)*cos(3*x) + x**2 as the formula, we would like to get a
function

def f(x):
return sin(x)*cos(3*x) + x**2

This is easy with exec:

formula = raw_input(’Write a formula involving x: ’)
code = """
def f(x):

return %s
""" % formula
exec(code)

If we respond with the text sin(x)*cos(3*x) + x**2 to the question,
formula will hold this text, which is inserted into the code string such
that it becomes

"""
def f(x):

return sin(x)*cos(3*x) + x**2
"""

Thereafter, exec(code) executes the code as if we had written the con-
tents of the code string directly into the program by hand. With this
technique, we can turn any user-given formula into a Python function!

Let us try out such code generation on the fly. We add a while loop
to the previous code snippet defining f(x) such that we can provide x

values and get f(x) evaluated:

x = 0
while x is not None:

x = eval(raw_input(’Give x (None to quit): ’))
if x is not None:

print ’f(%g)=%g’ % (x, f(x))

As long as we provide numbers as input for x, we evaluate the f(x)

function, but when we provide the text None, x becomes a None object
and the test in the while loop fails, i.e., the loop terminates. The com-
plete program is found in the file user_formula.py. Here is a sample
run:

Terminal

user_formula.py
Write a formula involving x: x**4 + x
Give x (None to quit): 1
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f(1)=2
Give x (None to quit): 4
f(4)=260
Give x (None to quit): 2
f(2)=18
Give x (None to quit): None

3.1.4 Turning String Expressions into Functions

The examples in the previous section indicate that it can be handy
to ask the user for a formula and turn that formula into a Python
function. Since this operation is so useful, we have made a special tool
that hides the technicalities. The tool is named StringFunction and
works as follows:

>>> from scitools.StringFunction import StringFunction
>>> formula = ’exp(x)*sin(x)’
>>> f = StringFunction(formula) # turn formula into function f(x)

The f object now behaves as an ordinary Python function of x:

>>> f(0)
0.0
>>> f(pi)
2.8338239229952166e-15
>>> f(log(1))
0.0

Expressions involving other independent variables than x are also pos-
sible. Here is an example with the function g(t) = Ae−at sin(ωx):

g = StringFunction(’A*exp(-a*t)*sin(omega*x)’,
independent_variable=’t’,
A=1, a=0.1, omega=pi, x=0.5)

The first argument is the function formula, as before, but now we need
to specify the name of the independent variable (’x’ is default). The
other parameters in the function (A, a, ω, and x) must be specified with
values, and we use keyword arguments, consistent with the names in
the function formula, for this purpose. Any of the parameters A, a,
omega, and x can be changed later by calls like

g.set_parameters(omega=0.1)
g.set_parameters(omega=0.1, A=5, x=0)

Calling g(t) works as if g were a plain Python function of t, which
“remembers” all the parameters A, a, omega, and x, and their values.
You can use pydoc (see page 98) to bring up more documentation on
the possibilities with StringFunction. Just run

pydoc scitools.StringFunction.StringFunction
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A final important point is that StringFunction objects are as compu-
tationally efficient as hand-written Python functions2.

3.2 Reading from the Command Line

Programs running on Unix computers usually avoid asking the user
questions. Instead, input data are very often fetched from the com-
mand line. This section explains how we can access information on the
command line in Python programs.

3.2.1 Providing Input on the Command Line

We look at the Celsius-Fahrenheit conversion program again. The idea
now is to provide the Celsius input temperature as a command-line
argument right after the program name. That is, we write the program
name, here c2f_cml_v1.py3, followed the Celsius temperature:

Terminal

c2f_cml_v1.py 21
69.8

Inside the program we can fetch the text 21 as sys.argv[1]. The sys

module has a list argv containing all the command-line arguments to
the program, i.e., all the “words” appearing after the program name
when we run the program. Here there is only one argument and it is
stored with index 1. The first element in the sys.argv list, sys.argv[0],
is always the name of the program.

A command-line argument is treated as a text, so sys.argv[1] refers
to a string object, in this case ’21’. Since we interpret the command-
line argument as a number and want to compute with it, it is necessary
to explicitly convert the string to a float object. In the program we
therefore write4

import sys
C = float(sys.argv[1])
F = 9.0*C/5 + 32
print F

2 This property is quite remarkable in computer science – a string formula will in
most other languages be much slower than if the formula were hardcoded inside a
plain function.

3 The cml part of the name is an abbreviation for “command line”, and v1 denotes
“version 1”, as usual.

4 We could write 9 instead of 9.0, in the formula for F, since C is guaranteed to be
float, but it is safer to write 9.0. One could think of modifying the conversion of
the command-line argument to eval(sys.argv[1]), and in that case C can easily
be an int.
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As another example, consider the ball_variables.py program from
Chapter 1.1.7. Instead of hardcoding the values of v0 and t in the
program we can read the two values from the command line:

Terminal

ball_variables2.py 0.6 5
1.2342

The two command-line arguments are now available as sys.argv[1] and
sys.argv[2]. The complete ball_variables2.py program thus looks as

import sys
t = float(sys.argv[1])
v0 = float(sys.argv[2])
g = 9.81
y = v0*t - 0.5*g*t**2
print y

Our final example here concerns a program that can add two input
objects (file add_cml.py, corresponding to add_input.py from Chap-
ter 3.1.1):

import sys
i1 = eval(sys.argv[1])
i2 = eval(sys.argv[2])
r = i1 + i2
print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

A key issue here is that we apply eval to the command-line arguments
and thereby convert the strings into appropriate objects. Here is an
example on execution:

Terminal

add_cml.py 2 3.1
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 5.1

3.2.2 A Variable Number of Command-Line Arguments

Let us make a program addall.py that adds all its command-line ar-
guments. That is, we may run something like

Terminal

addall.py 1 3 5 -9.9
The sum of 1 3 5 -9.9 is -0.9

The command-line arguments are stored in the sublist sys.argv[1:].
Each element is a string so we must perform a conversion to float

before performing the addition. There are many ways to write this
program. Let us start with version 1, addall_v1.py:
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import sys
s = 0
for arg in sys.argv[1:]:

number = float(arg)
s += number

print ’The sum of ’,
for arg in sys.argv[1:]:

print arg,
print ’is ’, s

The output is on one line, but built of several print statements (note
the trailing comma which prevents the usual newline, cf. page 91). The
command-line arguments must be converted to numbers in the first
for loop because we need to compute with them, but in the second
loop we only need to print them and then the string representation is
appropriate.

The program above can be written more compactly if desired:

import sys
s = sum([float(x) for x in sys.argv[1:]])
print ’The sum of %s is %s’ % (’ ’.join(sys.argv[1:]), s)

Here, we convert the list sys.argv[1:] to a list of float objects and
then pass this list to Python’s sum function for adding the numbers.
The construction S.join(L) places all the elements in the list L after
each other with the string S in between. The result here is a string
with all the elements in sys.argv[1:] and a space in between, i.e.,
the text that originally appeared on the command line. Chapter 6.3.1
contains more information on join and many other very useful string
operations.

3.2.3 More on Command-Line Arguments

Unix commands make heavy use of command-line arguments. For ex-
ample, when you write ls -s -t to list the files in the current folder,
you run the program ls with two command-line arguments: -s and -t.
The former specifies that ls shall print the file name together with the
size of the file, and the latter sorts the list of files according to their
dates of last modification (the most recently modified files appear first).
Similarly, cp -r my new for copying a folder tree my to a new folder tree
new invokes the cp program with three command line arguments: -r

(for recursive copying of files), my, and new. Most programming lan-
guages have support for extracting the command-line arguments given
to a program.

command-line arguments are separated by blanks. What if we
want to provide a text containing blanks as command-line argument?
The text containing blanks must then appear inside single or double
quotes. Let us demonstrate this with a program that simply prints the
command-line arguments:
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import sys, pprint
pprint.pprint(sys.argv[1:])

Say this program is named print_cml.py. The execution

Terminal

print_cml.py 21 a string with blanks 31.3
[’21’, ’a’, ’string’, ’with’, ’blanks’, ’31.3’]

demonstrates that each word on the command line becomes an element
in sys.argv. Enclosing strings in quotes, as in

Terminal

print_cml.py 21 "a string with blanks" 31.3
[’21’, ’a string with blanks’, ’31.3’]

shows that the text inside the quotes becomes a single command line
argument.

3.2.4 Option–Value Pairs on the Command Line

The examples on using command-line arguments so far require the user
of the program to type all arguments in their right sequence, just as
when calling a function with positional arguments. It would be very
convenient to assign command-line arguments in the same way as we
use keyword arguments. That is, arguments are associated with a name,
their sequence can be arbitrary, and only the arguments where the de-
fault value is not appropriate need to be given. Such type of command-
line arguments may have -option value pairs, where “option” is some
name of the argument.

As usual, we shall use an example to illustrate how to work with
-option value pairs. Consider the (hopefully well-known) physics for-
mula for the location s(t) of an object at time t, if the object started
at s = s0 at t = 0 with a velocity v0, and thereafter was subject to a
constant acceleration a:

s(t) = s0 + v0t +
1

2
at2 . (3.1)

This formula requires four input variables: s0, v0, a, and t. We can
make a program location.py that takes four options, --s0, --v0, --a,
and --t on the command line. The program is typically run like this:

Terminal

location.py --t 3 --s0 1 --v0 1 --a 0.5

The sequence of -option value pairs is arbitrary.
All input variables should have sensible default values such that we

can leave out the options for which the default value is suitable. For
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example, if s0 = 0, v0 = 0, a = 1, and t = 1 by default, and we only
want to change t, we can run

Terminal

location.py --t 3

The standard Python module getopt supports reading -option

value pairs on the command line. The recipe for using getopt goes
as follows in the present example:

# set default values:
s0 = v0 = 0; a = t = 1
import getopt, sys
options, args = getopt.getopt(sys.argv[1:], ’’,

[’t=’, ’s0=’, ’v0=’, ’a=’])

Note that we specify the option names without the leading double
hyphen. The trailing = character indicates that the option is supposed
to be followed by a value (without = only the option and not its value
can be specified on the command line – this is basically suitable for
boolean variables only).

The returned options object is a list of (option, value) 2-tuples con-
taining the -option value pairs found on the command line. For ex-
ample, the options list may be

[(’--v0’, 1.5), (’--t’, 0.1), (’--a’, 3)]

In this case, the user specified v0, t, and a, but not s0 on the com-
mand line. The args object returned from getopt.getopt is a list of all
the remaining command line arguments, i.e., the arguments that are
not -option value pairs. The args variable has no use in our current
example.

The typical way of processing the options list involves testing on
the different option names:

for option, value in options:
if option == ’--t’:

t = float(value)
elif option == ’--a’:

a = float(value)
elif option == ’--v0’:

v0 = float(value)
elif option == ’--s0’:

s0 = float(value)

Sometimes a more descriptive options, say --initial_velocity, is of-
fered in addition to the short form -v0. Similarly, --initial_position
can be offered as an alternative to -s0. We may add as many alternative
options as we like:

options, args = getopt.getopt(sys.argv[1:], ’’,
[’v0=’, ’initial_velocity=’, ’t=’, ’time=’,
’s0=’, ’initial_velocity=’, ’a=’, ’acceleration=’])
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for option, value in options:
if option in (’--t’, ’--time’):

t = float(value)
elif option in (’--a’, ’--acceleration’):

a = float(value)
elif option in (’--v0’, ’--initial_velocity’):

v0 = float(value)
elif option in (’--s0’, ’--initial_position’):

s0 = float(value)

At this point in the program we have all input data, either by their
default values or by user-given command-line arguments, and we can
finalize the program by computing the formula (3.1) and printing out
the result:

s = s0 + v0*t + 0.5*a*t**2
print """
An object, starting at s=%g at t=0 with initial
velocity %s m/s, and subject to a constant
acceleration %g m/s**2, is found at the
location s=%g m after %s seconds.
""" % (s0, v0, a, s, t)

A complete program using the getopt module as explained above is
found in the file location.py in the input folder.

3.3 Handling Errors

Suppose we forget to provide a command-line argument to the
c2f_cml_v1.py program from Chapter 3.2.1:

Terminal

c2f_cml_v1.py
Traceback (most recent call last):
File "c2f_cml_v1.py", line 2, in ?
C = float(sys.argv[1])

IndexError: list index out of range

Python aborts the program and shows an error message containing
the line where the error occured, the type of the error (IndexError),
and a quick explanation of what the error is. From this information we
deduce that the index 1 is out of range. Because there are no command-
line arguments in this case, sys.argv has only one element, namely the
program name. The only valid index is then 0.

For an experienced Python programmer this error message will nor-
mally be clear enough to indicate what is wrong. For others it would
be very helpful if wrong usage could be detected by our program and a
description of correct operation could be printed. The question is how
to detect the error inside the program.

The problem in our sample execution is that sys.argv does not con-
tain two elements (the program name, as always, plus one command-
line argument). We can therefore test on the length of sys.argv to
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detect wrong usage: if len(sys.argv) is less than 2, the user failed to
provide information on the C value. The new version of the program,
c2f_cml_v1.py, starts with this if test:

if len(sys.argv) < 2:
print ’You failed to provide Celsius degrees as input ’\

’on the command line!’
sys.exit(1) # abort because of error

F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

We use the sys.exit function to abort the program. Any argument
different from zero signifies that the program was aborted due to an
error, but the precise value of the argument does not matter so here
we simply choose it to be 1. If no errors are found, but we still want
to abort the program, sys.exit(0) is used.

A more modern and flexible way of handling potential errors in a
program is to try to execute some statements, and if something goes
wrong, the program can detect this and jump to a set of statements
that handle the erroneous situation as desired. The relevant program
construction reads

try:
<statements>

except:
<statements>

If something goes wrong when executing the statements in the try

block, Python raises what is known as an exception. The execution
jumps directly to the except block whose statements can provide a
remedy for the error. The next section explains the try-except con-
struction in more detail through examples.

3.3.1 Exception Handling

To clarify the idea of exception handling, let us use a try-except block
to handle the potential problem arising when our Celsius-Fahrenheit
conversion program lacks a command-line argument:

import sys
try:

C = float(sys.argv[1])
except:

print ’You failed to provide Celsius degrees as input ’\
’on the command line!’

sys.exit(1) # abort
F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

The program is stored in the file c2f_cml_v3.py. If the command-line
argument is missing, the indexing sys.argv[1], which has an invalid
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index 1, raises an exception. This means that the program jumps di-
rectly5 to the except block. In the except block, the programmer can
retrieve information about the exception and perform statements to
recover from the error. In our example, we know what the error can
be, and therefore we just print a message and abort the program.

Suppose the user provides a command-line argument. Now, the try

block is executed successfully, and the program neglects the except

block and continues with the Fahrenheit conversion. We can try out
the last program in two cases:

Terminal

c2f_cml_v3.py
You failed to provide Celsius degrees as input on the command line!

c2f_cml_v3.py 21
21C is 69.8F

In the first case, the illegal index in sys.argv[1] causes an exception to
be raised, and we perform the steps in the except block. In the second
case, the try block executes successfully, so we jump over the except

block and continue with the computations and the printout of results.
For a user of the program, it does not matter if the programmer

applies an if test or exception handling to recover from a missing
command-line argument. Nevertheless, exception handling is consid-
ered a better programming solution because it allows more advanced
ways to abort or continue the execution. Therefore, we adopt exception
handling as our standard way of dealing with errors in the rest of this
book.

Testing for a Specific Exception. Consider the assignment

C = float(sys.argv[1])

There are two typical errors associated with this statement: i)
sys.argv[1] is illegal indexing because no command-line arguments
are provided, and ii) the content in the string sys.argv[1] is not a
pure number that can be converted to a float object. Python detects
both these errors and raises an IndexError exception in the first case
and a ValueError in the second. In the program above, we jump
to the except block and issue the same message regardless of what
went wrong in the try block. For example, when we indeed provide
a command-line argument, but write it on an illegal form (21C), the
program jumps to the except block and prints a misleading message:

Terminal

c2f_cml_v3.py 21C
You failed to provide Celsius degrees as input on the command line!

5 This implies that float is not called, and C is not initialized with a value.
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The solution to this problem is to branch into different except blocks
depending on what type of exception that was raised in the try block
(program c2f_cml_v4.py):

import sys
try:

C = float(sys.argv[1])
except IndexError:

print ’Celsius degrees must be supplied on the command line’
sys.exit(1) # abort execution

except ValueError:
print ’Celsius degrees must be a pure number, ’\

’not "%s"’ % sys.argv[1]
sys.exit(1)

F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

Now, if we fail to provide a command-line argument, an IndexError

occurs and we tell the user to write the C value on the command line.
On the other hand, if the float conversion fails, because the command-
line argument has wrong syntax, a ValueError exception is raised and
we branch into the second except block and explain that the form of
the given number is wrong:

Terminal

c2f_cml_v3.py 21C
Celsius degrees must be a pure number, not "21C"

Examples on Exception Types. List indices out of range lead to
IndexError exceptions:

>>> data = [1.0/i for i in range(1,10)]
>>> data[9]
...
IndexError: list index out of range

Some programming languages (Fortran, C, C++, and Perl are exam-
ples) allow list indices outside the legal index values, and such un-
noticed errors can be hard to find. Python always stops a program
when an invalid index is encountered, unless you handle the exception
explicitly as a programmer.

Converting a string to float is unsuccessful and gives a ValueError

if the string is not a pure integer or real number:

>>> C = float(’21 C’)
...
ValueError: invalid literal for float(): 21 C

Trying to use a variable that is not initialized gives a NameError excep-
tion:
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>>> print a
...
NameError: name ’a’ is not defined

Division by zero rasies a ZeroDivisionError exception:

>>> 3.0/0
...
ZeroDivisionError: float division

Writing a Python keyword illegally or performing a Python grammar
error leads to a SyntaxError exception:

>>> forr d in data:
...

forr d in data:
^

SyntaxError: invalid syntax

What if we try to multiply a string by a number?

>>> ’a string’*3.14
...
TypeError: can’t multiply sequence by non-int of type ’float’

The TypeError exception is raised because the object types involved in
the multiplication are wrong (str and float).

Digression. It might come as a surprise, but multiplication of a string
and a number is legal if the number is an integer. The multiplication
means that the string should be repeated the specified number of times.
The same rule also applies to lists:

>>> ’--’*10 # ten double dashes = 20 dashes
’--------------------’
>>> n = 4
>>> [1, 2, 3]*n
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> [0]*n
[0, 0, 0, 0]

The latter construction is handy when we want to create a list of n

elements and later assign specific values to each element in a for loop.

3.3.2 Raising Exceptions

When an error occurs in your program, you may either print a mes-
sage and use sys.exit(1) to abort the program, or you may raise an
exception. The latter task is easy. You just write raise E(message),
where E can be a known exception type in Python and message is a
string explaining what is wrong. Most often E means ValueError if the
value of some variable is illegal, or TypeError if the type of a variable
is wrong. You can also define your own exception types.
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Example. In the program c2f_cml_v4.py from page 135 we show how
we can test for different exceptions and abort the program. Sometimes
we see that an exception may happen, but if it happens, we want a more
precise error message to help the user. This can be done by raising a
new exception in an except block and provide the desired exception
type and message.

Another application of raising exceptions with tailored error mes-
sages arises when input data are invalid. The code below illustrates
how to raise exceptions in various cases.

We collect the reading of C and handling of errors a separate func-
tion:

def read_C():
try:

C = float(sys.argv[1])
except IndexError:

raise IndexError\
(’Celsius degrees must be supplied on the command line’)

except ValueError:
raise ValueError\
(’Celsius degrees must be a pure number, ’\
’not "%s"’ % sys.argv[1])

# C is read correctly as a number, but can have wrong value:
if C < -273.15:

raise ValueError(’C=%g is a non-physical value!’ % C)
return C

There are two ways of using the read_C function. The simplest is to
call the function,

C = read_C()

Wrong input will now lead to a raw dump of exceptions, e.g.,

Terminal

c2f_cml_v5.py
Traceback (most recent call last):
File "c2f_cml4.py", line 5, in ?
raise IndexError\

IndexError: Celsius degrees must be supplied on the command line

New users of this program may become uncertain when getting raw
output from exceptions, because words like Traceback, raise, and
IndexError do not make much sense unless you have some experience
with Python. A more user-friendly output can be obtained by calling
the read_C function inside a try-except block, check for any excep-
tion (or better: check for IndexError or ValueError), and write out the
exception message in a more nicely formatted form. In this way, the
programmer takes complete control of how the program behaves when
errors are encountered:
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try:
C = read_C()

except Exception, e:
print e # exception message
sys.exit(1) # terminate execution

Exception is the parent name of all exceptions, and e is an exception
object. Nice printout of the exception message follows from a straight
print e. Instead of Exception we can write (ValueError, IndexError)

to test more specifically for two exception types we can expect from
the read_C function:

try:
C = read_C()

except (ValueError, IndexError), e:
print e # exception message
sys.exit(1) # terminate execution

After the try-except block above, we can continue with computing F =

9*C/5 + 32 and print out F. The complete program is found in the file
c2f_cml.py. We may now test the program’s behavior when the input
is wrong and right:

Terminal

c2f_cml.py
Celsius degrees must be supplied on the command line

c2f_cml.py 21C
Celsius degrees must be a pure number, not "21C"

c2f_cml.py -500
C=-500 is a non-physical value!

c2f_cml.py 21
21C is 69.8F

This program deals with wrong input, writes an informative message,
and terminates the execution without annoying behavior.

Scattered if tests with sys.exit calls are considered a bad program-
ming style compared to the use of nested exception handling as illus-
trated above. You should abort execution in the main program only,
not inside functions. The reason is that the functions can be re-used
in other occasions where the error can be dealt with differently. For
instance, one may avoid abortion by using some suitable default data.

The programming style illustrated above is considered the best way
of dealing with errors, so we suggest that you hereafter apply exceptions
for handling potential errors in the programs you make, simply because
this is what experienced programmers expect from your codes.
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3.4 A Glimpse of Graphical User Interfaces

Maybe you find it somewhat strange that the usage of the programs
we have made so far in this book – and the programs we will make in
the rest of the book – are less graphical and intuitive than the com-
puter programs you are used to from school or entertainment. Those
programs are operated through some self-explaning graphics, and most
of the things you want to do involve pointing with the mouse, clicking
on graphical elements on the screen, and maybe filling in some text
fields. The programs in this book, on the other hand, are run from the
command line in a terminal window or inside IPython, and input is
also given here in form of plain text.

The reason why we do not equip the programs in this book with
graphical interfaces for providing input, is that such graphics is both
complicated and tedious to write. If the aim is to solve problems from
mathematics and science, we think it is better to focus on this part
rather than large amounts of code that merely offers some “expected”
graphical cosmetics for putting data into the program. Textual input
from the command line is also quicker to provide. Also remember that
the computational functionality of a program is obviously independent
from the type of user interface, textual or graphic.

As an illustration, we shall now show a Celsius to Fahrenheit conver-
sion program with a graphical user interface (often called a GUI). The
GUI is shown in Figure 3.1. We encourage you to try out the graphi-
cal interface – the name of the program is c2f_gui.py. The complete
program text is listed below.

Fig. 3.1 Screen dump of the graphical interface for a Celsius to Fahrenheit conversion
program. The user can type in the temperature in Celsius degrees, and when clicking
on the “is” button, the corresponding Fahrenheit value is displayed.

from Tkinter import *
root = Tk()
C_entry = Entry(root, width=4)
C_entry.pack(side=’left’)
Cunit_label = Label(root, text=’Celsius’)
Cunit_label.pack(side=’left’)

def compute():
C = float(C_entry.get())
F = (9./5)*C + 32
F_label.configure(text=’%g’ % F)

compute = Button(root, text=’ is ’, command=compute)
compute.pack(side=’left’, padx=4)

F_label = Label(root, width=4)
F_label.pack(side=’left’)
Funit_label = Label(root, text=’Fahrenheit’)
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Funit_label.pack(side=’left’)

root.mainloop()

The goal of the forthcoming dissection of this program is to give
a taste of how graphical user interfaces are coded. The aim is not to
equip you with knowledge on how you can make such programs on your
own.

A GUI is built of many small graphical elements, called widgets.
The graphical window generated by the program above and shown in
Figure 3.1 has five such widgets. To the left there is an entry widget
where the user can write in text. To the right of this entry widget is
a label widget, which just displays some text, here “Celsius”. Then we
have a button widget, which when being clicked leads to computations
in the program. The result of these computations is displayed as text
in a label widget to the right of the button widget. Finally, to the
right of this result text we have another label widget displaying the
text “Fahrenheit”. The program must construct each widget and pack
it correctly into the complete window. In the present case, all widgets
are packed from left to right.

The first statement in the program imports functionality from the
GUI toolkit Tkinter to construct widgets. First, we need to make a
root widget that holds the complete window with all the other widgets.
This root widget is of type Tk. The first entry widget is then made and
referred to by a variable C_entry. This widget is an object of type
Entry, provided by the Tkinter module. Widgets constructions follow
the syntax

variable_name = Widget_type(parent_widget, option1, option2, ...)
variable_name.pack(side=’left’)

When creating a widget, we must bind it to a parent widget, which is
the graphical element in which this new widget is to be packed. Our
widgets in the present program have the root widget as parent widget.
Various widgets have different types of options that we can set. For
example, the Entry widget has a possibility for setting the width of the
text field, here width=4 means that the text field is 4 characters wide.
The pack statement is important to remember – without it, the widget
remains invisible.

The other widgets are constructed in similar ways. The next fun-
damental feature of our program is how computations are tied to the
event of clicking the button “is”. The Button widget has naturally a
text, but more important, it binds the button to a function compute

through the command=compute option. This means that when the user
clicks the button “is”, the function compute is called. Inside the compute

function we first fetch the Celsius value from the C_entry widget, using
this widget’s get function, then we transform this string (everything
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typed in by the user is interpreted as text and stored in strings) to a
float before we compute the corresponding Fahrenheit value. Finally,
we can update (“configure”) the text in the Label widget F_label with
a new text, namely the computed degrees in Fahrenheit.

A program with a GUI behaves differently from the programs we
construct in this book. First, all the statements are executed from top
to bottom, as in all our other programs, but these statements just con-
struct the GUI and define functions. No computations are performed.
Then the program enters a so-called event loop: root.mainloop(). This
is an infinite loop that “listens” to user events, such as moving the
mouse, clicking the mouse, typing characters on the keyboard, etc.
When an event is recorded, the program starts performing associated
actions. In the present case, the program waits for only one event:
clicking the button “is”. As soon as we click on the button, the compute

function is called and the program starts doing mathematical work.
The GUI will appear on the screen until we destroy the window by
click on the X up in the corner of the window decoration. More com-
plicated GUIs will normally have a special “Quit” button to terminate
the event loop.

In all GUI programs, we must first create a hierarchy of widgets to
build up all elements of the user interface. Then the program enters an
event loop and waits for user events. Lots of such events are registered
as actions in the program when creating the widgets, so when the user
clicks on buttons, move the mouse into certain areas, etc., functions in
the program are called and “things happen”.

Many books explain how to make GUIs in Python programs, see for
instance [2, 3, 5, 7].

3.5 Making Modules

Sometimes you want to reuse a function from an old program in a new
program. The simplest way to do this is to copy and paste the old source
code into the new program. However, this is not good programming
practice, because you then over time end up with multiple identical
versions of the same function. When you want to improve the function
or correct a bug, you need to remember to do the same update in all
files with a copy of the function, and in real life most programmers
fail to do so. You easily end up with a mess of different versions with
different quality of basically the same code. Therefore, a golden rule of
programming is to have one and only one version of a piece of code.
All programs that want to use this piece of code must access one and
only one place where the source code is kept. This principle is easy to
implement if we create a module containing the code we want to reuse
later in different programs.
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You learned already in Chapter 1 how to import functions from
Python modules. Now you will learn how to make your own modules.
There is hardly anything to learn, because you just collect all the func-
tions that constitute the module in one file, say with name mymodule.py.
This file is automatically a module, with name mymodule, and you can
import functions from this module in the standard way. Let us make
everything clear in detail by looking at an example.

3.5.1 Example: Compund Interest Formulas

The classical formula for the growth of money in a bank reads6

A = A0

(
1 +

p

360 · 100

)n
, (3.2)

where A0 is the initial amount of money, and A is the present amount
after n days with p percent annual interest rate. Equation (3.2) involves
four parameters: A, A0, p, and n. We may solve for any of these, given
the other three:

A0 = A
(
1 +

p

360 · 100

)−n
, (3.3)

n =
ln A

A0

ln
(
1 + p

360·100
) , (3.4)

p = 360 · 100

((
A

A0

)1/n

− 1

)
(3.5)

Suppose we have implemented (3.2)–(3.5) in four functions:

from math import log as ln

def present_amount(A0, p, n):
return A0*(1 + p/(360.0*100))**n

def initial_amount(A, p, n):
return A*(1 + p/(360.0*100))**(-n)

def days(A0, A, p):
return ln(A/A0)/ln(1 + p/(360.0*100))

def annual_rate(A0, A, n):
return 360*100*((A/A0)**(1.0/n) - 1)

We want to make these functions available in a module, say with
name interest, so that we can import functions and compute with
them in a program. For example,

6 The formula applies the so-called Actual/360 convention where the rate per day
is computed as p/360, while n counts the actual number of days the money is in
the bank. See “Day count convention” in Wikipedia for detailed information and
page 238 for a Python module for computing the number of days between two dates.
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from interest import days
A0 = 1; A = 2; p = 5
n = days(A0, 2, p)
years = n/365.0
print ’Money has doubled after %.1f years’ % years

How to make the interest module is described next.

3.5.2 Collecting Functions in a Module File

To make a module of the four functions present_amount,
initial_amount, days, and annual_rate, we simply open an empty
file in a text editor and copy the program code for all the four func-
tions over to this file. This file is then automatically a Python module
provided we save the file under any valid filename. The extension must
be .py, but the module name is only the base part of the filename. In
our case, the filename interest.py implies a module name interest.
To use the annual_rate function in another program we simply write,
in that program file,

from interest import annual_rate

or we can write

from interest import *

to import all four functions, or we can write

import interest

and access individual functions as interest.annual_rate and so forth.

Test Block. It is recommended to only have functions and not any
statements outside functions in a module7. However, Python allows a
special construction to let the file act both as a module with function
definitions only and as an ordinary program that we can run, i.e., with
statements that apply the functions and possibly write output. This
two-fold “magic” consists of putting the application part after an if

test of the form

if __name__ == ’__main__’:
<block of statements>

The __name__ variable is automatically defined in any module and
equals the module name if the module file is imported in another pro-
gram, or __name__ equals the string ’__main__’ if the module file is

7 The module file is executed from top to bottom during the import. With function
definitions only in the module file, there will be no calculations or output from the
import, just definitions of functions. This is the desirable behavior.
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run as a program. This implies that the <block of statements> part is
executed if and only if we run the module file as a program. We shall
refer to <block of statements> as the test block of a module.

Often, when modules are created from an ordinary program, the
original main program is used as test block. The new module file then
works as the old program, but with the new possibility of being im-
ported in other programs. Let us write a little main program for testing
the interest module. The idea is that we assign compatible values to
the four parameters and check that given three of them, the functions
calculate the remaining parameter in the correct way:

if __name__ == ’__main__’:
A = 2.2133983053266699
A0 = 2.0
p = 5
n = 730
print ’A=%g (%g)\nA0=%g (%.1f)\nn=%d (%d)\np=%g (%.1f)’ % \

(present_amount(A0, p, n), A,
initial_amount(A, p, n), A0,
days(A0, A, p), n,
annual_rate(A0, A, n), p)

Running the module file as a program is now possible:

Terminal

interest.py
A=2.2134 (2.2134)
A0=2 (2.0)
n=730 (730)
p=5 (5.0)

The computed values appear after the equal sign, with correct values
in parenthesis. We see that the program works well.

To test that the interest.py also works as a module, invoke a Python
shell and try to import a function and compute with it:

>>> from interest import present_amount
>>> present_amount(2, 5, 730)
2.2133983053266699

We have therefore demonstrated that the file interest.py works both
as a program and as a module.

Flexible Test Blocks. It is a good programming practice to let the test
block do one or more of three things: (i) provide information on how
the module or program is used, (ii) test if the module functions work
properly, and (iii) offer interaction with users such that the module file
can be applied as a useful program.

Instead of having a lot of statements in the test block, it might be
better to collect the statements in separate functions, which then are
called from the test block. A convention is to let these test or documen-
tation functions have names starting with an underscore, because such
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names are not imported in other programs when doing a from module

import * (normally we do not want to import test or documentation
functions). In our example we may collect the verification statements
above in a separate function and name this function _verify (observe
the leading underscore). We also write the code a bit more explicit to
better demonstrate how the module functions can be used:

def _verify():
# compatible values:
A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730
# given three of these, compute the remaining one
# and compare with the correct value (in parenthesis):
A_computed = present_amount(A0, p, n)
A0_computed = initial_amount(A, p, n)
n_computed = days(A0, A, p)
p_computed = annual_rate(A0, A, n)
print ’A=%g (%g)\nA0=%g (%.1f)\nn=%d (%d)\np=%g (%.1f)’ % \

(A_computed, A, A0_computed, A0,
n_computed, n, p_computed, p)

We may require a single command-line argument verify to run the
verification. The test block can then be expressed as

if __name__ == ’__main__’:
if len(sys.argv) == 2 and sys.argv[1] == ’verify’:

_verify()

To make a useful program, we may allow setting three parameters
on the command line and let the program compute the remaining pa-
rameter. For example, running the program as

Terminal

interest.py A0=2 A=1 n=1095

should lead to a computation of p, in this case for seeing the size of the
annual interest rate if the amount is to be doubled after three years.

How can we achieve the desired functionality? Since variables are
already introduced and “initialized” on the command line, we could
grab this text and execute it as Python code, either as three different
lines or with semicolon between each assignment. This is easy8:

init_code = ’’
for statement in sys.argv[1:]:

init_code += statement + ’\n’
exec(init_code)

For the sample run above with A0=2 A=1 n=1095 on the command line,
init_code becomes the string

A0=2
A=1
n=1095

8 The join function on page 295 in Chapter 6.3.1, see also page 129, is more elegant
and avoids the loop.
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Note that one cannot have spaces around the equal signs on the
command line as this will break an assignment like A0 = 2 into
three command-line arguments, which will give rise to a SyntaxError

in exec(init_code). To tell the user about such errors, we execute
init_code inside a try-except block:

try:
exec(init_code)

except SyntaxError, e:
print e
print init_code
sys.exit(1)

At this stage, our program has hopefully initialized three parameters
in a successful way, and it remains to detect the remaining parameter
to be computed. The following code does the work:

if ’A=’ not in init_code:
print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:
print ’A0 =’, initial_amount(A, p, n)

elif ’n=’ not in init_code:
print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:
print ’p =’, annual_rate(A0, A, n)

It may happen that the user of the program assign value to a parameter
with wrong name or forget a parameter. In those cases we call one of
our four functions with uninitialized arguments. Therefore, we should
embed the code above in a try-except block. An unitialized variable
will lead to a NameError, while another frequent error is illegal values
in the computations, leading to a ValueError exception. It is also a
good habit to collect all the code related to computing the remaining,
fourth parameter in a function for separating this piece of code from
other parts of the module file:

def _compute_missing_parameter(init_code):
try:

exec(init_code)
except SyntaxError, e:

print e
print init_code
sys.exit(1)

# find missing parameter:
try:

if ’A=’ not in init_code:
print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:
print ’A0 =’, initial_amount(A, p, n)

elif ’n=’ not in init_code:
print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:
print ’p =’, annual_rate(A0, A, n)

except NameError, e:
print e
sys.exit(1)

except ValueError:
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print ’Illegal values in input:’, init_code
sys.exit(1)

If the user of the program fails to give any command-line arguments,
we print a usage statement. Otherwise, we run a verification if the
first command-line argument is “verify”, and else we run the missing
parameter computation (i.e., the useful main program):

_filename = sys.argv[0]
_usage = """
Usage: %s A=10 p=5 n=730
Program computes and prints the 4th parameter’
(A, A0, p, or n)""" % _filename

if __name__ == ’__main__’:
if len(sys.argv) == 1:

print _usage
elif len(sys.argv) == 2 and sys.argv[1] == ’verify’:

_verify()
else:

init_code = ’’
for statement in sys.argv[1:]:

init_code += statement + ’\n’
_compute_missing_parameter(init_code)

Note leading underscores in variable names that are to be used locally
in the interest.py file only.

It is also a good habit to include a doc string in the beginning of
the module file. This doc string explains the purpose and use of the
module:

"""
Module for computing with interest rates.
Symbols: A is present amount, A0 is initial amount,
n counts days, and p is the interest rate per year.

Given three of these parameters, the fourth can be
computed as follows:

A = present_amount(A0, p, n)
A0 = initial_amount(A, p, n)
n = days(A0, A, p)
p = annual_rate(A0, A, n)

"""

You can run the pydoc program to see a documentation of the new
module, containing the doc string above and a list of the functions in
the module: just write pydoc interest in a terminal window.

Now the reader is recommended to take a look at the actual file
interest.py in src/input to see all elements of a good module file at
once: doc string, set of functions, verification function, “main program
function”, usage string, and test block.
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3.5.3 Using Modules

Let us further demonstrate how to use the interest.py module in pro-
grams. For illustration purposes, we make a separate program file, say
with name test.py, containing some computations:

from interest import days

# how many days does it take to double an amount when the
# interest rate is p=1,2,3,...14?
for p in range(1, 15):

years = days(1, 2, p)/365.0
print ’With p=%d%% it takes %.1f years to double the amount’ \
% (p, years)

There are different ways to import functions in a module, and let us
explore these in an interactive session. The function call dir() will list
all names we have defined, including imported names of variables and
functions. Calling dir(m) will print the names defined inside a module
with name m. First we start an interactive shell and call dir()

>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’]

These variables are always defined. Running the IPython shell will
introduce several other standard variables too. Doing

>>> from interest import *
>>> dir()
[ ..., ’annual_rate’, ’days’, ’initial_amount’,
’present_amount’, ’ln’, ’sys’]

shows that we get our four functions imported, along with ln and sys.
The latter two are needed in the interest module, but not necessarily
in our new program test.py. Observe that none of the names with a
leading underscore are imported. This demonstrates the importance of
using a leading underscore in names for local variables and functions in
a module: Names local to a module will then not pollute other programs
or interactive sessions when a “star import” (from module import *) is
performed.

Next we do

>>> import interest
>>> dir(interest)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’_compute_missing_parameter’, ’_usage’, ’_verify’,
’annual_rate’, ’days’, ’filename’, ’initial_amount’,
’ln’, ’present_amount’, ’sys’]

All variables and functions defined or imported in the interest.py

file are now visible, and we can access also functions and variables
beginning with an underscore as long as we have the interest. prefix:
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>>> interest._verify()
A=2.2134 (2.2134)
A0=2 (2.0)
n=730 (730)
p=5 (5.0)
>>> interest._filename

The test.py program works well as long as it is located in the same
folder as the interest.py module. However, if we move test.py to
another folder and run it, we get an error:

Terminal

test.py
Traceback (most recent call last):
File "tmp.py", line 1, in <module>
from interest import days

ImportError: No module named interest

Unless the module file resides in the same folder, we need to tell Python
where to find our module. Python looks for modules in the folders
contained in the list sys.path. A little program

import sys, pprint
pprint.pprint(sys.path)

prints out all these predefined module folders. You can now do one of
two things:

1. Place the module file in one of the folders in sys.path.
2. Include the folder containing the module file in sys.path.

There are two ways of doing the latter task:

2a.You can explicitly insert a new folder name in sys.path in the pro-
gram that uses the module9:

modulefolder = ’../../pymodules’
sys.path.insert(0, modulefolder)

Python searches the folders in the sequence they appear in the
sys.path list so by inserting the folder name as the first list ele-
ment we ensure that our module is found quickly, and in case there
are other modules with the same name in other folders in sys.path,
the one in modulefolder gets imported.

2b.Your module folders can be permanently specified in the PYTHONPATH

environment variable10. All folder names listed in PYTHONPATH are
automatically included in sys.path when a Python program starts.

9 In this sample path, the slashes are Unix specific. On Windows you must use
backward slashes and a raw string. A better solution is to express the path
as os.path.join(os.pardir, os.pardir, ’mymodules’). This will work on all
platforms.

10 This makes sense only if you know what environment variables are, and we do not
intend to explain that at the present stage.
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3.6 Summary

3.6.1 Chapter Topics

Question and Answer Input. Prompting the user and reading the an-
swer back into a variable is done by

var = raw_input(’Give value: ’)

The raw_input function returns a string containing the characters that
the user wrote on the keyboard before pressing the Return key. It is
necessary to convert var to an appropriate object (int or float, for
instance) if we want to perform mathematical operations with var.
Sometimes

var = eval(raw_input(’Give value: ’))

is a flexible and easy way of transforming the string to the right
type of object (integer, real number, list, tuple, and so on). This last
statement will not work, however, for strings unless the text is sur-
rounded by quotes when written on the keyboard. A general conver-
sion function that turns any text without quotes into the right object
is scitools.misc.str2obj:

from scitools.misc import str2obj
var = str2obj(raw_input(’Give value: ’))

Typing, for example, 3 makes var refer to an int object, 3.14 results
in a float object, [-1,1] results in a list, (1,3,5,7) in a tuple, and
some text in the string (str) object ’some text’ (run the program
str2obj_demo.py to see this functionality demonstrated).

Getting Command-Line Arguments. The sys.argv[1:] list contains all
the command-line arguments given to a program (sys.argv[0] contains
the program name). All elements in sys.argv are strings. A typical
usage is

parameter1 = float(sys.argv[1])
parameter2 = int(sys.argv[2])
parameter3 = sys.argv[3] # parameter3 can be string

Using Option-Value Pairs. Python has two modules, getopt and
optparse, for interpreting command-line arguments of the form -option

value. A simple recipe with getopt reads

import getopt, sys
try:

options, args = getopt.getopt(sys.argv[1:], ’’,
[’parameter1=’, ’parameter2=’, ’parameter3=’,
’p1=’, ’p2=’, ’p3=’] # shorter forms
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except getopt.GetoptError, e:
print ’Error in command-line option:\n’, e
sys.exit(1)

# set default values:
parameter1 = ...
parameter2 = ...
parameter3 = ...

from scitools.misc import str2obj
for option, value in options:

if option in (’--parameter1’, ’--p1’):
parameter1 = eval(value) # if not string

elif option in (’--parameter2’, ’--p2’):
parameter2 = value # if string

elif option in (’--parameter3’, ’--p3’):
parameter3 = str2obj(value) # any object

On the command line we can provide any or all of these options:
--parameter1 --p1 --parameter2 --p2 --parameter3 --p3

Each option must be succeeded by a suitable value.

Generating Code on the Fly. Calling eval(s) turns a string s, contain-
ing a Python expression, into code as if the contents of the string were
written directly into the program code. The result of the following eval

call is a float object holding the number 21.1:

>>> x = 20
>>> r = eval(’x + 1.1’)
>>> r
21.1
>>> type(r)
<type ’float’>

The exec function takes a string with arbitrary Python code as argu-
ment and executes the code. For example, writing

exec("""
def f(x):

return %s
""" % sys.argv[1])

is the same as if we had hardcoded the (for the programmer unknown)
contents of sys.argv[1] into a function definition in the program.

Turning String Formulas into Python Functions. Given a mathemat-
ical formula as a string, s, we can turn this formula into a callable
Python function f(x) by

from scitools.StringFunction import StringFunction
# or
from scitools.std import *

f = StringFunction(s)

The string formula can contain parameters and an independent variable
with another name than x:
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Q_formula = ’amplitude*sin(w*t-phaseshift)’
Q = StringFunction(Q_formula, independent_variable=’t’,

amplitude=1.5, w=pi, phaseshift=0)
values1 = [Q(i*0.1) for t in range(10)]
Q.set_parameters(phaseshift=pi/4, amplitude=1)
values2 = [Q(i*0.1) for t in range(10)]

Functions of several independent variables are also supported:

f = StringFunction(’x+y**2+A’, independent_variables=(’x’, ’y’),
A=0.2)

x = 1; y = 0.5
print f(x, y)

Handling Exceptions. Testing for potential errors is done with
try-except blocks:

try:
<statements>

except ExceptionType1:
<provide a remedy for ExceptionType1 errors>

except ExceptionType2, ExceptionType3, ExceptionType4:
<provide a remedy for three other types of errors>

except:
<provide a remedy for any other errors>

...

The most common exception types are NameError for an undefined
variable, TypeError for an illegal value in an operation, and IndexError

for a list index out of bounds.

Raising Exceptions. When some error is encountered in a program, the
programmer can raise an exception:

if z < 0:
raise ValueError(’z=%s is negative - cannot do log(z)’ % z)

r = log(z)

Modules. A module is created by putting a set of functions in a file. The
filename (minus the required extension .py) is the name of the module.
Other programs can import the module only if it resides in the same
folder or in a folder contained in the sys.path list (see Chapter 3.5.3
for how to deal with this potential problem). Optionally, the module
file can have a special if construct at the end, called test block, which
tests the module or demonstrates its usage. The test block does not
get executed when the module is imported in another program, only
when the module file is run as a program.

3.6.2 Summarizing Example: Bisection Root Finding

Problem. The summarizing example of this chapter concerns the im-
plementation of the Bisection method for solving nonlinear equations
of the form f(x) = 0 with respect to x. For example, the equation
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x = 1 + sin x

can be cast to the form f(x) = 0 if we move all terms to the left-
hand side and define f(x) = x − 1 − sinx. We say that x is a root of
the equation f(x) = 0 if x is a solution of this equation. Nonlinear
equations f(x) = 0 can have zero, one, many, or infinitely many roots.

Numerical methods for computing roots normally lead to approxi-
mate results only, i.e., f(x) is not made exactly zero, but very close to
zero. More precisely, an approximate root x fulfills |f(x)| ≤ ε, where ε
is a small number. Methods for finding roots are of an iterative nature:
We start with a rough approximation to a root and perform a repetive
set of steps that aim to improve the approximation. Our particular
method for computing roots, the Bisection method, guarantees to find
an approximate root, while other methods, such as the widely used
Newton’s method (see Chapter 5.1.9), can fail to find roots.

The idea of the Bisection method is to start with an interval [a, b]
that contains a root of f(x). The interval is halved at m = (a + b)/2,
and if f(x) changes sign in the left half interval [a, m], one continues
with that interval, otherwise one continues with the right half interval
[m, b]. This procedure is repeated, say n times, and the root is then
guaranteed to be inside an interval of length 2−n(b− a). The task is to
write a program that implements the Bisection method and verify the
implementation.

Solution. To implement the Bisection method, we need to translate
the description in the previous paragraph to a precise algorithm that
can be almost directly translated to computer code. Since the halving
of the interval is repeated many times, it is natural to do this inside
a loop. We start with the interval [a, b], and adjust a to m if the root
must be in the right half of the interval, or we adjust b to m if the root
must be in the left half. In a language close to computer code we can
express the algorithm precisely as follows:

for i = 0, 1, 2, . . . , n
m = (a + b)/2
if f(a)f(m) ≤ 0 then

b = m (root is in left half)
else

a = m (root is in right half)
end if

end for
f(x) has a root in [a, b]

Figure 3.2 displays graphically the first four steps of this algorithm
for solving the equation cos(πx) = 0, starting with the interval
[0, 0.82]. The graphs are automatically produced by the program
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bisection_movie.py, which was run as follows for this particular ex-
ample:

Terminal

bisection_movie.py ’cos(pi*x)’ 0 0.82

The first command-line argument is the formula for f(x), the next is
a, and the final is b.
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Fig. 3.2 Illustration of the first four iterations of the Bisection algorithm for solving
cos(πx) = 0. The vertical lines correspond to the current value of a and b.

In the algorithm listed above, we recompute f(a) in each if-test, but
this is not necessary if a has not changed since the last f(a) computa-
tions. It is a good habit in numerical programming to avoid redundant
work. On modern computers the Bisection algorithm normally runs so
fast that we can afford to do more work than necessary. However, if f(x)
is not a simple formula, but computed by comprehensive calculations
in a program, the evaluation of f might take minutes or even hours,
and reducing the number of evaluations in the Bisection algorithm is
then very important. We will therefore introduce extra variables in the
algorithm above to save an f(m) evaluation in each iteration in the
for loop:



3.6 Summary 155

fa = f(a)
for i = 0, 1, 2, . . . , n

m = (a + b)/2
fm = f(m)
if fafm ≤ 0 then

b = m (root is in left half)
else

a = m (root is in right half)
fa = fm

end if
end for
f(x) has a root in [a, b]

To execute the algorithm above, we need to specify n. Say we want
to be sure that the root lies in an interval of maximum extent ε. After
n iterations the length of our current interval is 2−n(b − a), if [a, b] is
the initial interval. The current interval is sufficiently small if

2−n(b − a) = ε,

which implies

n = − ln ε − ln(b − a)

ln 2
. (3.6)

Instead of calculating this n, we may simply stop the iterations when
the length of the current interval is less than ε. The loop is then nat-
urally implemented as a while loop testing on whether b − a ≤ ε. To
make the algorithm more foolproof, we also insert a test to ensure that
f(x) really changes sign in the initial interval11.

Our final version of the Bisection algorithm now becomes

11 This guarantees a root in [a, b]. However, f(a)f(b) < 0 is not a necessary condition
if there is an even number of roots in the initial interval.
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fa = f(a)
if faf(b) > 0 then

error: f does not change sign in [a, b]
end if
i = 0 (iteration counter)
while b − a > ε:

i ← i + 1
m = (a + b)/2
fm = f(m)
if fafm ≤ 0 then

b = m (root is in left half)
else

a = m (root is in right half)
fa = fm

end if
end while
if x is the real root, |x − m| < ε

This is the algorithm we aim to implement in a Python program.
A direct translation of the previous algorithm to a Python program

should be quite a simple process:

eps = 1E-5
a, b = 0, 10

fa = f(a)
if fa*f(b) > 0:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
sys.exit(1)

i = 0 # iteration counter
while b-a > eps:

i += 1
m = (a + b)/2.0
fm = f(m)
if fa*fm <= 0:

b = m # root is in left half of [a,b]
else:

a = m # root is in right half of [a,b]
fa = fm

print ’Iteration %d: interval=[%g, %g]’ % (i, a, b)

x = m # this is the approximate root
print ’The root is’, x, ’found in’, i, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

This program is found in the file bisection_v1.py.

Verification. To verify the implementation in bisection_v1.py we
choose a very simple f(x) where we know the exact root. One suit-
able example is a linear function, f(x) = 2x − 3 such that x = 3/2
is the root of f . As can be seen from the source code above, we have
inserted a print statement inside the while loop to control that the
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program really does the right things. Running the program yields the
output

Iteration 1: interval=[0, 5]
Iteration 2: interval=[0, 2.5]
Iteration 3: interval=[1.25, 2.5]
Iteration 4: interval=[1.25, 1.875]
...
Iteration 19: interval=[1.5, 1.50002]
Iteration 20: interval=[1.5, 1.50001]
The root is 1.50000572205 found in 20 iterations
f(1.50001)=1.14441e-05

It seems that the implementation works. Further checks should include
hand calculations for the first (say) three iterations and comparison of
the results with the program.

Making a Function. The previous implementation of the bisection algo-
rithm is fine for many purposes. To solve a new problem f(x) = 0 it is
just necessary to change the f(x) function in the program. However, if
we encounter solving f(x) = 0 in another program in another context,
we must put the bisection algorithm into that program in the right
place. This is simple in practice, but it requires some careful work, and
it is easy to make errors. The task of solving f(x) = 0 by the bisection
algorithm is much simpler and safer if we have that algorithm available
as a function in a module. Then we can just import the function and
call it. This requires a minimum of writing in later programs.

When you have a“flat”program as shown above, without basic steps
in the program collected in functions, you should always consider di-
viding the code into functions. The reason is that parts of the program
will be much easier to reuse in other programs. You save coding, and
that is a good rule! A program with functions is also easier to un-
derstand, because statements are collected into logical, separate units,
which is another good rule! In a mathematical context, functions are
particularly important since they naturally split the code into general
algorithms (like the bisection algorithm) and a problem-specific part
(like a special choice of f(x)).

Shuffling statements in a program around to form a new and bet-
ter designed version of the program is called refactoring. We shall now
refactor the bisection_v1.py program by putting the statements in
the bisection algorithm in a function bisection. This function natu-
rally takes f(x), a, b, and ε as parameters and returns the found root,
perhaps together with the number of iterations required:

def bisection(f, a, b, eps):
fa = f(a)
if fa*f(b) > 0:

return None, 0

i = 0 # iteration counter
while b-a < eps:

i += 1
m = (a + b)/2.0
fm = f(m)
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if fa*fm <= 0:
b = m # root is in left half of [a,b]

else:
a = m # root is in right half of [a,b]
fa = fm

return m, i

After this function we can have a test program:

def f(x):
return 2*x - 3 # one root x=1.5

eps = 1E-5
a, b = 0, 10
x, iter = bisection(f, a, b, eps)
if x is None:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
else:

print ’The root is’, x, ’found in’, iter, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

The complete code is found in file bisection_v2.py.

Making a Module. A motivating factor for implementing the bisection
algorithm as a function bisection was that we could import this func-
tion in other programs to solve f(x) = 0 equations. However, if we do
an import

from bisection_v2 import bisection

the import statement will run the main program in bisection_v2.py.
We do not want to solve a particular f(x) = 0 example when we do
an import of the bisection function! Therefore, we must put the main
program in a test block (see Chapter 3.5.2). Even better is to collect
the statements in the test program in a function and just call this
function from the test block:

def _test():
def f(x):

return 2*x - 3 # one root x=1.5

eps = 1E-5
a, b = 0, 10
x, iter = bisection(f, a, b, eps)
if x is None:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
else:

print ’The root is’, x, ’found in’, iter, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

if __name__ == ’__main__’:
_test()

The complete module with the bisection function, the _test func-
tion, and the test block is found in the file bisection.py.

Using the Module. Suppose you want to solve x = sinx using the
bisection module. What do you have to do? First, you reformulate
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the equation as f(x) = 0, i.e., x − sinx = 0 so that you identify
f(x) = x − sin x. Second, you make a file, say x_eq_sinx.py, where
you import the bisection function, define the f(x) function, and call
bisection:

from bisection import bisection
from math import sin

def f(x):
return x - sin(x)

root, iter = bisection(f, -2, 2, 1E-6)
print root

A Flexible Program for Solving f(x) = 0. The previous program hard-
codes the input data f(x), a, b, and ε to the bisection method for a
specific equation. As we have pointed out in this chapter, a better solu-
tion is to let the user provide input data while the program is running.
This approach avoids editing the program when a new equation needs
to be solved (and as you remember, any change in a program has the
danger of introducing new errors). We therefore set out to create a
program that reads f(x), a, b, and ε from the command-line. The ex-
pression for f(x) is given as a text and turned into a Python function
with aid of the StringFunction object from Chapter 3.1.4. The other
parameters – a, b, and ε – can be read directly from the command line,
but it can be handy to allow the user not to specify ε and provide a
default value in the program instead.

The ideas above can be realized as follows in a new, general
program for solving f(x) = 0 equations. The program is called
bisection_solver.py:

import sys
usage = ’%s f-formula a b [epsilon]’ % sys.argv[0]
try:

f_formula = sys.argv[1]
a = float(sys.argv[2])
b = float(sys.argv[3])

except IndexError:
print usage; sys.exit(1)

try: # is epsilon given on the command-line?
epsilon = float(sys.argv[4])

except IndexError:
epsilon = 1E-6 # default value

from scitools.StringFunction import StringFunction
from math import * # might be needed for f_formula
f = StringFunction(f_formula)
from bisection import bisection

root, iter = bisection(f, a, b, epsilon)
if root == None:

print ’The interval [%g, %g] does not contain a root’ % (a, b)
sys.exit(1)

print ’Found root %g\nof %s = 0 in [%g, %g] in %d iterations’ % \
(root, f_formula, a, b, iter)
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Let us solve

1. x = tanhx with start interval [−10, 10] and default precision (ε =
10−6),

2. x5 = tanh(x5) with start interval [−10, 10] and default precision.

Both equations have one root x = 0.

Terminal

bisection_solver.py "x-tanh(x)" -10 10
Found root -5.96046e-07
of x-tanh(x) = 0 in [-10, 10] in 25 iterations

bisection_solver.py "x**5-tanh(x**5)" -10 10
Found root -0.0266892
of x**5-tanh(x**5) = 0 in [-10, 10] in 25 iterations

These results look strange. In both cases we halve the start interval
[−10, 10] 25 times, but in the second case we end up with a much less
accurate root although the value of ε is the same. A closer inspection
of what goes on in the bisection algorithm reveals that the inaccu-
racy is caused by round-off errors. As a, b, m → 0, raising a small
number to the fifth power in the expression for f(x) yields a much
smaller result. Subtracting a very small number tanhx5 from another
very small number x5 may result in a small number with wrong sign,
and the sign of f is essential in the bisection algorithm. We encour-
age the reader to graphically inspect this behavior by running these
two examples with the bisection_plot.py program using a smaller in-
terval [−1, 1] to better see what is going on. The command-line argu-
ments for the bisection_plot.py program are ’x-tanh(x)’ -1 1 and
’x**5-tanh(x**5)’ -1 1. The very flat area, in the latter case, where
f(x) ≈ 0 for x ∈ [−1/2, 1/2] illustrates well that it is difficult to locate
an exact root.

3.7 Exercises

Exercise 3.1. Make an interactive program.
Make a program that (i) asks the user for a temperature in Fahren-

heit and reads the number; (ii) computes the correspodning temper-
ature in Celsius degrees; and (iii) prints out the temperature in the
Celsius scale. Name of program file: f2c_qa.py. �
Exercise 3.2. Read from the command line in Exer. 3.1.

Modify the program from Exercise 3.1 such that the Fahrenheit
temperature is read from the command line. Name of program file:
f2c_cml.py. �
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Exercise 3.3. Use exceptions in Exer. 3.2.
Extend the program from Exercise 3.2 with a try-except block to

handle the potential error that the Fahrenheit temperature is missing
on the command line. Name of program file: f2c_cml.py. �
Exercise 3.4. Read input from the keyboard.

Make a program that asks the user for an integer, a real number, a
list, a tuple, and a string. Use eval to convert the input string to a list
or tuple. Name of program file: objects_qa1.py. �
Exercise 3.5. Read input from the command line.

Let a program store the result of applying the eval function to the
first command-line argument. Print out the resulting object and its
type (use type from Chapter 1.5.2). Run the program with different
input: an integer, a real number, a list, and a tuple. Then try the
string "this is a string" as a command-line argument. Why does this
string cause problems and what is the remedy? Name of program file:
objects_cml.py. �
Exercise 3.6. Prompt the user for input to the formula (1.1).

Consider the simplest program for evaluting (1.1):

v0 = 3; g = 9.81; t = 0.6
y = v0*t - 0.5*g*t**2
print y

Modify this code so that the program asks the user questions t=? and
v0=?, and then gets t and v0 from the user’s input through the key-
board. Name of program file: ball_qa.py. �
Exercise 3.7. Read command line input for the formula (1.1).

Modify the program listed in Exercise 3.6 such that v0 and t are
read from the command line. Name of program file: ball_cml.py. �
Exercise 3.8. Make the program from Exer. 3.7 safer.

The program from Exercise 3.7 reads input from the command
line. Extend that program with exception handling such that miss-
ing command-line arguments are detected. In the except IndexError

block, use the raw_input function to ask the user for missing input
data. Name of program file: ball_cml_qa.py. �
Exercise 3.9. Test more in the program from Exer. 3.7.

Test if the t value read in the program from Exercise 3.7 lies be-
tween 0 and 2v0

g . If not, print a message and abort execution. Name of
program file: ball_cml_errorcheck.py. �
Exercise 3.10. Raise an exception in Exer. 3.9.

Instead of printing an error message and aborting the program ex-
plicitly, raise a ValueError exception in the if test on legal t values in
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the program from Exercise 3.9. The exception message should contain
the legal interval for t. Name of program file: ball_cml_ValueError.py.
�
Exercise 3.11. Look up calendar functionality.

The purpose of this exercise is to make a program which takes a
date, consisting of year (4 digits), month (2 digits), and day (1-31) on
the command line and prints the corresponding name of the weekday
(Monday, Tuesday, etc.). Python has a module calendar, which you
must look up in the Python Library Reference (see Chapter 2.4.3), for
calculating the weekday of a date. Name of program file: weekday.py.
�
Exercise 3.12. Use the StringFunction tool.

Make the program user_formula.py from Chapter 3.1.3 shorter by
using the convenient StringFunction tool from Chapter 3.1.4. Name of
program file: user_formula2.py. �
Exercise 3.13. Extend a program from Ch. 3.2.1.

How can you modify the add_cml.py program from the end of Chap-
ter 3.1.2 such that it accepts input like sqrt(2) and sin(1.2)? In this
case the output should be

<type ’float’> + <type ’float’> becomes <type ’float’>
with value 2.34625264834

(Hint: Mathematical functions, such as sqrt and sin, must be defined
in the program before using eval. Furthermore, Unix (bash) does not
like the parentheses on the command line so you need to put quotes
around the command-line arguments.) Name of program file: add2.py.
�
Exercise 3.14. Why we test for specific exception types.

The simplest way of writing a try-except block is to test for any
exception, for example,

try:
C = float(sys.arg[1])

except:
print ’C must be provided as command-line argument’
sys.exit(1)

Write the above statements in a program and test the program. What
is the problem?

The fact that a user can forget to supply a command-line argument
when running the program was the original reason for using a try block.
Find out what kind of exception that is relevant for this error and test
for this specific exception and re-run the program. What is the problem
now? Correct the program. Name of program file: cml_exception.py. �
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Exercise 3.15. Make a simple module.
Make six conversion functions between temperatures in Celsius,

Kelvin, and Fahrenheit: C2F, F2C, C2K, K2C, F2K, and K2F. Collect these
functions in a module convert_temp. Make some sample calls to these
functions from an interactive Python shell. Name of program file:
convert_temp.py. �
Exercise 3.16. Make a useful main program for Exer. 3.15.

Extend the module made in Exercise 3.15 with a main program in
the test block. This main program should read the first command-
line argument as a numerical value of a temperature and the second
argument as a temperature scale: C, K, or F. Write out the temperature
in the other two scales. For example, if 21.3 C is given on the command
line, the output should be 70.34 F 294.45 K. Name of program file:
convert_temp2.py. �
Exercise 3.17. Make a module in Exer. 2.39.

Collect the functions in the program from Exercise 2.39 in a sep-
arate file such that this file becomes a module. Put the statements
making the table (i.e., the main program) in a separate function
table(t, T, n_values), and call this function only if the module file is
run as a program (i.e., include a test block, see Chapter 3.5.2). Name
of program file: compute_sum_S_module.py. �
Exercise 3.18. Extend the module from Exer. 3.17.

Extend the program from Exercise 3.17 such that t, T , and n are
read from the command line. The extended program should import the
table function from the module compute_sum_S_module and not copy
any code from the module file or the program file from Exercise 2.39.
Name of program file: compute_sum_S_cml.py. �
Exercise 3.19. Use options and values in Exer. 3.18.

Let the input to the program in Exercise 3.18 be option-value pairs of
the type -t, -T, and -n, with sensible default values for these quantities
set in the program. Apply the getopt module to read the command-line
arguments. Name of program file: compute_sum_S_cml_getopt.py. �
Exercise 3.20. Use optparse in the program from Ch. 3.2.4.

Python has a module optparse, which is an alternative to getopt

for reading -option value pairs. Read about optparse in the offi-
cial Python documentation, either the Python Library Reference or
the Global Module Index. Figure out how to apply optparse to the
location.py program from Chapter 3.2.4 and modify the program
to make use of optparse instead of getopt. Name of program file:
location_optparse.py. �
Exercise 3.21. Compute the distance it takes to stop a car.

A car driver, driving at velocity v0, suddenly puts on the brake.
What braking distance d is needed to stop the car? One can derive,
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from basic physics, that

d =
1

2

v2
0

μg
. (3.7)

Make a program for computing d in (3.7) when the initial car velocity
v0 and the friction coefficient μ are given on the command line. Run the
program for two cases: v0 = 120 and v0 = 50 km/h, both with μ = 0.3
(μ is dimensionless). (Remember to convert the velocity from km/h to
m/s before inserting the value in the formula!) Name of program file:
stopping_length.py. �
Exercise 3.22. Check if mathematical rules hold on a computer.

Because of round-off errors, it could happen that a mathematical
rule like (ab)3 = a3b3 does not hold (exactly) on a computer. The idea
of this exercise is to check such rules for a large number of random
numbers. We can make random numbers using the random module in
Python:

import random
a = random.uniform(A, B)
b = random.uniform(A, B)

Here, a and b will be random numbers which are always larger than or
equal to A and smaller than B.

Make a program that reads the number of tests to be performed
from the command line. Set A and B to fixed values (say -100 and 100).
Perform the test in a loop. Inside the loop, draw random numbers a and
b and test if the two mathematical expressions (a*b)**3 and a**3*b**3

are equivalent. Count the number of failures of equivalence and write
out the percentage of failures at the end of the program.

Duplicate the code segment outlined above to also com-
pare the expressions a/b and 1/(b/a). Name of program file:
math_rules_failures.py. �
Exercise 3.23. Improve input to the program in Exer. 3.22.

The purpose of this exercise is to extend the program from Ex-
ercise 3.22 to handle a large number of mathematical rules. Make a
function equal(expr1, expr2, A, B, n=500) which tests if the math-
ematical expressions expr1 and expr2, given as strings and involving
numbers a and b, are exactly equal (eval(expr1) == eval(expr2)) for
n random choices of numbers a and b in the interval between A and
B. Return the percentage of failures. Make a module with the equal

function and a test block which feeds the equal function with argu-
ments read from the command line. Run the module file as a program
to test the two rules from Exercise 3.22. Also test the rules ea+b = aaeb

and ln ab = b ln a (take a from math import * in the module file so that
mathematical functions like exp and log are defined). Name of program
file: math_rules_failures_cml.py. �



3.7 Exercises

Exercise 3.24. Apply the program from Exer. 8.28.
Import the equal function from the module made in Exercise ;j.2;j

and test the three rules from Exercise ;j.22 in addition to the following
rules:

• a - band -(b - a)
• alb and l/(b/a)
• (ab)4 and a4b4

• (a + b)2 and a2 + 2ab+ b2

• (a + b) (a - b) and a2
- b2

• e"+b and e"e b

.Inab and blna

• In ab and In a + In b
• ab and ,)n o-l-In b

• l/(l/a + l/b) and ab/(a + b)
• a(sin2 b+ cos2 b) and a
• sinh(a + b) and (cocb - c-Oc- b)/ 2
• tan(a + b) and sin(a + b)/ cos(a + b)
• sin (a + b) and sin a cos b + sin b cos a

Store all the expressions in a list of 2-tuples, where each 2-tuple con-
tains two mathematically equivalent expressions as strings which can
be sent to the eval function. Choose A as 1 and B as 50. Make a nicely
formatted table with a pair of equivalent expressions at. each line fol-
lowed by the failure rate corresponding to the B values. Does the failure
rate depend on the magnitude of the numbers a and b'! Name of pro-
gram file: math_rules_failures_table. py.

Remark. Exercise ;:\.22 can be solved by a simple program, but if you
want. to check 17 rules the present exercise demonstrates how important
it is t.o be able to automate the process via tho equal function and two
nested loops over a list. of equivalent. expressions. o

Exercise 3.25. Compute the binomial distribution.

Consider an uncertain event where there are t.wo outcomes only,
typically success or failure. Flipping a coin is an example: The outcome
is uncertain and of two types, eit.her head (can be considered as success)
or t.ail (failure). Throwing a die can be another example, if (e.g.) get.ting
a six is considered success and all other outcomes represent. failure. Let
the probability of success be p and t.hat of failure 1-p. If we perform n
experiment.s, where the outcome of each experiment. does not depend
on the outcome of previous experiments, the probability of getting
success x times (and failure n - x t.imes) is given by
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( ) n! .X( .)n-xB:r;,rr,p= ( .)p 1-p .
:r!n-:l'!

(3.8)
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This formula (3.8) is called the binomial distribution. The expression
x! is the factorial of x as defined in Exercise 2.33. Implement (3.8) in a
function binomial(x, n, p). Make a module containing this binomial

function. Include a test block at the end of the module file. Name of
program file: binomial_distribution.py. �
Exercise 3.26. Apply the binomial distribution.

Use the module from Exercise 3.25 to make a program for solving
the problems below.

1. What is the probability of getting two heads when flipping a coin
five times?
This probability corresponds to n = 5 events, where the success of
an event means getting head, which has probability p = 1/2, and
we look for x = 2 successes.

2. What is the probability of getting four ones in a row when throwing
a die?
This probability corresponds to n = 4 events, success is getting one
and has probability p = 1/6, and we look for x = 4 successful events.

3. Suppose cross country skiers typically experience one ski break in
one out of 120 competitions. Hence, the probability of breaking a ski
can be set to p = 1/120. What is the probability b that a skier will
experience a ski break during five competitions in a world champi-
onship?
This question is a bit more demanding than the other two. We are
looking for the probability of 1, 2, 3, 4 or 5 ski breaks, so it is simpler
to ask for the probability c of not breaking a ski, and then compute
b = 1− c. Define “success” as breaking a ski. We then look for x = 0
successes out of n = 5 trials, with p = 1/120 for each trial. Compute
b.

Name of program file: binomial_problems.py. �
Exercise 3.27. Compute probabilities with the Poisson distribution.

Suppose that over a period of tm time units, a particular uncertain
event happens (on average) νtm times. The probability that there will
be x such events in a time period t is approximately given by the
formula

P (x, t, ν) =
(νt)x

x!
e−νt . (3.9)

This formula is known as the Poisson distribution12. An important
assumption is that all events are independent of each other and that
the probability of experiencing an event does not change significantly
over time.

12 It can be shown that (3.9) arises from (3.8) when the probability p of experiencing
the event in a small time interval t/n is p = νt/n and we let n → ∞.



3.7 Exercises 167

Implement (3.9) in a function Poisson(x, t, nu), and make a pro-
gram that reads x, t, and ν from the command line and writes out the
probability P (x, t, ν). Use this program to solve the problems below.

1. Suppose you are waiting for a taxi in a certain street at night. On
average, 5 taxis pass this street every hour at this time of the night.
What is the probability of not getting a taxi after having waited 30
minutes?
Since we have 5 events in a time period of tm = 1 hour, νtm = ν = 5.
The sought probability is then P (0, 1/2, 5). Compute this number.
What is the probability of having to wait two hours for a taxi?
If 8 people need two taxis, that is the probability that two taxis
arrive in a period of 20 minutes?

2. In a certain location, 10 earthquakes have been recorded during
the last 50 years. What is the probability of experiencing exactly
three earthquakes over a period of 10 years in this erea? What is
the probability that a visitor for one week does not experience any
earthquake?
With 10 events over 50 years we have νtm = ν ·50 years = 10 events,
which imples ν = 1/5 event per year. The answer to the first ques-
tion of having x = 3 events in a period of t = 10 years is given
directly by (3.9). The second question asks for x = 0 events in
a time period of 1 week, i.e., t = 1/52 years, so the answer is
P (0, 1/52, 1/5).

3. Suppose that you count the number of misprints in the first versions
of the reports you write and that this number shows an average of
six misprints per page. What is the probability that a reader of a
first draft of one of your reports reads six pages without hitting a
misprint?
Assuming that the Poisson distribution can be applied to this prob-
lem, we have “time” tm as 1 page and ν · 1 = 6, i.e., ν = 6 events
(misprints) per page. The probability of no events in a “period” of
six pages is P (0, 6, 6).

�


