
Array Computing and Curve Plotting 4

Lists are introduced in Chapter 2 to store “tabular data” in a con-
venient way. An array is an object that is very similar to a list, but
less flexible and computationally much more efficient. When using the
computer to perform mathematical calculations, we often end up with
a huge amount of numbers and associated arithmetic operations. Stor-
ing numbers in lists may in such contexts lead to slow programs, while
arrays can make the programs run much faster. This may not be very
important for the mathematical problems in this book, since most of
the programs usually finish execution within a few seconds. Never-
theless, in more advanced applications of mathematics, especially the
applications met in industry and science, computer programs may run
for weeks and months. Any clever idea that reduces the execution time
to days or hours is therefore paramount1.

This chapter gives a brief introduction to arrays – how they are
created and what they can be used for. Array computing usually ends
up with a lot of numbers. It may be very hard to understand what these
numbers mean by just looking at them. Since the human is a visual
animal, a good way to understand numbers is to visualize them. In this
chapter we concentrate on visualizing curves that reflect functions of
one variable, e.g., curves of the form y = f(x). A synonym for curve
is graph, and the image of curves on the screen is often called a plot.
We will use arrays to store the information about points along the
curve. It is fair to say that array computing demands visualization and
visualization demands arrays.

1 Many may argue that programmers of mathematical software have traditionally
paid too much attention to efficiency and smart program constructs. The resulting
software often becomes very hard to maintain and extend. In this book we advo-
cate a focus on clear, well-designed, and easy-to-understand programs that work
correctly. Optimization for speed should always come as a second step in program
development.

169

170 4 Array Computing and Curve Plotting

All program examples in this chapter can be found as files in the
folder src/plot.

4.1 Vectors

This section gives a brief introduction to the vector concept, assuming
that you have heard about vectors in the plane and maybe vectors in
space before. This background will be valuable when we start to work
with arrays and curve plotting.

4.1.1 The Vector Concept

Some mathematical quantities are associated with a set of numbers.
One example is a point in the plane, where we need two coordinates
(real numbers) to describe the point mathematically. Naming the two
coordinates of a particular point as x and y, it is common to use the
notation (x, y) for the point. That is, we group the numbers inside
parentheses. Instead of symbols we might use the numbers directly:
(0, 0) and (1.5,−2.35) are also examples of coordinates in the plane.

A point in three-dimensional space has three coordinates, which we
may name x1, x2, and x3. The common notation groups the numbers
inside parentheses: (x1, x2, x3). Alternatively, we may use the symbols
x, y, and z, and write the point as (x, y, z), or numbers can be used
instead of symbols.

From high school you may have a memory of solving two equations
with two unknowns. At the university you will soon meet problems that
are formulated as n equations with n unknowns. The solution of such
problems contains n numbers that we can collect inside parentheses
and number from 1 to n: (x1, x2, x3, . . . , xn−1, xn).

Quantities such as (x, y), (x, y, z), or (x1, . . . , xn) are known as vec-
tors in mathematics. A visual representation of a vector is an arrow
that goes from the origin to a point. For example, the vector (x, y)
is an arrow that goes from (0, 0) to the point with coordinates (x, y)
in the plane. Similarly, (x, y, z) is an arrow from (0, 0, 0) to the point
(x, y, z) in three-dimensional space.

Mathematicians found it convenient to introduce spaces with higher
dimension than three, because when we have a solution of n equations
collected in a vector (x1, . . . , xn), we may think of this vector as a point
in a space with dimension n, or equivalently, an arrow that goes from
the origin (0, . . . , 0) in n-dimensional space to the point (x1, . . . , xn).
Figure 4.1 illustrates a vector as an arrow, either starting at the origin,
or at any other point. Two arrows/vectors that have the same direction
and the same length are mathematically equivalent.

4.1 Vectors 171

-1

 0

 1

 2

 3

 4

-1 0 1 2 3 4

vector (2,3)

vector (2,3)

Fig. 4.1 A vector (2, 3) visualized in the standard way as an arrow from the origin
to the point (2, 3), and mathematically equivalently, as an arrow from (1, 1

2
) (or any

point (a, b)) to (3, 3 1

2
) (or (a + 2, b + 3)).

We say that (x1, . . . , xn) is an n-vector or a vector with n compo-
nents. Each of the numbers x1, x2, . . . is a component or an element.
We refer to the first component (or element), the second component
(or element), and so forth.

A Python program may use a list or tuple to represent a vector:

v1 = [x, y] # list of variables
v2 = (-1, 2) # tuple of numbers
v3 = (x1, x2, x3) # tuple of variables
from math import exp
v4 = [exp(-i*0.1) for i in range(150)]

While v1 and v2 are vectors in the plane and v3 is a vector in three-
dimensional space, v4 is a vector in a 150-dimensional space, consisting
of 150 values of the exponentional function. Since Python lists and
tuples have 0 as the first index, we may also in mathematics write the
vector (x1, x2) as (x0, x1). This is not at all common in mathematics,
but makes the distance from a mathematical description of a problem
to its solution in Python shorter.

It is impossible to visually demonstrate how a space with 150 dimen-
sions looks like. Going from the plane to three-dimensional space gives
a rough feeling of what it means to add a dimension, but if we forget
about the idea of a visual perception of space, the mathematics is very
simple: Going from a 4-dimensional vector to a 5-dimensional vector is
just as easy as adding an element to a list of symbols or numbers.

4.1.2 Mathematical Operations on Vectors

Since vectors can be viewed as arrows having a length and a direction,
vectors are extremely useful in geometry and physics. The velocity of
a car has a magnitude and a direction, so has the acceleration, and

172 4 Array Computing and Curve Plotting

the position of a car is a point2 which is also a vector. An edge of a
triangle can be viewed as a line (arrow) with a direction and length.

In geometric and physical applications of vectors, mathematical op-
erations on vectors are important. We shall exemplify some of the most
important operations on vectors below. The goal is not to teach com-
putations with vectors, but more to illustrate that such computations
are defined by mathematical rules3. Given two vectors, (u1, u2) and
(v1, v2), we can add these vectors according to the rule:

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) . (4.1)

We can also subtract two vectors using a similar rule:

(u1, u2) − (v1, v2) = (u1 − v1, u2 − v2) . (4.2)

A vector can be multiplied by a number. This number, called a below,
is usually denoted as a scalar :

a · (v1, v2) = (av1, av2) . (4.3)

The inner product, also called dot product, or scalar product, of two
vectors is a number4:

(u1, u2) · (v1, v2) = u1v1 + u2v2 . (4.4)

There is also a cross product defined for 2-vectors or 3-vectors, but we
do not list the cross product formula here.
The length of a vector is defined by

||(v1, v2)|| =
√

(v1, v2) · (v1, v2) =
√

v2
1 + v2

2 . (4.5)

The same mathematical operations apply to n-dimensional vectors
as well. Instead of counting indices from 1, as we usually do in mathe-
matics, we now count from 0, as in Python. The addition and subtrac-
tion of two vectors with n components (or elements) read

(u0, . . . , un−1) + (v0, . . . , vn−1) = (u0 + v0, . . . , un−1 + vn−1), (4.6)

(u0, . . . , un−1) − (v0, . . . , vn−1) = (u0 − v0, . . . , un−1 − vn−1) .(4.7)

2 A car is of course not a mathematical point, but when studying the acceleration of
a car, it suffices to view it as a point. In other occasions, e.g., when simulating a
car crash on a computer, the car may be modeled by a large number (say 106) of
connected points.

3 You might recall many of the formulas here from high school mathematics or
physics. The really new thing in this chapter is that we show how rules for vectors
in the plane and in space can easily be extended to vectors in n-dimensional space.

4 From high school mathematics and physics you might recall that the inner or dot
product also can be expressed as the product of the lengths of the two vectors
multiplied by the cosine of the angle between them. We will not make use of this
formula.

4.1 Vectors 173

Multiplication of a scalar a and a vector (v0, . . . , vn−1) equals

(av0, . . . , avn−1) . (4.8)

The inner or dot product of two n-vectors is defined as

(u0, . . . , un−1) · (v0, . . . , vn−1) = u0v0 + · · · + un−1vn−1 =
n−1∑
j=0

ujvj .

(4.9)
Finally, the length ||v|| of an n-vector v = (v0, . . . , vn−1) is

√
(v0, . . . , vn−1) · (v0, . . . , vn−1) =

(
v2
0 + v2

1 + · · · + v2
n−1

) 1

2

=

⎛
⎝n−1∑

j=0

v2
j

⎞
⎠

1

2

. (4.10)

4.1.3 Vector Arithmetics and Vector Functions

In addition to the operations on vectors in Chapter 4.1.2, which you
might recall from high school mathematics, we can define other oper-
ations on vectors. This is very useful for speeding up programs. Un-
fortunately, the forthcoming vector operations are hardly treated in
textbooks on mathematics, yet these operations play a significant role
in mathematical software, especially in computing environment such
as Matlab, Octave, Python, and R.

Applying a mathematical function of one variable, f(x), to a vector
is defined as a vector where f is applied to each element. Let v =
(v0, . . . , vn−1) be a vector. Then

f(v) = (f(v0), . . . , f(vn−1)) .

For example, the sine of v is

sin(v) = (sin(v0), . . . , sin(vn−1)) .

It follows that squaring a vector, or the more general operation of
raising the vector to a power, can be defined as applying the operation
to each element:

vb = (vb
0, . . . , v

b
n−1) .

Another operation between two vectors that arises in computer pro-
gramming of mathematics is the “asterix” multiplication, defined as

u ∗ v = (u0v0, u1v1, . . . , un−1vn−1) . (4.11)

Adding a scalar to a vector or array can be defined as adding the scalar
to each component. If a is a scalar and v a vector, we have

174 4 Array Computing and Curve Plotting

a + v = (a + v0, . . . , a + vn−1) .

A compound vector expression may look like

v2 ∗ cos(v) ∗ ev + 2 . (4.12)

How do we calculate this expression? We use the normal rules of math-
ematics, working our way, term by term, from left to right, paying
attention to the fact that powers are evaluated before multiplications
and divisions, which are evaluated prior to addition and subtraction.
First we calculate v2, which results in a vector we may call u. Then we
calculate cos(v) and call the result p. Then we multiply u ∗ p to get a
vector which we may call w. The next step is to evaluate ev, call the
result q, followed by the multiplication w∗q, whose result is stored as r.
Then we add r + 2 to get the final result. It might be more convenient
to list these operations after each other:

1. u = v2

2. p = cos(v)
3. w = u ∗ p
4. q = ev

5. r = w ∗ q
6. s = r + 2

Writing out the vectors u, w, p, q, and r in terms of a general vector
v = (v0, . . . , vn−1) (do it!) shows that the result of the expression (4.12)
is the vector

(v2
0 cos(v0)e

v0 + 2, . . . , v2
n−1 cos(vn−1)e

vn−1 + 2) .

That is, component no. i in the result vector equals the number arising
from applying the formula (4.12) to vi, where the * multiplication is
ordinary multiplication between two numbers.

We can, alternatively, introduce the function

f(x) = x2 cos(x)ex + 2

and use the result that f(v) means applying f to each element in v.
The result is the same as in the vector expression (4.12).

In Python programming it is important for speed (and convenience
too) that we can apply functions of one variable, like f(x), to vectors.
What this means mathematically is something we have tried to explain
in this subsection. Doing Exercises 4.4 and 4.5 may help to grasp the
ideas of vector computing, and with more programming experience you
will hopefully discover that vector computing is very useful. It is not
necessary to have a thorough understanding of vector computing in
order to proceed with the next sections.

4.2 Arrays in Python Programs 175

Arrays are used to represent vectors in a program, but one can do
more with arrays than with vectors. Until Chapter 4.6 it suffices to
think of arrays as the same as vectors in a program.

4.2 Arrays in Python Programs

This section introduces array programming in Python, but first we
create some lists and show how arrays differ from lists.

4.2.1 Using Lists for Collecting Function Data

Suppose we have a function f(x) and want to evaluate this function
at a number of x points x0, x1, . . . , xn−1. We could collect the n pairs
(xi, f(xi)) in a list, or we could collect all the xi values, for i = 0, . . . , n−
1, in a list and all the associated f(xi) values in another list. We learned
how to create such lists in Chapter 2, but as a review, we present the
relevant program statements in an interactive session:

>>> def f(x):
... return x**3 # sample function
...
>>> n = 5 # no of points along the x axis
>>> dx = 1.0/(n-1) # spacing between x points in [0,1]
>>> xlist = [i*dx for i in range(n)]
>>> ylist = [f(x) for x in xlist]
>>> pairs = [[x, y] for x, y in zip(xlist, ylist)]

Here we have used list comprehensions for achieving compact code.
Make sure that you understand what is going on in these list compre-
hensions (you are encouraged to write the same code using standard
for loops and appending new list elements in each pass of the loops).

The list elements consist of objects of the same type: any element
in pairs is a list of two float objects, while any element in xlist or
ylist is a float. Lists are more flexible than that, because an element
can be an object of any type, e.g.,

mylist = [2, 6.0, ’tmp.ps’, [0,1]]

Here mylist holds an int, a float, a string, and a list. This combination
of diverse object types makes up what is known as heterogeneous lists.
We can also easily remove elements from a list or add new elements
anywhere in the list. This flexibility of lists is in general convenient
to have as a programmer, but in cases where the elements are of the
same type and the number of elements is fixed, arrays can be used
instead. The benefits of arrays are faster computations, less memory
demands, and extensive support for mathematical operations on the

176 4 Array Computing and Curve Plotting

data. Because of greater efficiency and mathematical convenience, ar-
rays will be used to a large extent in this book. The great use of arrays
is also prominent in other programming environments such as lVIatlab,
Octave, and R, for instance. Lists will be our choice instead of arrays
when we need the flexibility of adding or removing elements or when
the clements may be of different object types.

4.2.2 Basics of Numerical Python Arrays

An army object can be viewed as a variant of a list, but with the
following assumptions and features:

• All clements must be of the same type, preferably integer, real, or
complex numbers, for efficient numerical computing and storage.

• The number of elements must be known" when the array is created.
• Arrays are not part of standard Python" - one needs an additional

package called Numerical Python, often abbreviated as NumPy.
The Python name of the package, to be used in import statements,
is numpy.

• With numpy, a wide range of mathematical operations can be done
directly on complete arrays, thereby removing the need for loops
over array clements. This is commonly called uectorization and may
cause a dramatic speed-up of Python programs. Vectorization makes
use of the vector computing concepts from Chapter 4.1.:\.

• Arrays with one index are often called vectors. Arrays with two
indices are used as an efficient data structure for tables, instead of
lists of lists. Arrays can also have three or more indices.

The fundamental import statement to get access to Numerical
Python array functionality reads

from numpy import *

To convert a list r to an array, we use the array function from numpy:

a = array(r)

To create a new array of length n, filled with zeros, we write

a = zer-os In)

The array clements are of a type that corresponds to Python's float

type. A second argument to zeros can be used to specify other cle-
ment types, e.g., into Arrays with more than one index are treated in
Chapter 4.6.

5 The number of clements can be changed: at a substantial computational cost.
s Actually, there is an object type called array in standard Python: but this data

type is not so efficient for mathematical computations.

4.2 Arrays in Python Programs 177

Often one wants an array to have n elements with uniformly dis-
tributed values in an interval [p, q]. The numpy function linspace creates
such arrays:

a = linspace(p, q, n)

We remark that there are a large number of functions and modules
within numpy.

Array elements are accessed by square brackets as for lists: a[i].
Slices also work as for lists, for example, a[1:-1] picks out all elements
except the first and the last, but contrary to lists, a[1:-1] is not a copy
of the data in a. Hence,

b = a[1:-1]
b[2] = 0.1

will also change a[3] to 0.1. A slice a[i:j:s] picks out the elements
starting with index i and stepping s indices at the time up to, but not
including, j. Omitting i implies i=0, and omitting j implies j=n if n is
the number of elements in the array. For example, a[0:-1:2] picks out
every two elements up to, but not including, the last element, while
a[::4] picks out every four elements in the whole array.

4.2.3 Computing Coordinates and Function Values

With these basic operations at hand, we can continue the session from
the previous section and make arrays out of the lists xlist, ylist, and
pairs:

>>> from numpy import *
>>> x2 = array(xlist) # turn list xlist into array x2
>>> y2 = array(ylist)
>>> x2
array([0. , 0.25, 0.5 , 0.75, 1.])
>>> y2
array([0. , 0.015625, 0.125 , 0.421875, 1.])

Instead of first making a list and then converting the list to an array,
we can compute the arrays directly. The equally spaced coordinates in
x2 are naturally computed by the linspace function. The y2 array can
be created by zeros, to ensure that y2 has the right length7 len(x2),
and then we can run a for loop to fill in all elements in y2 with f

values:

>>> n = len(xlist)
>>> x2 = linspace(0, 1, n)
>>> y2 = zeros(n)
>>> for i in xrange(n):

7 This is referred to as allocating the array, and means that a part of the computer’s
memory is marked for being occupied by this array.

178 4 Array Computing and Curve Plotting

... y2[i] = f(x2[i])

...
>>> y2
array([0. , 0.015625, 0.125 , 0.421875, 1.])

Note that we here in the for loop have used xrange instead of range.
The former is faster for long loops and is our preference over range

when we have loops over (possibly long) arrays.
We used a list comprehension for computing the y, while we used a

for loop for computing the array y2. List comprehensions do not work
with arrays because the list comprehension creates a list, not an array.
We can, of course, compute the y coordinates with a list comprehension
and then turn the resulting list into an array:

>>> x2 = linspace(0, 1, n)
>>> y2 = array([f(xi) for xi in x2])

Nevertheless, there is a better way of computing y2 as the next para-
graph explains.

4.2.4 Vectorization

Loops over very long arrays may run slowly. A great advantage with
arrays is that we can get rid of the loops and apply f directly to the
whole array:

>>> y2 = f(x2)
>>> y2
array([0. , 0.015625, 0.125 , 0.421875, 1.])

The magic that makes f(x2) work builds on the vector computing
concepts from Chapter 4.1.3.

Instead of calling f(x2) we can equivalently write the function for-
mula x2**3 directly. As another example, a Python assignment like

r = sin(x)*cos(x)*exp(-x**2) + 2 + x**2

works perfectly for an array x. The resulting array is the same as if we
apply the formula to each array entry:

r = zeros(len(x))
for i in xrange(len(x)):

r[i] = sin(x[i])*cos(x[i])*exp(-x[i]**2) + 2 + x[i]**2

Replacing a loop like the one above by a vector/array expression (like
sin(x)*cos(x)*exp(-x**2) + 2 + x**2) is what we call vectorization.
The loop version is often referred to as scalar code. For example,

4.3 Curve Plotting 179

x = zeros(N); y = zeros(N)
dx = 2.0/(N-1) # spacing of x coordinates
for i in range(N):

x[i] = -1 + dx*i
y[i] = exp(-x[i])*x[i]

is scalar code, while the corresponding vectorized version reads

x = linspace(-1, 1, N)
y = exp(-x)*x

We remark that list comprehensions,

x = array([-1 + dx*i for i in range(N)])
y = array([exp(-xi)*xi for xi in x])

result in scalar code because we still have explicit, slow Python for

loops. The requirement of vectorized code is that there are no explicit
Python for loops. The loops that are required to compute each array
element are performed in fast C or Fortran code in the numpy package.

Most Python functions intended for an scalar argument x, like

def f(x):
return x**4*exp(-x)

automatically work for an array argument x:

x = linspace(-3, 3, 101)
y = f(x)

We say that the function f is vectorized. Not any Python function f(x)

will be automatically vectorized, i.e., sending an array x to f(x) may
lead to wrong results or an exception. Chapter 4.4.1 provides examples
where we have to do special actions in order to vectorize functions.

Vectorization is very important for speeding up Python programs
where we do heavy computations with arrays. Moreover, vectorization
gives more compact code that is easier to read. Vectorization becomes
particularly important for statistical simulations in Chapter 8.

4.3 Curve Plotting

Visualizing a function f(x) is done by drawing the curve y = f(x) in
an xy coordinate system. When we use a computer to do this task, we
say that we plot the curve. Technically, we plot a curve by drawing
straight lines between n points on the curve. The more points we use,
the smoother the curve appears.

Suppose we want to plot the function f(x) for a ≤ x ≤ b. First
we pick out n x coordinates in the interval [a, b], say we name these
x0, x1, . . . , xn−1. Then we evaluate yi = f(xi) for i = 0, 1, . . . , n − 1.

180 4 Array Computing and Curve Plotting

The points (xi, yi), i = 0, 1, . . . , n − 1, now lie on the curve y = f(x).
Normally, we choose the xi coordinates to be equally spaced, i.e.,

xi = a + ih, h =
b − a

n − 1
.

If we store the xi and yi values in two arrays x and y, we can plot the
curve by the command plot(x,y).

Sometimes the names of the independent variable and the function
differ from x and f , but the plotting procedure is the same. Our first
example of curve plotting demonstrates this fact by involving a function
of t.

4.3.1 The SciTools and Easyviz Packages

There are lots of plotting programs that we can use to create visual
graphics with curves on the computer screen. As part of this book
project, we have created a unified interface Easyviz to different plot-
ting programs such that you can write one set of statements in your
program regardless of which plotting program you actually use “be-
hind the curtain” to create the graphics. The statements needed to
plot a curve are very similar to those used in the Matlab and Octave
computing environments.

Easyviz is part of a larger package called SciTools. This package
contains many useful tools for mathematical computations in Python.
SciTools builds heavily on Numerical Python. It also makes use of the
comprehensive scientific computing environment SciPy. If you start
your program with

from scitools.std import *

you will automatically perform import of many useful modules for nu-
merical Python programming. Among Easyviz functions and other
things, the import statement above performs imports from numpy,
scitools.numpyutils (some convenience functions), numpy.lib.scimath
(see Chapter 1.6.3), and scipy (if available). In addition, the statement
imports os, sys, and the StringFunction tool (see Chapter 3.1.4). We
refer to the paragraph “Importing Just Easyviz” on page 194 for a pre-
cise list of what is actually imported by a from scitools.std import *.
The advantage with this particular import is that one line of code gives
you a lot of the functionality you commonly need in this book. The
downside is that this import statement is comprehensive and therefore
takes some time (seconds) to execute, especially if scipy is available.
If you find the waiting time annoying, you may instead use a minimal
set of import statements as explained on page 194.

There are a couple of SciTools functions that you may find conve-
nient to know about:

4.3 Curve Plotting

• seq (a, b ,h) returns an array with equally spaced numbers starting
with a, ending with b, and with a spacing of h .

• Lseq Cavbvh) works as seq Ca i b ih) except that a, b, and h are integers
and the return array contains a set of integers. The advantage of
iseq over range is that the upper limit b is included in the sequence
of integers. When implementing mathematical algorithms where an
index has a specified range, say i = 1, ... , n, we think it is clearer
to write for i in iseq(l,n) in the program instead of for i in

range(l,n+1).

The inverse trigonometric functions have different names in math and
numpy, a fact that prevents an expression written for scalars, using
math names, to be immediately valid for vectors. Therefore, the from

scitools. std import * action also import the names as i n, acos, and
atan for numpy/ s c i.pys arcsin, arccos, and arctan functions, to ease
vectorizatiou of mathemat.ical expressions involving inverse trigono-
metric functions.

4.3.2 Plotting a Single Curve

Let us plot the curve y = t2 exp(_t2) for t values between 0 and ;~.

First we generate equally spaced coordinates for i; say 51 values (50
intervals). Then we compute the corresponding y values at these points,
before we call the plot(t,y) command to make the curve plot. Here is
the complete program:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

181

t = linspace(O, 3, 51)
Y = zeros(len(t))
for i in xrange(len(t)):

y[i] = f(t [iJ)

plot(t, y)

51 points between 0 and 3
allocate y with float elements

The first line imports all of Sci'Tools and Easyviz that can be handy
to have when doing scientific computations. In this program we pre-
allocate the y array and fill it with values, element by element, in a
Python loop. Alternatively, we may operate on the whole t array at
once, which yields faster and shorter code:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(O, 3, 51)
Y = f f t)
plot(t, yJ

51 points between ° and 3
compute all f values at once

182 4 Array Computing and Curve Plotting

The f function can also be skipped, if desired, so that we can write
directly

y = t**2*exp(-t**2)

To include the plot in electronic documents, we need a hardcopy of
the figure in PostScript, PNG, or another image format. The hardcopy

command produces files with images in various formats:

hardcopy(’tmp1.eps’) # produce PostScript
hardcopy(’tmp1.png’) # produce PNG

The filename extension determines the format: .ps or .eps for
PostScript, and .png for PNG. Figure 4.2 displays the resulting
plot.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2 2.5 3

Fig. 4.2 A simple plot in PostScript format.

On some platforms, some backends may result in a plot that is shown
in just a fraction of a second on the screen before the plot window
disappears (using the Gnuplot backend on Windows machines or using
the Matplotlib backend constitute two examples). To make the window
stay on the screen, add

raw_input(’Press Enter: ’)

at the end of the program. The plot window is killed when the program
terminates, and this satement postpones the termination until the user
hits the Enter key.

4.3 Curve Plotting 183

4.3.3 Decorating the Plot

The x and y axis in curve plots should have labels, here t and y,
respectively. Also, the curve should be identified with a label, or legend
as it is often called. A title above the plot is also common. In addition,
we may want to control the extent of the axes (although most plotting
programs will automatically adjust the axes to the range of the data).
All such things are easily added after the plot command:

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’)
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Easyviz Demo’)

This syntax is inspired by Matlab to make the switch between
Easyviz and Matlab almost trivial. Easyviz has also introduced a more
”Pythonic” plot command where all the plot properties can be set at
once:

plot(t, y,
xlabel=’t’,
ylabel=’y’,
legend=’t^2*exp(-t^2)’,
axis=[0, 3, -0.05, 0.6],
title=’My First Easyviz Demo’,
hardcopy=’tmp1.eps’,
show=True)

With show=False one can avoid the plot window on the screen and
just make the hardcopy. This feature is particularly useful if one gen-
erates a large number of plots in a loop.

Note that we in the curve legend write t square as t^2 (LaTeX
style) rather than t**2 (program style). Whichever form you choose
is up to you, but the LaTeX form sometimes looks better in some
plotting programs (Gnuplot is one example). See Figure 4.3 for what
the modified plot looks like and how t^2 is typeset in Gnuplot.

4.3.4 Plotting Multiple Curves

A common plotting task is to compare two or more curves, which
requires multiple curves to be drawn in the same plot. Suppose we want
to plot the two functions f1(t) = t2 exp(−t2) and f2(t) = t4 exp(−t2).
If we write two plot commands after each other, two separate plots
will be made. To make the second plot command draw the curve in
the first plot, we need to issue a hold(’on’) command. Alternatively,
we can provide all data in a single plot command. A complete program
illustrates the different approaches:

184 4 Array Computing and Curve Plotting

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

y

t

My First Easyviz Demo

t2*exp(−t2)

Fig. 4.3 A single curve with label, title, and axis adjusted.

from scitools.std import * # for curve plotting

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

Matlab-style syntax:
plot(t, y1)
hold(’on’)
plot(t, y2)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’)
title(’Plotting two curves in the same plot’)
hardcopy(’tmp2.eps’)

alternative:
plot(t, y1, t, y2, xlabel=’t’, ylabel=’y’,

legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Plotting two curves in the same plot’,
hardcopy=’tmp2.eps’)

The sequence of the multiple legends is such that the first legend cor-
responds to the first curve, the second legend to the second curve, and
so on. The visual result appears in Figure 4.4.

Doing a hold(’off’) makes the next plot command create a new
plot.

4.3 Curve Plotting 185

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

y

t

Plotting two curves in the same plot

t2*exp(−t2)
t4*exp(−t2)

Fig. 4.4 Two curves in the same plot.

4.3.5 Controlling Line Styles

When plotting multiple curves in the same plot, the individual curves
get distinct default line styles, depending on the program that is used
to produce the curve (and the settings for this program). It might
well happen that you get a green and a red curve (which is bad for a
significant portion of the male population). Therefore, we often want
to control the line style in detail. Say we want the first curve (t and
y1) to be drawn as a red solid line and the second curve (t and y2) as
blue circles at the discrete data points. The Matlab-inspired syntax for
specifying line types applies a letter for the color and a symbol from
the keyboard for the line type. For example, r- represents a red (r)
line (-), while bo means blue (b) circles (o). The line style specification
is added as an argument after the x and y coordinate arrays of the
curve:

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’bo’)

or
plot(t, y1, ’r-’, t, y2, ’bo’)

The effect of controlling the line styles can be seen in Figure 4.5.
Assume now that we want to plot the blue circles at every 4 points

only. We can grab every 4 points out of the t array by using an ap-
propriate slice: t2 = t[::4]. Note that the first colon means the range
from the first to the last data point, while the second colon separates

186 4 Array Computing and Curve Plotting

o

o

3

o

2.5

c-
o

21.5

t

o

o

Plotting two curves in the same plot

t2' exp(-t2)
t4' exp(-i)

c

o
o

0.5

0.6

0.5

0.4

», 0.3

0.2

0.1 -

0
0

Fig. 4.5 Two curves in the same plot, with controlled line styles.

this range from the stride, i.e., how many points we should "jump over"
when we pick out a set of values of tho array.

from scitools.std import *
def f1(t):

return t**2*exp(-t**2)

def f2(t):
return t**2*fl(t)

t ~ linspace (0, 3, 51)
y1 f Lf t)
t2 t L: :4]
y2 f2(t2)

pLot I't , y i , 'r-6', t2, y2, 'ba3',
xlabel='t', ylabel='y',
axis=[O, 4, -0.1, 0.6],
legend=('t-2*exp(-t-2)', 't-4*exp(-t-2)'),
title='Plotting two curves in the same plot',
hardcopy='tmp2.eps')

In this plot we also adjust the size of the line and the circles by
adding an integer: r-6 means a red line with thickness 6 and bo5 means
red circles with size 5. The effect of the given line thickness and sym-
bol size depends on the underlying plotting program. For the Gnuplot
program one can view the effect in Figure 4.6.

The different available line colors include

• yellow: 'y'
• magenta: 'm '

• cyan: 'e'

4.3 Curve Plotting 187

Plotting two curves in the same plot

0.6
t2, exp(-t2)

C r >.
t4 ' exp(-t2) U

0.5

0.4

0.3
>,

0.2

0.1

0

-D.l
a 0.5 1.5 2 2.5 3 3.5 4

t
Fig. 4.6 Circles at every 11 points and extended line thickness (6) and circle slze (3).

• red: 'r'
• green: 'g'
• blue: 'b'
• white: 'w'
• black: 'k'

The different available line types are

• solid line: '-'
• dashed line: '--'
• dotted line: ':'
• dash-dot line: '-.'

During programming, you can find all these details in the documenta-
tion of the plot function. Just type help(plot) in an interactive Python
shell or invoke pydoc with sci tools. easyviz. plot. This tutorial is avail-
able through pydoc scitools. easyviz.

We remark that in the Gnuplot program all the different line types
are drawn as solid lines on the screen. The hardcopy chooses automat-
ically different line types (solid, dashed, etc.) and not in accordance
with the line type specification.

Lots of markers at data points are available:

• plus sign: '+'
• circle: '0'
• asterisk: '*'
• point: '.'
• cross: 'x'

black solid line with squares at data points

188 4 Array Computing and Curve Plotting

• square: 's'
• diamond: 'd'
• upward-pointing triangle: ,-,
• downward-pointing triangle: 'v'
• right-pointing triangle: ' >'
• left-pointing triangle: ' <'

• five-point star (pcntngram): 'p'
• six-point star (hcxagrnm}: 'h'

• no marker (default): None

Symbols and line styles may be combined, for instance as in 'kx-',

which means a black solid line with black crosses at the data points.

Another Erample. Let us extend the previous example with a third
curve where the data points are slightly randomly distributed around
the h(t) curve:

from scitools.std import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*fl(t)

t = linspace (0, 3, 51)
y1 = f Lf t)
y2 = f2(t)

pick out each 4 points and add random noise:
t3 = t I: :4] # slice, stride 4
random.seed(11) # fix random sequence
noise = random.normal(loc=O, scale=O.02, size=len(t3»
y3 = y2[: :4] + noise

pLot f t , y1, "r'-' ")

hol.df 'on')
p.Lot I't , y2, 'ks-')
pLo't CtS, y3, "bo ")

legend('t~2*exp(-t-2»), 't-4*exp(-t-2)', 'data')
title('Simple Plot Demo')
axis([O, 3, -0.05, 0.6])
xlabel(, t ')
ylabel('y')
showO
hardcopy('tmp3.eps')
hardcopy('tmp3.png')

The plot is shown in Figure 4.7.

Minimolistic Typing. When exploring mathematics in the interactive
Python shell. most of us arc interested in the quickest possible eOIIl-
mands. Here is an example of minimalistic syntax for comparing the
two sample functions we have used in the previous examples:

4.3 Curve Plotting 189

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

y

t

Simple Plot Demo

t2*exp(−t2)
t4*exp(−t2)

data

Fig. 4.7 A plot with three curves.

t = linspace(0, 3, 51)
plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))

Text. A text can be placed at a point (x, y) using the call

text(x, y, ’Some text’)

More Examples. The examples in this tutorial, as well as additional
examples, can be found in the examples directory in the root directory
of the SciTools source code tree.

4.3.6 Interactive Plotting Sessions

All the Easyviz commands can of course be issued in an interactive
Python session. The only thing to comment is that the plot command
returns a result:

>>> t = linspace(0, 3, 51)
>>> plot(t, t**2*exp(-t**2))
[<scitools.easyviz.common.Line object at 0xb5727f6c>]

Most users will just ignore this output line.
All Easyviz commands that produce a plot return an object reflect-

ing the particular type of plot. The plot command returns a list of
Line objects, one for each curve in the plot. These Line objects can
be invoked to see, for instance, the value of different parameters in the
plot:

190 4 Array Computing and Curve Plotting

>>> line, = plot(x, y, ’b’)
>>> getp(line)
{’description’: ’’,
’dims’: (4, 1, 1),
’legend’: ’’,
’linecolor’: ’b’,
’pointsize’: 1.0,
...

Such output is mostly of interest to advanced users.

4.3.7 Making Animations

A sequence of plots can be combined into an animation and stored in
a movie file. First we need to generate a series of hardcopies, i.e., plots
stored in files. Thereafter we must use a tool to combine the individual
plot files into a movie file.

Example. The function f(x;m, s) = (2π)−1/2s−1 exp
[
−1

2

(
x−m

s

)2]
is

known as the Gaussian function or the probability density function
of the normal (or Gaussian) distribution. This bell-shaped function is
”wide” for large s and ”peak-formed” for small s, see Figure 4.8. The
function is symmetric around x = m (m = 0 in the figure). Our goal
is to make an animation where we see how this function evolves as s
is decreased. In Python we implement the formula above as a function
f(x, m, s).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

−6 −4 −2 0 2 4 6

A Gaussian Bell Function

s=2
s=1

s=0.2

Fig. 4.8 Different shapes of a Gaussian function.

4.3 Curve Plotting 191

The animation is created by varying s in a loop and for each s issue
a plot command. A moving curve is then visible on the screen. One can
also make a movie file that can be played as any other computer movie
using a standard movie player. To this end, each plot is saved to a file,
and all the files are combined together using some suitable tool, which
is reached through the movie function in Easyviz. All necessary steps
will be apparent in the complete program below, but before diving into
the code we need to comment upon a couple of issues with setting up
the plot command for animations.

The underlying plotting program will normally adjust the axis to the
maximum and minimum values of the curve if we do not specify the axis
ranges explicitly. For an animation such automatic axis adjustment is
misleading - the axis ranges must be fixed to avoid a jumping axis. The
relevant values for the axis range is the minimum and maximum value
of f . The minimum value is zero, while the maximum value appears
for x = m and increases with decreasing s. The range of the y axis
must therefore be [0, f(m;m,min s)].

The function f is defined for all −∞ < x < ∞, but the function
value is very small already 3s away from x = m. We may therefore
limit the x coordinates to [m − 3s, m + 3s].

Now we are ready to take a look at the complete code for animating
how the Gaussian function evolves as the s parameter is decreased from
2 to 0.2:

from scitools.std import *
import time

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0
s_start = 2
s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)
x = linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m; smaller s gives larger max value
max_f = f(m, m, s_stop)

show the movie on the screen
and make hardcopies of frames simultaneously:
counter = 0
for s in s_values:

y = f(x, m, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],

xlabel=’x’, ylabel=’f’, legend=’s=%4.2f’ % s,
hardcopy=’tmp%04d.png’ % counter)

counter += 1
#time.sleep(0.2) # can insert a pause to control movie speed

make movie file the simplest possible way:
movie(’tmp*.png’)

Note that the s values are decreasing (linspace handles this auto-
matically if the start value is greater than the stop value). Also note

192 4 Array Computing and Curve Plotting

that we, simply because we think it is visually more attractive, let the
y axis go from -0.1 although the f function is always greater than zero.

Remarks on Filenames. For each frame (plot) in the movie we store the
plot in a file. The different files need different names and an easy way
of referring to the set of files in right order. We therefore suggest to use
filenames of the form tmp0001.png, tmp0002.png, tmp0003.png, etc. The
printf format 04d pads the integers with zeros such that 1 becomes
0001, 13 becomes 0013 and so on. The expression tmp*.png will now
expand (by an alphabetic sort) to a list of all files in proper order.
Without the padding with zeros, i.e., names of the form tmp1.png,
tmp2.png, ..., tmp12.png, etc., the alphabetic order will give a wrong
sequence of frames in the movie. For instance, tmp12.png will appear
before tmp2.png.

Note that the names of plot files specified when making hardopies
must be consistent with the specification of names in the call to movie.
Typically, one applies a Unix wildcard notation in the call to movie,
say plotfile*.eps, where the asterix will match any set of charac-
ters. When specifying hardcopies, we must then use a filename that
is consistent with plotfile*.eps, that is, the filename must start with
plotfile and end with .eps, but in between these two parts we are
free to construct (e.g.) a frame number padded with zeros.

We recommend to always remove previously generated plot files be-
fore a new set of files is made. Otherwise, the movie may get old and
new files mixed up. The following Python code removes all files of the
form tmp*.png:

import glob, os
for filename in glob.glob(’tmp*.png’):

os.remove(filename)

These code lines should be inserted at the beginning of the code exam-
ple above. Alternatively, one may store all plotfiles in a subfolder and
later delete the subfolder. Here is a suitable code segment:

import shutil, os
subdir = ’temp’ # subfolder for plot files
if os.path.isdir(subdir): # does the subfolder already exist?

shutil.rmtree(subdir) # delete the whole folder
os.mkdir(subdir) # make new subfolder
os.chdir(subdir) # move to subfolder
do all the plotting
make movie
os.chdir(os.pardir) # optional: move up to parent folder

Movie Formats. Having a set of (e.g.) tmp*.png files, one can simply
generate a movie by a movie(’tmp*.png’) call. The movie function gen-
erates a movie file called movie.avi (AVI format), movie.mpeg (MPEG
format), or movie.gif (animated GIF format) in the current working

4.3 Curve Plotting 193

directory. The movie format depends on the encoders found on your
machine.

You can get complete control of the movie format and the name
of the movie file by supplying more arguments to the movie function.
First, let us generate an animated GIF file called tmpmovie.gif:

movie(’tmp_*.eps’, encoder=’convert’, fps=2,
output_file=’tmpmovie.gif’)

The generation of animated GIF images applies the convert program
from the ImageMagick suite. This program must of course be installed
on the machine. The argument fps stands for frames per second so here
the speed of the movie is slow in that there is a delay of half a second
between each frame (image file). To view the animated GIF file, one
can use the animate program (also from ImageMagick) and give the
movie file as command-line argument. One can alternatively put the
GIF file in a web page in an IMG tag such that a browser automatically
displays the movie.

An MPEG movie can be generated by the call

movie(’tmp_*.eps’, encoder=’ffmpeg’, fps=4,
output_file=’tmpmovie1.mpeg’,

Alternatively, we may use the ppmtompeg encoder from the Netpbm
suite of image manipulation tools:

movie(’tmp_*.eps’, encoder=’ppmtompeg’, fps=24,
output_file=’tmpmovie2.mpeg’,

The ppmtompeg supports only a few (high) frame rates.
The next sample call to movie uses the Mencoder tool and spec-

ifies some additional arguments (video codec, video bitrate, and the
quantization scale):

movie(’tmp_*.eps’, encoder=’mencoder’, fps=24,
output_file=’tmpmovie.mpeg’,
vcodec=’mpeg2video’, vbitrate=2400, qscale=4)

Playing movie files can be done by a lot of programs. Windows Media
Player is a default choice on Windows machines. On Unix, a variety of
tools can be used. For animated GIF files the animate program from
the ImageMagick suite is suitable, or one can simply show the file in
a web page with the HTML command . AVI
and MPEG files can be played by, for example, the myplayer, vlc, or
totem programs.

4.3.8 Advanced Easyviz Topics

The information in the previous sections aims at being sufficient for
the daily work with plotting curves. Sometimes, however, one wants to

194 4 Array Computing and Curve Plotting

fine-control the plot or how Easyviz behaves. First, we explain how to
set the backend. Second, we tell how to speed up the WILL BE REPLACED

BY ptex2tex from scitools.std import * statement. Third, we show how to
operate with the plotting program directly and using plotting program-
specific advanced features. Fourth, we explain how the user can grab
Figure and Axis objects that Easyviz produces ”behind the curtain”.

Controlling the Backend. The Easyviz backend can either be set in a
config file (see Config File below), by importing a special backend in
the program, or by adding a command-line option

--SCITOOLS_easyviz_backend name

where name is the name of the backend: gnuplot, vtk, matplotlib, etc.
Which backend you choose depends on what you have available on your
computer system and what kind of plotting functionality you want.

An alternative method is to import a specific backend in a program.
Instead of the from scitools.std import * statement one writes

from numpy import *
from scitools.easyviz.gnuplot_ import * # work with Gnuplot
or
from scitools.easyviz.vtk_ import * # work with VTK

Note the trailing underscore in the module names for the various back-
ends.

Easyviz is a subpackage of SciTools, and the the SciTools configura-
tion file, called scitools.cfg has a section [easyviz] where the backend

in Easyviz can be set:

[easyviz]
backend = vtk

A .scitools.cfg file can be placed in the current working folder,
thereby affecting plots made in this folder, or it can be located in the
user’s home folder, which will affect all plotting sessions for the user in
question. There is also a common SciTools config file scitools.cfg for
the whole site (located in the directory where the scitools package is
installed).

The following program prints a list of the names of the available
backends on your computer system:

from scitools.std import *
backends = available_backends()
print ’Available backends:’, backends

There will be quite some output explaining the missing backends and
what must be installed to use these backends.

Importing Just Easyviz. The from scitools.std import * statement
imports many modules and packages::

4.3 Curve Plotting 195

from numpy import *
from scitools.numpyutils import * # some convenience functions
from numpy.lib.scimath import *
from scipy import * # if scipy is installed
import sys, operator, math
from scitools.StringFunction import StringFunction
from glob import glob

The scipy import can take some time and lead to slow start-up of plot
scripts. A more minimalistic import for curve plotting is

from scitools.easyviz import *
from numpy import *

Alternatively, one can edit the scitools.cfg configure file or add one’s
own .scitools.cfg file with redefinition of selected options, such as
load in the scipy section. The user .scitools.cfg must be placed in
the folder where the plotting script in action resides, or in the user’s
home folder. Instead of editing a configuration file, one can just add
the command-line argument --SCITOOLS_scipy_load no to the curve
plotting script (all sections/options in the configuration file can also
be set by such command-line arguments).

Working with the Plotting Program Directly. Easyviz supports just the
most common plotting commands, typically the commands you use ”95
percent” of the time when exploring curves. Various plotting packages
have lots of additional commands for different advanced features. When
Easyviz does not have a command that supports a particular feature,
one can grab the Python object that communicates with the underly-
ing plotting program (known as ”backend”) and work with this object
directly, using plotting program-specific command syntax. Let us illus-
trate this principle with an example where we add a text and an arrow
in the plot, see Figure 4.9.

Easyviz does not support arrows at arbitrary places inside the plot,
but Gnuplot does. If we use Gnuplot as backend, we may grab the
Gnuplot object and issue Gnuplot commands to this object directly.
Here is an example of the typical recipe, written after the core of the
plot is made in the ordinary (plotting program-independent) way:

g = get_backend()
if backend == ’gnuplot’:

g is a Gnuplot object, work with Gnuplot commands directly:
g(’set label "global maximum" at 0.1,0.5 font "Times,18"’)
g(’set arrow from 0.5,0.48 to 0.98,0.37 linewidth 2’)
g.refresh()
g.hardcopy(’tmp2.eps’) # make new hardcopy

We refer to the Gnuplot manual for the features of this package and
the syntax of the commands. The idea is that you can quickly generate
plots with Easyviz using standard commands that are independent of
the underlying plotting package. However, when you need advanced

196 4 Array Computing and Curve Plotting

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4

y

t

Plotting two curves in the same plot

global maximum

t2*exp(−t2)
t4*exp(−t2)

Fig. 4.9 Illustration of a text and an arrow using Gnuplot-specific commands.

features, you must add plotting package-specific code as shown above.
This principle makes Easyviz a light-weight interface, but without lim-
iting the available functionality of various plotting programs.

Working with Axis and Figure Objects. Easyviz supports the concept
of Axis objects, as in Matlab. The Axis object represents a set of axes,
with curves drawn in the associated coordinate system. A figure is
the complete physical plot. One may have several axes in one figure,
each axis representing a subplot. One may also have several figures,
represented by different windows on the screen or separate hardcopies.

Users with Matlab experience may prefer to set axis labels, ranges,
and the title using an Axis object instead of providing the information
in separate commands or as part of a plot command. The gca (get
current axis) command returns an Axis object, whose set method can
be used to set axis properties:

plot(t, y1, ’r-’, t, y2, ’bo’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
hardcopy=’tmp2.eps’)

ax = gca() # get current Axis object
ax.setp(xlabel=’t’, ylabel=’y’,

axis=[0, 4, -0.1, 0.6],
title=’Plotting two curves in the same plot’)

show() # show the plot again after ax.setp actions

The figure() call makes a new figure, i.e., a new window with curve
plots. Figures are numbered as 1, 2, and so on. The command figure(3)

sets the current figure object to figure number 3.

4.3 Curve Plotting 197

Suppose we want to plot our y1 and y2 data in two separate windows.
We need in this case to work with two Figure objects:

plot(t, y1, ’r-’, xlabel=’t’, ylabel=’y’,
axis=[0, 4, -0.1, 0.6])

figure() # new figure

plot(t, y2, ’bo’, xlabel=’t’, ylabel=’y’)

We may now go back to the first figure (with the y1 data) and set a
title and legends in this plot, show the plot, and make a PostScript
version of the plot:

figure(1) # go back to first figure
title(’One curve’)
legend(’t^2*exp(-t^2)’)
show()
hardcopy(’tmp2_1.eps’)

We can also adjust figure 2:

figure(2) # go to second figure
title(’Another curve’)
hardcopy(’tmp2_2.eps’)
show()

The current Figure object is reached by gcf (get current figure), and
the dump method dumps the internal parameters in the Figure object:

fig = gcf(); print fig.dump()

These parameters may be of interest for troubleshooting when Easyviz
does not produce what you expect.

Let us then make a third figure with two plots, or more precisely, two
axes: one with y1 data and one with y2 data. Easyviz has a command
subplot(r,c,a) for creating r rows and c columns and set the current
axis to axis number a. In the present case subplot(2,1,1) sets the
current axis to the first set of axis in a ”table” with two rows and one
column. Here is the code for this third figure:

figure() # new, third figure
plot y1 and y2 as two axis in the same figure:
subplot(2, 1, 1)
plot(t, y1, xlabel=’t’, ylabel=’y’)
subplot(2, 1, 2)
plot(t, y2, xlabel=’t’, ylabel=’y’)
title(’A figure with two plots’)
show()
hardcopy(’tmp2_3.eps’)

If we need to place an axis at an arbitrary position in the figure, we
must use the command

198 4 Array Computing and Curve Plotting

ax = axes(viewport=[left, bottom, width, height])

The four parameteres left, bottom, width, height are location values
between 0 and 1 ((0,0) is the lower-left corner and (1,1) is the upper-
right corner). However, this might be a bit different in the different
backends (see the documentation for the backend in question).

4.3.9 Curves in Pure Text

Sometimes it can be desirable to show a graph in pure ASCII text,
e.g., as part of a trial run of a program included in the program itself
(cf. the introduction to Chapter 1.8), or a graph can be needed in a
doc string. For such purposes we have slightly extended a module by
Imri Goldberg (aplotter.py) and included it as a module in SciTools.
Running pydoc on scitools.aplotter describes the capabilities of this
type of primitive plotting. Here we just give an example of what it can
do:

>>> from scitools.aplotter import plot
>>> from numpy import linspace, exp, cos, pi
>>> x = linspace(-2, 2, 81)
>>> y = exp(-0.5*x**2)*cos(pi*x)
>>> plot(x, y)

|
// |\\
/ | \
/ | \
/ | \
/ | \
/ | \
/ | \
/ | \

-------\ / | \
---+-------\\-----------------/---------+--------\-----------------

-2 \ / | \ /
\\ / | \ //
\ / | \ /
\\ / | \ //
\ / | \ /
\ // | \- //
---- -0.63 ---/

|

>>> # plot circles at data points only:
>>> plot(x, y, dot=’o’, plot_slope=False)

|
o+1

oo |oo
o | o
o | o

|
o | o
o | o

|
oooooooo o | o

---+-------oo-----------------o---------+--------o-----------------
-2 o | o

oo o | o oo

4.4 Plotting Difficulties 199

o o | o o
oo o | o oo
o o | o o
o oo | oo oo
oooo -0.63 oooo

|
>>> p = plot(x, y, output=str) # store plot in a string:
>>> print p

(The last 13 characters of the output lines are here removed to make
the lines fit the maximum textwidth of this book.)

4.4 Plotting Difficulties

The previous examples on plotting functions demonstrate how easy
it is to make graphs. Nevertheless, the shown techniques might easily
fail to plot some functions correctly unless we are careful. Next we
address two types of difficult functions: piecewisely defined functions
and rapidly varying functions.

4.4.1 Piecewisely Defined Functions

A piecewisely defined function has different function definitions in dif-
ferent intervals along the x axis. The resulting function, made up of
pieces, may have discontinuities in the function value or in derivatives.
We have to be very careful when plotting such functions, as the next
two examples will show. The problem is that the plotting mechanism
draws straight lines between coordinates on the function’s curve, and
these straight lines may not yield a satisfactory visualization of the
function. The first example has a discontinuity in the function itself at
one point, while the other example has a discontinuity in the derivative
at three points.

Example: The Heaviside Function. Let us plot the Heaviside function
defined in (2.18) on page 108. The most natural way to proceed is first
to define the function as

def H(x):
return (0 if x < 0 else 1)

The standard plotting procedure where we define a coordinate array x

and do a

y = H(x)
plot(x, y)

fails with this H(x) function. The test x < 0 results in an array where
each element is True or False depending on whether x[i] < 0 or not.

200 4 Array Computing and Curve Plotting

A ValueError exception is raised when we use this resulting array in
an if test:

>>> x = linspace(-10, 10, 5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> b = x < 0
>>> b
array([True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

The suggestion of using the any or all methods do not help because
this is not what we are interested in:

>>> b.any() # True if any element in b is True
True
>>> b.all() # True if all elements in b are True
False

We want to take actions element by element depending on whether
x[i] < 0 or not.

There are three ways to find a remedy to our problems with the
if x < 0 test: (i) we can write an explicit loop for computing the ele-
ments, (ii) we can use a tool for automatically vectorize H(x), or (iii)
we can manually vectorize the H(x) function. All three methods will be
illustrated next.

Loop. The following function works well for arrays if we insert a simple
loop over the array elements (such that H(x) operates on scalars only):

def H_loop(x):
r = zeros(len(x))
for i in xrange(len(x)):

r[i] = H(x[i])
return r

x = linspace(-5, 5, 6)
y = H_loop(x)

This H_loop version of H is sufficient for plotting the Heaviside function.
The next paragraph explains other ways of making versions of H(x) that
work for array arguments.

Automatic Vectorization. Numerical Python contains a method for
automatically vectorizing a Python function that works with scalars
(pure numbers) as arguments:

from numpy import vectorize
H_vec = vectorize(H)

The H_vec(x) function will now work with vector/array arguments x.
Unfortunately, such automatically vectorized functions are often as
slow as the explicit loop shown above.

4.4 Plotting Difficulties 201

Manual Vectorization. (Note: This topic is considered advanced and
at another level than the rest of the book.) To allow array arguments
in our Heaviside function and get the increased speed that one asso-
ciates with vectorization, we have to rewrite the H function completely.
The mathematics must now be expressed by functions from the Nu-
merical Python library. In general, this type of rewrite is non-trivial
and requires knowledge of and experience with the library. Fortunately,
functions of the form

def f(x):
if condition:

x = <expression1>
else:

x = <expression2>
return x

can in general be vectorized quite simply as

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
return where(condition, x1, x2)

The where function returns an array of the same length as condition,
and element no. i equals x1[i] if condition[i] is True, and x2[i]

otherwise. With Python loops we can express this principle as

r = zeros(len(condition)) # array returned from where(...)
for i in xrange(condition):

r[i] = x1[i] if condition[i] else x2[i]

The x1 and x2 variables can be pure numbers or arrays of the same
length as x.

In our case we can use the where function as follows:

def Hv(x):
return where(x < 0, 0.0, 1.0)

Plotting the Heaviside Function. Since the Heaviside function consists
of two flat lines, one may think that we do not need many points along
the x axis to describe the curve. Let us try only five points:

x = linspace(-10, 10, 5)
plot(x, Hv(x), axis=[x[0], x[-1], -0.1, 1.1])

However, so few x points are not able to describe the jump from 0 to 1
at x = 0, as shown by the solid line in Figure 4.10a. Using more points,
say 50 between −10 and 10,

x2 = linspace(-10, 10, 50)
plot(x, Hv(x), ’r’, x2, Hv(x2), ’b’,

legend=(’5 points’, ’50 points’),
axis=[x[0], x[-1], -0.1, 1.1])

202 4 Array Computing and Curve Plotting

makes the curve look better, as you can see from the dotted line in
Figure 4.10a. However, the step is still not vertical. This time the point
x = 0 was not among the coordinates so the step goes from x = −0.2
to x = 0.2. More points will improve the situation. Nevertheless, the
best is to draw two flat lines directly: from (−10, 0) to (0, 0), then to
(0, 1) and then to (10, 1):

plot([-10, 0, 0, 10], [0, 0, 1, 1],
axis=[x[0], x[-1], -0.1, 1.1])

The result is shown in Figure 4.10b.

 0

 0.2

 0.4

 0.6

 0.8

 1

−10 −5 0 5 10

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

−4 −3 −2 −1 0 1 2 3 4

(b)

Fig. 4.10 Plot of the Heaviside function: (a) using equally spaced x points (5 and 50);
(b) using a “double point” at x = 0.

Some will argue that the plot of H(x) should not contain the vertical
line from (0, 0) to (0, 1), but only two horizontal lines. To make such a
plot, we must draw two distinct curves, one for each horizontal line:

plot([-10,0], [0,0], ’r-’, [0,10], [1,1], ’r-’,
axis=[x[0], x[-1], -0.1, 1.1])

Observe that we must specify the same line style for both lines (curves),
otherwise they would by default get different color on the screen and
different line type in a hardcopy. We remark, however, that discontin-
uous functions like H(x) are often visualized with vertical lines at the
jumps, as we do in Figure 4.10b.

4.4 Plotting Difficulties 203

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 −1 0 1 2 3 4

Fig. 4.11 Plot of a “hat” function. The solid line shows the exact function, while the
dashed line arises from using inappropriate points along the x axis.

Example: A “Hat” Function. Let us plot the “hat” function N(x), de-
fined by (2.5) on page 89. The corresponding Python implementation
N(x) shown right after (2.5) does not work with array arguments x be-
cause the boolean expressions, like x < 0, are arrays and they cannot
yield a single True or False value for the if tests. The simplest solution
is to use vectorize, as explained for the Heaviside function above8:

N_vec = vectorize(N)

A manual rewrite, yielding a faster vectorized function, is more de-
manding than for the Heaviside function because we now have multiple
branches in the if test. One attempt may be9

def Nv(x):
r = where(x < 0, 0.0, x)
r = where(0 <= x < 1, x, r)
r = where(1 <= x < 2, 2-x, r)
r = where(x >= 2, 0.0, r)
return r

However, the condition like 0 <= x < 1, which is equivalent to 0 <=

x and x < 1, does not work because the and operator does not work
with array arguments. All operators in Python (+, -, and, or, etc.)

8 It is important that N(x) return float and not int values, otherwise the vectorized
version will produce int values and hence be incorrect.

9 This is again advanced material.

204 4 Array Computing and Curve Plotting

are available as pure functions in a module operator (operator.add,
operator.sub, operator.and_, operator.or_10, etc.). A working Nv func-
tion must apply operator.and_ instead:

def Nv(x):
r = where(x < 0, 0.0, x)
import operator
condition = operator.and_(0 <= x, x < 1)
r = where(condition, x, r)
condition = operator.and_(1 <= x, x < 2)
r = where(condition, 2-x, r)
r = where(x >= 2, 0.0, r)
return r

A second, alternative rewrite is to use boolean expressions in indices:

def Nv(x):
r = x.copy() # avoid modifying x in-place
r[x < 0.0] = 0.0
condition = operator.and_(0 <= x, x < 1)
r[condition] = x[condition]
condition = operator.and_(1 <= x, x < 2)
r[condition] = 2-x[condition]
r[x >= 2] = 0.0
return r

Now to the computation of coordinate arrays for the plotting. We
may use an explicit loop over all array elements, or the N_vec function,
or the Nv function. An approach without thinking about vectorization
too much could be

x = linspace(-2, 4, 6)
plot(x, N_vec(x), ’r’, axis=[x[0], x[-1], -0.1, 1.1])

This results in the dashed line in Figure 4.11. What is the problem?
The problem lies in the computation of the x vector, which does not
contain the points x = 1 and x = 2 where the function makes significant
changes. The result is that the “hat” is “flattened”. Making an x vector
with all critical points in the function definitions, x = 0, 1, 2, provides
the necessary remedy, either

x = linspace(-2, 4, 7)

or the simple

x = [-2, 0, 1, 2, 4]

Any of these x alternatives and a plot(x, N_vec(x)) will result in the
solid line in Figure 4.11, which is the correct visualization of the N(x)
function.

10 Recall that and and or are reserved keywords, see page 10, so a module or program
cannot have variables or functions with these names. To circumvent this problem,
the convention is to add a trailing underscore to the name.

4.4 Plotting Difficulties 205

4.4.2 Rapidly Varying Functions

Let us now visualize the function f(x) = sin(1/x), using 10 and 1000
points:

def f(x):
return sin(1.0/x)

x1 = linspace(-1, 1, 10)
x2 = linspace(-1, 1, 1000)
plot(x1, f(x1), label=’%d points’ % len(x))
plot(x2, f(x2), label=’%d points’ % len(x))

The two plots are shown in Figure 4.12. Using only 10 points gives a
completely wrong picture of this function, because the function oscil-
lates faster and faster as we approach the origin. With 1000 points we
get an impression of these oscillations, but the accuracy of the plot in
the vicinity of the origin is still poor. A plot with 100000 points has
better accuracy, in principle, but the extermely fast oscillations near
the origin just drowns in black ink (you can try it out yourself).

Another problem with the f(x) = sin(1/x) function is that it is easy
to define an x vector that contains x = 0, such that we get division
by zero. Mathematically, the f(x) function has a singularity at x = 0:
it is difficult to define f(0), so one should exclude this point from the
function definition and work with a domain x ∈ [−1,−ε] ∪ [ε, 1], with
ε chosen small.

The lesson learned from these examples is clear: You must investigate
the function to be visualized and make sure that you use an appropriate
set of x coordinates along the curve. A relevant first step is to double
the number of x coordinates and check if this changes the plot. If not,
you probably have an adequate set of x coordinates.

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5 0 0.5 1

(a)

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5 0 0.5 1

(b)

Fig. 4.12 Plot of the function sin(1/x) with (a) 10 points and (b) 1000 points.

206 4 Array Computing and Curve Plotting

4.4.3 Vectorizing StringFunction Objects

The StringFunction object described in Chapter 3.1.4 does unfor-
tunately not work with array arguments unless we explicitly tell
the object to do so. The recipe is very simple. Say f is some
StringFunction object. To allow array arguments we must first call
f.vectorize(globals()) once:

f = StringFunction(formula)
x = linspace(0, 1, 30)

f(x) will in general not work

from numpy import *
f.vectorize(globals())
now f works with array arguments:
values = f(x)

It is important that you import everything from numpy or scitools.std
before you call f.vectorize. We suggest to take the f.vectorize call
as a magic recipe11.

Even after calling f.vectorize(globals()) a StringFunction object
may face problems with vectorization. One example is a piecewise con-
stant function as specified by a string expression ’1 if x > 2 else 0’.
One remedy is to use the vectorized version of an if test: ’where(x >

2, 1, 0)’. For an average user of the program this construct is not at
all obvious so a more user-friendly solution is to apply vectorize from
numpy:

f = vectorize(f) # vectorize a StringFunction f

The line above is therefore the most general (but also the slowest) way
of vectorizing a StringFunction object. After that call, f is no more a
StringFunction object, but f behaves as a (vectorized) function. The
vectorize tool from numpy can be used to allow any Python function
taking scalar arguments to also accept array arguments.

To get better speed, one can use vectorize(f) only in the case the
formula in f contains an inline if test (e.g., recoginzed by the string ’

else ’ inside the formula). Otherwise, we use f.vectorize. The formula
in f is obtained by str(f) so we can test

11 Some readers still want to know what the problem is. Inside the StringFunc-

tion module we need to have access to mathematical functions for expressions
like sin(x)*exp(x) to be evaluated. These mathematical functions are by default
taken from the math module and hence they do not work with array arguments.
If the user, in the main program, has imported mathematical functions that work
with array arguments, these functions are registered in a dictionary returned from
globals(). By the f.vectorize call we supply the StringFunction module with
the user’s global namespace so that the evaluation of the string expression can make
use of mathematical functions for arrays.

4.5 More on Numerical Python Arrays 207

if ’ else ’ in str(f):
f = vectorize(f)

else:
f.vectorize(globals())

4.5 More on Numerical Python Arrays

This section lists some more advanced but useful operations with Nu-
merical Python arrays.

4.5.1 Copying Arrays

Let x be an array. The statement a = x makes a refer to the same array
as x. Changing a will then also affect x:

>>> x = array([1, 2, 3.5])
>>> a = x
>>> a[-1] = 3 # this changes x[-1] too!
>>> x
array([1., 2., 3.])

Changing a without changing x requires a to be a copy of x:

>>> a = x.copy()
>>> a[-1] = 9
>>> a
array([1., 2., 9.])
>>> x
array([1., 2., 3.])

4.5.2 In-Place Arithmetics

Let a and b be two arrays of the same shape. The expression a += b

means a = a + b, but this is not the complete story. In the statement
a = a + b, the sum a + b is first computed, yielding a new array, and
then the name a is bound to this new array. The old array a is lost
unless there are other names assigned to this array. In the statement
a += b, elements of b are added directly into the elements of a (in
memory). There is no hidden intermediate array as in a = a + b. This
implies that a += b is more efficient than a = a + b since Python avoids
making an extra array. We say that the operators +=, *=, and so on,
perform in-place arithmetics in arrays.

Consider the compound array expression

208 4 Array Computing and Curve Plotting

a = (3*x**4 + 2*x + 4)/(x + 1)

The computation actually goes as follows with seven hidden arrays for
storing intermediate results:

1. r1 = x**4

2. r2 = 3*r1

3. r3 = 2*x

4. r4 = r2 + r3

5. r5 = r4 + 4

6. r6 = x + 1

7. r7 = r5/r6

8. a = r7

With in-place arithmetics we can get away with creating three new
arrays, at a cost of a significantly less readable code:

a = x.copy()
a **= 4
a *= 3
a += 2*x
a += 4
a /= x + 1

The three extra arrays in this series of statement arise from copying x,
and computing the right-hand sides 2*x and x+1.

Quite often in computational science and engineering, a huge num-
ber of arithmetics is performed on very large arrays, and then saving
memory and array allocation time by doing in-place arithmetics is im-
portant.

The mix of assignment and in-place arithmetics makes it easy to
make unintended changes of more than one array. For example, this
code changes x:

a = x
a += y

since a refers to the same array as x and the change of a is done in-place.

4.5.3 Allocating Arrays

We have already seen that the zeros function is handy for making a
new array a of a given size. Very often the size and the type of array
elements have to match another existing array x. We can then either
copy the original array, e.g.,

a = x.copy()

and fill elements in a with the right new values, or we can say

4.5 More on Numerical Python Arrays 209

a = zeros(x.shape, x.dtype)

The attribute x.dtype holds the array element type (dtype for data
type), and as mentioned before, x.shape is a tuple with the array di-
mensions.

Sometimes we may want to ensure that an object is an array, and if
not, turn it into an array. The asarray function is useful in such cases:

a = asarray(a)

Nothing is copied if a already is an array, but if a is a list or tuple, a
new array with a copy of the data is created.

4.5.4 Generalized Indexing

Chapter 4.2.2 shows how slices can be used to extract and manipulate
subarrays. The slice f:t:i corresponds to the index set f, f+i, f+2*i,

... up to, but not including, t. Such an index set can be given explicitly
too: a[range(f,t,i)]. That is, the integer list from range can be used
as a set of indices. In fact, any integer list or integer array can be used
as index:

>>> a = linspace(1, 8, 8)
>>> a
array([1., 2., 3., 4., 5., 6., 7., 8.])
>>> a[[1,6,7]] = 10
>>> a
array([1., 10., 3., 4., 5., 6., 10., 10.])
>>> a[range(2,8,3)] = -2 # same as a[2:8:3] = -2
>>> a
array([1., 10., -2., 4., 5., -2., 10., 10.])

We can also use boolean arrays to generate an index set. The indices
in the set will correspond to the indices for which the boolean array
has True values. This functionality allows expressions like a[x<m]. Here
are two examples, continuing the previous interactive session:

>>> a[a < 0] # pick out the negative elements of a
array([-2., -2.])
>>> a[a < 0] = a.max()
>>> a
array([1., 10., 10., 4., 5., 10., 10., 10.])
>>> # replace elements where a is 10 by the first
>>> # elements from another array/list:
>>> a[a == 10] = [10, 20, 30, 40, 50, 60, 70]
>>> a
array([1., 10., 20., 4., 5., 30., 40., 50.])

Generalized indexing using integer arrays or lists is important for vec-
torized initialization of array elements.

210 4 Array Computing and Curve Plotting

4.5.5 Testing for the Array Type

Inside an interactive Python shell you can easily check an object’s type
using the type function (see Chapter 1.5.2). In case of a Numerical
Python array, the type name is ndarray:

>>> a = linspace(-1, 1, 3)
>>> a
array([-1., 0., 1.])
>>> type(a)
<type ’numpy.ndarray’>

Sometimes you need to test if a variable is an ndarray or a float or
int. The isinstance function was made for this purpose:

>>> isinstance(a, ndarray)
True
>>> type(a) == ndarray
True
>>> isinstance(a, (float,int)) # float or int?
False

A typical use of isinstance is shown next.

Example: Vectorizing a Constant Function. Suppose we have a con-
stant function,

def f(x):
return 2

This function accepts an array argument x, but will return a float

while a vectorized version of the function should return an array of the
same shape as x where each element has the value 2. The vectorized
version can be realized as

def fv(x):
return zeros(x.shape, x.dtype) + 2

The optimal vectorized function would be one that works for both a
scalar and an array argument. We must then test on the argument
type:

def f(x):
if isinstance(x, (float, int)):

return 2
else: # assmue array

return zeros(x.shape, x.dtype) + 2

A more foolproof solution is to also test for an array and raise an
exception if x is neither a scalar nor an array:

def f(x):
if isinstance(x, (float, int)):

return 2
elif isinstance(x, ndarray):

return zeros(x.shape, x.dtype) + 2

4.5 More on Numerical Python Arrays 211

else:
raise TypeError\
(’x must be int, float or ndarray, not %s’ % type(x))

4.5.6 Equally Spaced Numbers

We have used the linspace function heavily so far in this chapter, but
there are some related, useful functions that also produce a sequence
of uniformly spaced numbers. In numpy we have the arange function,
where arange(start, stop, inc) creates an array with the numbers
start, start+inc, start+2*inc, ..., stop-inc. Note that the upper
limit stop is not included in the set of numbers (i.e., arange behaves
as range and xrange):

>>> arange(-1, 1, 0.5)
array([-1. , -0.5, 0. , 0.5])

Because of round-off errors the upper limit can be included in the array.
You can try out

for i in range(1,500):
a = arange(0, 1, 1.0/i)
print i, a[-1]

Now and then, the last element a[-1] equals 1, which is wrong behav-
ior! We therefore recommend to stay away from arange. A substitute for
arange is the function seq from SciTools: seq(start, stop, inc) gen-
erates real numbers starting with start, ending with stop, and with
increments of inc.

>>> from scitools.std import *
>>> seq(-1, 1, 0.5)
array([-1. , -0.5, 0. , 0.5, 1.])

For integers, a similar function, called iseq, is available. With
iseq(start, stop, inc) we get the integers start, start+inc,
start+2*inc, and so on up to stop. Unlike range(start, stop, inc)

and xrange(start, stop, inc), the upper limit stop is part of the
sequence of numbers. This feature makes iseq more appropriate
than range and xrange in many implementations of mathematical
algorithms where there is an index whose limits are specified in the
algorithm, because with iseq we get a one-to-one correspondence
between the algorithm and the Python code. Here is an example: a
vector x of length n, compute

ai = f(xi+1) − f(xi−1) for i = 1, . . . , n − 2 .

A Python implementation with iseq reads

212 4 Array Computing and Curve Plotting

for i in iseq(1, n-2):
a[i] = f(x[i+1]) - f(x[i-1])

while with range we must write

for i in range(1, n-1):
a[i] = f(x[i+1]) - f(x[i-1])

Direct correspondence between the mathematics and the code is very
important and makes it much easier to find bugs by comparing the
code and the mathematical description, line by line.

4.5.7 Compact Syntax for Array Generation

There is a special compact syntax r_[f:t:s] for the linspace and
arange functions:

>>> a = r_[-5:5:11j] # same as linspace(-5, 5, 11)
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

Here, 11j means 11 coordinates (between -5 and 5, including the upper
limit 5). That is, the number of elements in the array is given with the
imaginary number syntax.

The arange equivalent reads

>>> a = r_[-5:5:1.0]
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4.]

With 1 as step instead of 1.0 (r_[-5:5:1]) the elements in a become
integers.

4.5.8 Shape Manipulation

The shape attribute in array objects holds the shape, i.e., the size of
each dimension. A function size returns the total number of elements
in an array. Here are a few equivalent ways of changing the shape of
an array:

>>> a = linspace(-1, 1, 6)
>>> a.shape
(6,)
>>> a.size
6
>>> a.shape = (2, 3)
>>> a.shape
(2, 3)
>>> a.size # total no of elements
6
>>> a.shape = (a.size,) # reset shape
>>> a = a.reshape(3, 2) # alternative
>>> len(a) # no of rows
3

4.6 Higher-Dimensional Arrays 213

Note that len(a) always returns the length of the first dimension of an
array.

4.6 Higher-Dimensional Arrays

4.6.1 Matrices and Arrays

Vectors appeared when mathematicians needed to calculate with a list
of numbers. When they needed a table (or a list of lists in Python ter-
minology), they invented the concept of matrix (singular) and matrices
(plural). A table of numbers has the numbers ordered into rows and
columns. One example is ⎡

⎣ 0 12 −1 5
−1 −1 −1 0
11 5 5 −2

⎤
⎦

This table with three rows and four columns is called a 3× 4 matrix12.
If the symbol A is associated with this matrix, Ai,j denotes the number
in row number i and column number j. Counting rows and columns
from 0, we have, for instance, A0,0 = 0 and A2,3 = −2. We can write a
general m × n matrix A as⎡

⎢⎣
A0,0 · · · A0,n−1

...
. . .

...
Am−1,0 · · · Am−1,n−1

⎤
⎥⎦

Matrices can be added and subtracted. They can also be multiplied by
a scalar (a number), and there is a concept of “length”. The formulas
are quite similar to those presented for vectors, but the exact form is
not important here.

We can generalize the concept of table and matrix to array, which
holds quantities with in general d indices. Equivalently we say that the
array has rank d. For d = 3, an array A has elements with three indices:
Ap,q,r. If p goes from 0 to np − 1, q from 0 to nq − 1, and r from 0 to
nr − 1, the A array has np × nq × nr elements in total. We may speak
about the shape of the array, which is a d-vector holding the number
of elements in each “array direction”, i.e., the number of elements for
each index. For the mentioned A array, the shape is (np, nq, nr).

The special case of d = 1 is a vector, and d = 2 corresponds to a
matrix. When we program we may skip thinking about vectors and
matrices (if you are not so familiar with these concepts from a mathe-
matical point of view) and instead just work with arrays. The number

12 Mathematicians don’t like this sentence, but it suffices for our purposes.

214 4 Array Computing and Curve Plotting

of indices corresponds to what is convenient in the programming prob-
lem we try to solve.

4.6.2 Two-Dimensional Numerical Python Arrays

Recall the nested list from Chapter 2.1.7, where [C, F] pairs are ele-
ments in a list table. The construction of table goes as follows:

>>> Cdegrees = [-30 + i*10 for i in range(3)]
>>> Fdegrees = [9./5*C + 32 for C in Cdegrees]
>>> table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]
>>> print table
[[-30, -22.0], [-20, -4.0], [-10, 14.0]]

Note that the table list is a nested list. This nested list can be turned
into an array,

>>> table2 = array(table)
>>> print table2
[[-30. -22.]
[-20. -4.]
[-10. 14.]]
>>> type(table2)
<type ’numpy.ndarray’>

We say that table2 is a two-dimensional array, or an array of rank 2.
The table list and the table2 array are stored very differently in

memory. The table variable refers to a list object containing three
elements. Each of these elements is a reference to a separate list object
with two elements, where each element refers to a separate float object.
The table2 variable is a reference to a single array object that again
refers to a consecutive sequence of bytes in memory where the six
floating-point numbers are stored. The data associated with table2

are found in one “chunk” in the computer’s memory, while the data
associated with table are scattered around in memory. On today’s
machines, it is much more expensive to find data in memory than to
compute with the data. Arrays make the data fetching more efficient,
and this is major reason for using arrays. However, this efficiency gain
is only present for very large arrays, not for a 3 × 2 array.

Indexing a nested list is done in two steps, first the outer list is
indexed, giving access to an element that is another list, and then this
latter list is indexed:

>>> table[1][0] # table[1] is [-20,4], whose index 0 holds -20
-20

This syntax works for two-dimensional arrays too:

>>> table2[1][0]
-20.0

but there is another syntax which is more common for arrays:

4.6 Higher-Dimensional Arrays 215

>>> table2[1,0]
-20.0

A two-dimensional array reflects a table and has a certain number of
“rows” and “columns”. We refer to “rows” as the first dimension of the
array and “columns” as the second dimension. These two dimensions
are available as table2.shape:

>>> table2.shape
(3, 2)

Here, 3 is the number of “rows” and 2 is the number of “columns”.
A loop over all the elements in a two-dimensional array is usually

expressed as two nested for loops, one for each index:

>>> for i in range(table2.shape[0]):
... for j in range(table2.shape[1]):
... print ’table2[%d,%d] = %g’ % (i, j, table2[i,j])
...
table2[0,0] = -30
table2[0,1] = -22
table2[1,0] = -20
table2[1,1] = -4
table2[2,0] = -10
table2[2,1] = 14

An alternative (but less efficient) way of visiting each element in an
array with any number of dimensions makes use of a single for loop:

>>> for index_tuple, value in ndenumerate(table2):
... print ’index %s has value %g’ % \
... (index_tuple, table2[index_tuple])
...
index (0,0) has value -30
index (0,1) has value -22
index (1,0) has value -20
index (1,1) has value -4
index (2,0) has value -10
index (2,1) has value 14

In the same way as we can extract sublists of lists, we can extract
subarrays of arrays using slices.

table2[0:table2.shape[0], 1] # 2nd column (index 1)
array([-22., -4., 14.])

>>> table2[0:, 1] # same
array([-22., -4., 14.])

>>> table2[:, 1] # same
array([-22., -4., 14.])

To illustrate array slicing further, we create a bigger array:

>>> t = linspace(1, 30, 30).reshape(5, 6)
>>> t
array([[1., 2., 3., 4., 5., 6.],

[7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],

216 4 Array Computing and Curve Plotting

[19., 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.]])

>>> t[1:-1:2, 2:]
array([[9., 10., 11., 12.],

[21., 22., 23., 24.]])

To understand the slice, look at the original t array and pick out the
two rows corresponding to the first slice 1:-1:2,

[7., 8., 9., 10., 11., 12.]
[19., 20., 21., 22., 23., 24.]

Among the rows, pick the columns corresponding to the second slice
2:,

[9., 10., 11., 12.]
[21., 22., 23., 24.]

Another example is

>>> t[:-2, :-1:2]
array([[1., 3., 5.],

[7., 9., 11.],
[13., 15., 17.]])

4.6.3 Array Computing

The operations on vectors in Chapter 4.1.3 can quite straightforwardly
be extended to arrays of any dimension. Consider the definition of
applying a function f(v) to a vector v: we apply the function to each
element vi in v. For a two-dimensional array A with elements Ai,j ,
i = 0, . . . , m, j = 0, . . . , n, the same definition yields

f(A) = (f(A0,0), . . . , f(Am−1,0), f(A1,0), . . . , f(Am−1,n−1)) .

For an array B with any rank, f(B) means applying f to each array
entry.

The asterix operation from Chapter 4.1.3 is also naturally extended
to arrays: A∗B means multiplying an element in A by the correspond-
ing element in B, i.e., element (i, j) in A∗B is Ai,jBi,j . This definition
naturally extends to arrays of any rank, provided the two arrays have
the same shape.

Adding a scalar to an array implies adding the scalar to each element
in the array. Compound expressions involving arrays, e.g., exp(−A ∗
∗2) ∗ A + 1, work as for vectors. One can in fact just imagine that all
the array elements are stored after each other in a long vector13, and
the array operations can then easily be defined in terms of the vector
operations from Chapter 4.1.3.

13 This is the way the array elements are stored in the computer’s memory.

4.6 Higher-Dimensional Arrays 217

Remark. Readers with knowlege of matrix computations may ask how
an expression like A2 interfere with A∗∗2. In matrix computing, A2 is a
matrix-matrix product, which is very different from squaring each ele-
ment in A as A∗∗2 or A∗A implies. Fortunately, the matrix computing
operations look different from the array computing operations in math-
ematical typesetting. In a program, however, A*A and A**2 are identical
computations, but the first one could lead to a confusion with a matrix-
matrix product AA. With Numerical Python the matrix-matrix prod-
uct is obtained by dot(A, A). The matrix-vector product Ax, where x
is a vector, is computed by dot(A, x).

4.6.4 Two-Dimensional Arrays and Functions of Two Variables

Given a function of two variables, say

def f(x, y):
return sin(sqrt(x**2 + y**2))

we can plot this function by writing

x = y = linspace(-5, 5, 21) # coordinates in x and y direction
xv, yv = ndgrid(x, y)
z = f(xv, yv)
mesh(xv, yv, z)

There are two new things here: (i) the call to ndgrid, which is necessary
to transform one-dimensional coordinate arrays in the x and y direction
into arrays valid for evaluating f over a two-dimensional grid; and (ii)
the plot function whose name now is mesh, which is one out of many
plot functions for two-dimensional functions. Another plot type you
can try out is

surf(xv, yv, z)

More material on visualizing f(x, y) functions is found in the section
”Visualizing Scalar Fields” in the Easyviz tutorial. This tutorial can be
reached through the command pydoc scitools.easyviz in a terminal
window.

4.6.5 Matrix Objects

This section only makes sense if you are familiar with basic linear
algebra and the matrix concept. The arrays created so far have been
of type ndarray. NumPy also has a matrix type called matrix or mat

for one- and two-dimensional arrays. One-dimensional arrays are then
extended with one extra dimension such that they become matrices,
i.e., either a row vector or a column vector:

218 4 Array Computing and Curve Plotting

>>> x1 = array([1, 2, 3], float)
>>> x2 = matrix(x) # or mat(x)
>>> x2 # row vector
matrix([[1., 2., 3.]])
>>> x3 = mat(x).transpose() # column vector
>>> x3
matrix([[1.],

[2.],
[3.]])

>>> type(x3)
<class ’numpy.core.defmatrix.matrix’>
>>> isinstance(x3, matrix)
True

A special feature of matrix objects is that the multiplication operator
represents the matrix-matrix, vector-matrix, or matrix-vector product
as we know from linear algebra:

>>> A = eye(3) # identity matrix
>>> A
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> A = mat(A)
>>> A
matrix([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> y2 = x2*A # vector-matrix product
>>> y2
matrix([[1., 2., 3.]])
>>> y3 = A*x3 # matrix-vector product
>>> y3
matrix([[1.],

[2.],
[3.]])

One should note here that the multiplication operator between stan-
dard ndarray objects is quite different, as the next interactive session
demonstrates.

>>> A*x1 # no matrix-array product!
Traceback (most recent call last):
...
ValueError: matrices are not aligned

>>> # try array*array product:
>>> A = (zeros(9) + 1).reshape(3,3)
>>> A
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> A*x1 # [A[0,:]*x1, A[1,:]*x1, A[2,:]*x1]
array([[1., 2., 3.],

[1., 2., 3.],
[1., 2., 3.]])

>>> B = A + 1
>>> A*B # element-wise product
array([[2., 2., 2.],

[2., 2., 2.],
[2., 2., 2.]])

>>> A = mat(A); B = mat(B)

4.7 Summary 219

>>> A*B # matrix-matrix product
matrix([[6., 6., 6.],

[6., 6., 6.],
[6., 6., 6.]])

Readers who are familiar with Matlab, or intend to use Python
and Matlab together, should seriously think about programming with
matrix objects instead of ndarray objects, because the matrix type be-
haves quite similar to matrices and vectors in Matlab. Nevertheless,
matrix cannot be used for arrays of larger dimension than two.

4.7 Summary

4.7.1 Chapter Topics

This chapter has introduced computing with arrays and plotting curve
data stored in arrays. The Numerical Python package contains lots of
functions for array computing, including the ones listed in Table 4.1.
The syntax for plotting curves makes use of Easyviz commands, which
are very similar to those of Matlab, but a wide range of plotting pack-
ages can be used as “engines” for producing the graphics. Easyviz is
a subpackage of the SciTools package, which is the key collection of
software accompanying the present book.

Array Computing. When we apply a Python function f(x) to a Nu-
merical Python array x, the result is the same as if we apply f to each
element in x separately. However, when f contains if statements, these
are in general invalid if an array x enters the boolean expression. We
then have to rewrite the function, often by applying the where function
from Numerical Python.

Plotting Curves. A typical Easyviz command for plotting some curves
with control of curve legends, axis, plot title, and also making a file
with the plot, can be illustrated by

from scitools.std import * # get all we need for plotting

plot(t1, y1, ’r’, # curve 1, red line
t2, y2, ’b’, # curve 2, blue line
t3, y3, ’o’, # curve 3, circles at data points
axis=[t1[0], t1[-1], -1.1, 1.1],
legend=(’model 1’, ’model 2’, ’measurements’),
xlabel=’time’, ylabel=’force’,
hardcopy=’forceplot_%04d.png’ % counter)

Making Movies. Each frame in a movie must be a hardcopy of a
plot, i.e., a plotfile. These plotfiles should have names containing a
counter padded with leading zeros. One example may be the name

220 4 Array Computing and Curve Plotting

Table 4.1 Summary of important functionality for Numerical Python arrays.

array(ld) copy list data ld to a numpy array
asarray(d) make array of data d

(copy if list, no copy if already array)
zeros(n) make a float vector/array of length n, with zeros
zeros(n, int) make an int vector/array of length n with zeros
zeros((m,n)) make a two-dimensional float array with shape (m,n)
zeros(x.shape, x.dtype) make array of same shape as x

and same element data type
linspace(a,b,m) uniform sequence of m numbers between a and b

(b is included in the sequence)
seq(a,b,h) uniform sequence of numbers from a to b with step h

(SciTools specific, largest element is >= b)
iseq(a,b,h) uniform sequence of integers from a to b with step h

(SciTools specific, largest element is >= b)
a.shape tuple containing a’s shape
a.size total no of elements in a

len(a) length of a one-dim. array a (same as a.shape[0])
a.reshape(3,2) return a reshaped as 2 × 3 array
a[i] vector indexing
a[i,j] two-dim. array indexing
a[1:k] slice: reference data with indices 1,. . . ,k-1
a[1:8:3] slice: reference data with indices 1, 4,. . . ,7
b = a.copy() copy an array
sin(a), exp(a), ... numpy functions applicable to arrays
c = concatenate(a, b) c contains a with b appended
c = where(cond, a1, a2) c[i] = a1[i] if cond[i], else c[i] = a2[i]

isinstance(a, ndarray) is True if a is an array

specified as the hardcopy argument in the plot command above:
forceplot_0001.eps, forceplot_0002.eps, etc., if counter runs from 1.
Having the plotfiles with names on this form, we can make a movie file
movie.gif with two frames per second by

movie(’forceplot_*.png’, encoder=’convert’,
output_file=’movie.gif’, fps=2)

The resulting movie, in the animated GIF format, can be shown in a
web page or displayed by the animate program.

Other movie formats can be produced by using other encoders, e.g.,
ppmtompeg and ffmpeg for the MPEG format, or mencoder for the AVI
format. There are lots of options to the movie function, which you can
see by writing pydoc scitools.easyviz.movie (see page 98 for how to
run such a command).

4.7.2 Summarizing Example: Animating a Function

Problem. In this chapter’s summarizing example we shall visualize how
the temperature varies downward in the earth as the surface temper-
ature oscillates between high day and low night values. One question
may be: What is the temperature change 10 m down in the ground if

4.7 Summary 221

the surface temperature varies between 2 C in the night and 15 C in
the day?

Let the z axis point downwards, towards the center of the earth,
and let z = 0 correspond to the earth’s surface. The temperature at
some depth z in the ground at time t is denoted by T (z, t). If the
surface temperature has a periodic variation around some mean value
T0, according to

T (0, t) = T0 + A cos(ωt),

one can find, from a mathematical model for heat conduction, that the
temperature at an arbitrary depth is

T (z, t) = T0 + Ae−az cos(ωt − az), a =

√
ω

2k
. (4.13)

The parameter k reflects the ground’s ability to conduct heat (k is
called the heat conduction coefficient).

The task is to make an animation of how the temperature profile in
the ground, i.e., T as a function of z, varies in time. Let ω correspond
to a time period of 24 hours. The mean temperature T0 at the surface
can be taken as 10 C, and the maximum variation A can be set to 10 C.
The heat conduction coefficient k equals 1 mm2/s (which is 10−6 m2/s
in proper SI units).

Solution. To animate T (z, t) in time, we need to make a loop over
points in time, and in each pass in the loop we must make a hardcopy
of the plot of T as a function of z. The files with the hardcopies can
then be combined to a movie. The algorithm becomes

for ti = iΔt, i = 0, 1, 2 . . . , n:
plot the curve y(z) = T (z, ti)
make hardcopy (store the plot in a file)

combine all the plot files into a movie

It can be wise to make a general animate function where we just
feed in some f(x, t) function and make all the plot files. If animate has
arguments for setting the labels on the axis and the extent of the y
axis, we can easily use animate also for a function T (z, t) (we just use
z as the name for the x axis and T as the name for the y axis in the
plot). Recall that it is important to fix the extent of the y axis in a
plot when we make animations, otherwise most plotting programs will
automatically fit the extent of the axis to the current data, and the
tickmarks on the y axis will jump up and down during the movie. The
result is a wrong visual impression of the function.

The names of the plot files must have a common stem appended with
some frame number, and the frame number should have a fixed number
of digits, such as 0001, 0002, etc. (if not, the sequence of the plot files

222 4 Array Computing and Curve Plotting

will not be correct when we specify the collection of files with an as-
terix for the frame numbers, e.g., as in tmp*.png). We therefore include
an argument to animate for setting the name stem of the plot files.
By default, the stem is tmp_, resulting in the filenames tmp_0000.png,
tmp_0001.png, tmp_0002.png, and so forth. Other convenient arguments
for the animate function are the initial time in the plot, the time lag
Δt between the plot frames, and the coordinates along the x axis. The
animate function then takes the form

def animate(tmax, dt, x, function, ymin, ymax, t0=0,
xlabel=’x’, ylabel=’y’, hardcopy_stem=’tmp_’):

t = t0
counter = 0
while t <= tmax:

y = function(x, t)
plot(x, y,

axis=[x[0], x[-1], ymin, ymax],
title=’time=%g’ % t,
xlabel=xlabel, ylabel=ylabel,
hardcopy=hardcopy_stem + ’%04d.png’ % counter)

t += dt
counter += 1

The T (z, t) function is easy to implement, but we need to decide
whether the parameters A, ω, T0, and k shall be arguments to the
Python implementation of T (z, t) or if they shall be global variables.
Since the animate function expects that the function to be plotted has
only two arguments, we must implement T (z, t) as T(z,t) in Python
and let the other parameters be global variables (Chapters 7.1.1 and
7.1.2 explain this problem in more detail and present a better imple-
mentation). The T(z,t) implementation then reads

def T(z, t):
T0, A, k, and omega are global variables
a = sqrt(omega/(2*k))
return T0 + A*exp(-a*z)*cos(omega*t - a*z)

Suppose we plot T (z, t) at n points for z ∈ [0, D]. We make such
plots for t ∈ [0, tmax] with a time lag Δt between the them. The frames
in the movie are now made by

set T0, A, k, omega, D, n, tmax, dt
z = linspace(0, D, n)
animate(tmax, dt, z, T, T0-A, T0+A, 0, ’z’, ’T’)

We have here set the extent of the y axis in the plot as [T0−A, T0 +A],
which is in accordance with the T (z, t) function.

The call to animate above creates a set of files with names of the
form tmp_*.png. The animation is then created by a call

movie(’tmp_*.png’, encoder=’convert’, fps=2,
output_file=’tmp_heatwave.gif’)

It now remains to assign proper values to all the global variables
in the program: n, D, T0, A, omega, dt, tmax, and k. The oscillation

4.7 Summary 223

period is 24 hours, and ω is related to the period P of the cosine
function by ω = 2π/P (realize that cos(t2π/P) has period P). We then
express P = 24 h = 24 · 60 · 60 s and compute ω = 2π/P . The total
simulation time can be 3 periods, i.e., tmax = 3P . The T (z, t) function
decreases exponentially with the depth z so there is no point in having
the maximum depth D larger than the depth where T is approximately
zero, say 0.001. We have that e−aD = 0.001 when D = −a−1 ln 0.001,
so we can use this estimate in the program. The proper initialization
of all parameters can then be expressed as follows14:

k = 1E-6 # heat conduction coefficient (in m*m/s)
P = 24*60*60.# oscillation period of 24 h (in seconds)
omega = 2*pi/P
dt = P/24 # time lag: 1 h
tmax = 3*P # 3 day/night simulation
T0 = 10 # mean surface temperature in Celsius
A = 10 # amplitude of the temperature variations in Celsius
a = sqrt(omega/(2*k))
D = -(1/a)*log(0.001) # max depth
n = 501 # no of points in the z direction

We encourage you to run the program heatwave.py to see the movie.
The hardcopy of the movie is in the file tmp_heatwave.gif. Figure 4.13
displays two snapshots in time of the T (z, t) function.

(a) (b)

Fig. 4.13 Plot of the temperature T (z, t) in the ground for two different t values.

Scaling. In this example, as in many other scientific problems, it was
easier to write the code than to assign proper physical values to the
input parameters in the program. To learn about the physical process,
here how heat propagates from the surface and down in the ground, it
is often advantageous to scale the variables in the problem so that we
work with dimensionless variables. Through the scaling procedure we
normally end up with much fewer physical parameters which must be
assigned values. Let us show how we can take advantage of scaling the
present problem.

14 Note that it is very important to use consistent units. Here we express all units in
terms of meter, second, and Kelvin or Celsius.

224 4 Array Computing and Curve Plotting

Consider a variable x in a problem with some dimension. The idea
of scaling is to introduce a new variable x̄ = x/xc, where xc is a char-
acteristic size of x. Since x and xc have the same dimension, the di-
mension cancels in x̄ such that x̄ is dimensionless. Choosing xc to be
the expected maximum value of x, ensures that x̄ ≤ 1, which is usually
considered a good idea. That is, we try to have all dimensionless vari-
ables varying between zero and one. For example, we can introduce
a dimensionless z coordinate: z̄ = z/D, and now z̄ ∈ [0, 1]. Doing a
proper scaling of a problem is challenging so for now it is sufficient to
just follow the steps below - and not worry why we choose a certain
scaling.

In the present problem we introduce these dimensionless variables:

z̄ = z/D

T̄ =
T − T0

A
t̄ = ωt

We now insert z = z̄D and t = t̄/ω in the expression for T (z, t) and
get

T = T0 + Ae−bz̄ cos(t̄ − bz̄), b = aD

or

T̄ (z̄, t̄) =
T − T0

A
= e−bz̄ cos(t̄ − bz̄) .

We see that T̄ depends on only one dimensionless parameter b in addi-
tion to the independent dimensionless variables z̄ and t̄. It is common
practice at this stage of the scaling to just drop the bars and write

T (z, t) = e−bz cos(t − bz) . (4.14)

This function is much simpler to plot than the one with lots of physical
parameters, because now we know that T varies between −1 and 1, t
varies between 0 and 2π for one period, and z varies between 0 and 1.
The scaled temperature has only one “free” parameter b. That is, the
shape of the graph is completely determined by b.

In our previous movie example, we used specific values for D, ω, and
k, which then implies a certain b = D

√
ω/(2k) (≈ 6.9). However, we

can now run different b values and see the effect on the heat propa-
gation. Different b values will in our problems imply different periods
of the surface temperature variation and/or different heat conduction
values in the ground’s composition of rocks. Note that doubling ω and
k leaves the same b – it is only the fraction ω/k that influences the
value of b.

In a main program we can read b from the command line and make
the movie:

4.8 Exercises 225

b = float(sys.argv[1])
n = 401
z = linspace(0, 1, n)
animate(3*2*pi, 0.05*2*pi, z, T, -1.2, 1.2, 0, ’z’, ’T’)
movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’tmp_heatwave.gif’)

Running the program, found as the file heatwave_scaled.py, for dif-
ferent b values shows that b governs how deep the temperature varia-
tions on the surface z = 0 penetrate. A large b makes the temperature
changes confined to a thin layer close to the surface (see Figure 4.14
for b = 20), while a small b leads to temperature variations also deep
down in the ground (see Figure 4.15 for b = 2).

We can understand the results from a physical perspective. Think of
increasing ω, which means reducing the oscillation period so we get a
more rapid temperature variation. To preserve the value of b we must
increase k by the same factor. Since a large k means that heat quickly
spreads down in the ground, and a small k implies the opposite, we
see that more rapid variations at the surface requires a larger k to
more quickly conduct the variations down in the ground. Similarly,
slow temperature variations on the surface can penetrate deep in the
ground even if the ground’s ability to conduct (k) is low.

(a) (b)

Fig. 4.14 Plot of the dimensionless temperature T (z, t) in the ground for two different
t values and b = 20.

4.8 Exercises

Exercise 4.1. Fill lists with function values.
A function with many applications in science is defined as

h(x) =
1√
2π

e−
1

2
x2

. (4.15)

226 4 Array Computing and Curve Plotting

(a) (b)

Fig. 4.15 Plot of the dimensionless temperature T (z, t) in the ground for two different
t values and b = 2.

Fill lists xlist and hlist with x and h(x) values for uniformly spaced
x coordinates in [−4, 4]. You may adapt the example in Chapter 4.2.1.
Name of program file: fill_lists.py. �
Exercise 4.2. Fill arrays; loop version.

The aim is to fill two arrays x and h with x and h(x) values, where
h(x) is defined in (4.15). Let the x values be uniformly spaced in [−4, 4].
Create two arrays of zeros and fill both arrays with values inside a loop.
Name of program file: fill_arrays_loop.py. �
Exercise 4.3. Fill arrays; vectorized version.

Vectorize the code in Exercise 4.2 by creating the x values using the
linspace function and by evaluating h(x) for an array argument. Name
of program file: fill_arrays_vectorized.py. �
Exercise 4.4. Apply a function to a vector.

Given a vector v = (2, 3,−1) and a function f(x) = x3 + xex + 1,
apply f to each element in v. Then calculate f(v) as v3 + v ∗ ev + 1
using the vector computing rules. Show that the two results are equal.
�
Exercise 4.5. Simulate by hand a vectorized expression.

Suppose x and t are two arrays of the same length, entering a vec-
torized expression

y = cos(sin(x)) + exp(1/t)

If x holds two elements, 0 and 2, and t holds the elements 1 and
1.5, calculate by hand (using a calculator) the y array. Thereafter,
write a program that mimics the series of computations you did by
hand (typically a sequence of operations of the kind we listed on
page 174 – use explicit loops, but at the end you can use Numeri-
cal Python functionality to check the results). Name of program file:
simulate_vector_computing.py. �

4.8 Exercises 227

Exercise 4.6. Demonstrate array slicing.
Create an array w with values 0, 0.1, 0.2, . . . , 2 using linspace. Write

out w[:], w[:-2], w[::5], w[2:-2:6]. Convince yourself in each case that
you understand which elements of the array that are printed. Name of
program file: slicing.py. �
Exercise 4.7. Plot the formula (1.1).

Make a plot of the function y(t) in (1.1) on page 1 for v0 = 10 and
t ∈ [0, 2v0/g]. The label on the x axis should be ’time’.

If you use Easyviz with the Gnuplot backend on Windows machines,
you need a raw_input() call at the end of the program such that the
program halts until Gnuplot is finished with the plot (simply press
Return to finish the program). See also Appendix E.1.3.

Name of program file: plot_ball1.py. �
Exercise 4.8. Plot the formula (1.1) for several v0 values.

Make a program that reads a set of v0 values from the command
line and plots the curve (1.1) for the different v0 values (in the same
figure). Let the t coordinates go from 0 to 2v0/g for each curve, which
implies that you need a different vector of t coordinates for each curve.
Name of program file: plot_ball2.py. �
Exercise 4.9. Plot exact and inexact Fahrenheit–Celsius formulas.

Exercise 2.20 introduces a simple rule to quickly compute the Celsius
temperature from the Fahreheit degrees: C = (F−30)/2. Compare this
curve against the exact curve C = (F − 32)5/9 in a plot. Let F vary
between −20 and 120. Name of program file: f2c_shortcut_plot.py. �
Exercise 4.10. Plot the trajectory of a ball.

The formula for the trajectory of a ball is given in (1.5) on page 38.
In a program, first read the input data y0, θ, and v0 from the command
line. Then compute where the ball hits the ground, i.e., the value xg

for which f(xg) = 0. Plot the trajectory y = f(x) for x ∈ [0, xg], using
the same scale on the x and y axes such that we get a visually correct
view of the trajectory. Name of program file: plot_trajectory.py. �
Exercise 4.11. Plot a wave packet.

The function

f(x, t) = e−(x−3t)2 sin (3π(x − t)) (4.16)

describes for a fixed value of t a wave localized in space. Make a pro-
gram that visualizes this function as a function of x on the interval
[−4, 4] when t = 0. Name of program file: plot_wavepacket.py. �
Exercise 4.12. Use pyreport in Exer. 4.11.

Use pyreport (see Chapter 1.8) in Exercise 4.11 to generate a nice
report in HTML and PDF format. To get the plot inserted in the

228 4 Array Computing and Curve Plotting

report, you must call show() after the plot instruction. You also need
to use the version of pyreport that comes with SciTools (that version
is automatically installed when you install SciTools). Name of program
file: pyreport_wavepacket.py. �
Exercise 4.13. Judge a plot.

Assume you have the following program for plotting a parabola:

x = linspace(0, 2, 20)
y = x*(2 - x)
plot(x, y)

Then you switch to the function cos(18πx) by altering the computation
of y to y = cos(18*pi*x). Judge the resulting plot. Is it correct? Display
the cos(18πx) function with 1000 points in the same plot. Name of
program file: judge_plot.py. �
Exercise 4.14. Plot the viscosity of water.

The viscosity of water, μ, varies with the temperature T (in Kelvin)
according to

μ(T) = A · 10B/(T−C), (4.17)

where A = 2.414 · 10−5 Ns/m2, B = 247.8 K, and C = 140 K. Plot
μ(T) for T between 0 and 100 degrees Celsius. �
Exercise 4.15. Explore a function graphically.

The wave speed of water surface waves, c, depends on the length of
the wave, λ. The following formula relates c to λ:

c(λ) =

√
gλ

2π

(
1 + s

4π2

ρgλ2

)
tanh

(
2πh

λ

)
, (4.18)

where g is the acceleration of gravity, s is the surface tension between
water and air (7.9 ·10−4 N/cm) , ρ is the density of water (can be taken
as 1 kg/cm3), and h is the water depth. Let us fix h at 50 m. First make
a plot of c(λ) for small λ (1 mm to 10 cm). Then make a plot c(λ) for
larger λ (1 m to 2 km). Name of program file: water_wave_velocity.py.
�
Exercise 4.16. Plot Taylor polynomial approximations to sinx.

The sine function can be approximated by a polynomial according
to the following formula:

sin x ≈ S(x;n) =
n∑

j=0

(−1)j x2j+1

(2j + 1)!
. (4.19)

The expression (2j + 1)! is the factorial (see Exercise 2.33). The error
in the approximation S(x;n) decreases as n increases and in the limit

4.8 Exercises 229

we have that sinx = limn→∞ S(x;n). The purpose of this exercise is to
visualize the quality of various approximations S(x;n) as n increases.

The first part of the exercise is to write a Python function S(x,

n) that computes S(x;n). Use a straightforward approach where you
compute each term as it stands in the formula, i.e., (−1)jx2j+1 divided
by the factorial (2j + 1)!. (We remark that Exercise 5.16 outlines a
much more efficient computation of the terms in the series.)

The next part of the exercise is to plot sinx on [0, 4π] together
with the approximations S(x; 1), S(x; 2), S(x; 3), S(x; 6), and S(x; 12).
Name of program file: plot_Taylor_sin.py. �
Exercise 4.17. Animate a wave packet.

Display an animation of the function f(x, t) in Exercise 4.11 by
plotting f as a function of x on [−6, 6] for a set of t values in [−1, 1].
Also make an animated GIF file. A suitable resolution can be 1000
intervals (1001 points) along the x axis, 60 intervals (61 points) in
time, and 6 frames per second in the animated GIF file. Use the recipe
in Chapter 4.3.7 and remember to remove the family of old plot files
in the beginning of the program.

You will see that f(x, t) models waves that are moving to the right
(when x is a space coordinate and t is time). The velocities of the
individual waves and the packet are different, demonstrating an im-
portant case in physics when the phase velocity of waves is differ-
ent from the group velocity. This effect is visible for water surface
waves, particularly those generated by a boat. Name of program file:
plot_wavepacket_movie.py. �
Exercise 4.18. Animate the evolution of Taylor polynomials.

A general series approximation (to a function) can be written as

S(x;M, N) =

N∑
k=M

fk(x) .

For example, the Taylor polynomial for ex equals S(x) with fk(x) =
xk/k!. The purpose of the exercise is to make a movie of how S(x) de-
velops (and hopefully improves as an approximation) as we add terms
in the sum. That is, the frames in the movie correspond to plots of
S(x;M, M + 1), S(x;M, M + 2), . . ., S(x;M, N).

Make a function
animate_series(fk, M, N, xmin, xmax, ymin, ymax, n, exact)

for creating such animations. The argument fk holds a Python function
implementing the term fk(x) in the sum, M and N are the summation
limits, the next arguments are the minimum and maximum x and
y values in the plot, n is the number of x points in the curves to be
plotted, and exact holds the function that S(x) aims at approximating.

230 4 Array Computing and Curve Plotting

The animate_series function must accumulate the fk(x) in a vari-
able s, and for each k value, s is plotted against x together with a
curve reflecting the exact function. Each plot must be saved in a file,
say with names tmp_0000.png, tmp_0001.png, and so on (these filenames
can be generated by tmp_%04d.png, using an appropriate counter). Use
the movie function to combine all the plot files into a movie in a desired
movie format.

In the beginning of the animate_series it is necessary to remove
all old plot files of the form tmp_*.png. This can be done by the glob

module and the os.remove function as exemplified in Chapter 4.3.7 and
in Appendix E.4 (page 677).

Test the animate_series function in the two cases:

1. The Taylor series for sinx, where fk(x) = (−1)kx2k+1/(2k + 1)!,
and x ∈ [0, 13π], M = 0, N = 40, y ∈ [−2, 2].

2. The Taylor series for e−x, where fk(x) = (−x)k/k!, and x ∈ [0, 15],
M = 0, N = 30, y ∈ [−0.5, 1.4].

Name of program file: animate_Taylor_series.py. �
Exercise 4.19. Plot the velocity profile for pipeflow.

A fluid that flows through a (very long) pipe has zero velocity on
the pipe wall and a maximum velocity along the centerline of the pipe.
The velocity v varies through the pipe cross section according to the
following formula:

v(r) =

(
β

2μ0

)1/n n

n + 1

(
R1+1/n − r1+1/n

)
, (4.20)

where R is the radius of the pipe, β is the pressure gradient (the force
that drives the flow through the pipe), μ0 is a viscosity coefficient (small
for air, larger for water and even larger for toothpaste), n is a real (!)
number reflecting the viscous properties of the fluid (n = 1 for water
and air, n < 1 for many modern plastic materials), and r is a radial
coordinate that measures the distance from the centerline (r = 0 is the
centerline, r = R is the pipe wall).

Make a function that evaluates v(r). Plot v(r) as a function of
r ∈ [0, R], with R = 1, β = 0.02, μ = 0.02, and n = 0.1. There-
after, make an animation of how the v(r) curves varies as n goes from
1 and down to 0.01. Because the maximum value of v(r) decreases
rapidly as n decreases, each curve can be normalized by its v(0) value
such that the maximum value is always unity. Name of program file:
plot_velocity_pipeflow.py. �
Exercise 4.20. Plot the approximate function from Exer. 1.13.

First make a Python function S(t, n) that evaluates S(t; n) defined
in Exercise 1.13. Plot S(t; 1), S(t; 3), S(t; 20), S(t; 200), and the exact
f(t) function in the same plot.

4.8 Exercises 231

The resulting plot shows how a step-like function can be approxi-
mated by a sum of sine functions of increasing frequency. Representa-
tion of functions as a sum of sines and cosines is an important math-
ematical concept, known as Fourier series, and has a wide range of
applications. Name of program file: plot_compare_func_sum.py. �
Exercise 4.21. Plot functions from the command line.

For quickly get a plot a function f(x) for x ∈ [xmin, xmax] it could
be nice to a have a program that takes the minimum amount of infor-
mation from the command line and produces a plot on the screen and
a hardcopy tmp.eps. The usage of the program goes as follows:

Terminal

plotf.py "f(x)" xmin xmax

A specific example is

Terminal

plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Hint: Make x coordinates from the 2nd and 3rd command-line argu-
ments and then use eval (or StringFunction from Chapters 3.1.4 and
4.4.3) on the first 1st argument. Try to write as short program as pos-
sible (we leave it to Exercise 4.22 to test for valid input). Name of
program file: plotf_v1.py. �
Exercise 4.22. Improve the program from Exericse 4.21.

Equip the program from Exericse 4.21 with tests on valid input on
the command line. Also allow an optional 4th command-line argument
for the number of points along the function curve. Set this number to
501 if it is not given. Name of program file: plotf.py. �
Exercise 4.23. Demonstrate energy concepts from physics.

The vertical position y(t) of a ball thrown upward is described by
(1.1) on page 1. Two important physical quantities in this context are
the potential energy, obtained by from doing work against gravity, and
the kinetic energy, arising from motion. The potential energy is defined
as P = mgy, where m is the mass of the ball. The kinetic energy is
defined as K = 1

2mv2, where v is the velocity of the ball, related to y
by v(t) = y′(t). Plot P (t) and K(t) in the same plot, along with their
sum P + K. Let t ∈ 2v0

g . Read m and v0 from the command line. Run
the program with various choices of m and v0 and observe that P + K
is always constant in this motion. In fact, it turns out that P + K is
constant for a large class of motions, and this is a very important result
in physics. Name of program file: energy_physics.py. �
Exercise 4.24. Plot a w-like function.

Define mathematically a function that looks like the ’w’ character.
Plot this function. Name of program file: plot_w.py. �

232 4 Array Computing and Curve Plotting

Exercise 4.25. Plot a smoothed “hat” function.
The “hat” function N(x) defined by (2.5) on page 89 has a discon-

tinuity in the derivative at x = 1. Suppose we want to “round” this
function such that it looks smooth around x = 1. To this end, replace
the straight lines in the vicinity of x = 1 by a (small) cubic curve

y = a(x − 1)3 + b(x − 1)2 + c(x − 1) + d,

for x ∈ [1 − ε, 1 + ε], where a, b, c, and d are parameters that must
be adjusted in order for the cubic curve to match the value and the
derivative of the function N(x). The new rounded functions has the
specification

Ñ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x < 0
x, 0 ≤ x < 1 − ε
a1(x − 1)3 + b(x − 1) + c(x − 1) + d1, 1 − ε ≤ x < 1,
a2(x − 1)3 + b(x − 1) + c(x − 1) + d2, 1 ≤ x < 1 + ε,
2 − x, 1 + ε ≤ x < 2
0, x ≥ 2

(4.21)
with a1 = 1

3ε−2, a2 = −a1, d1 = 1 − ε + a1ε
3, d2 = 1 − ε − a2ε

3, and
b = c = 0. Plot this function. (Hint: Be careful with the choice of x
coordinates!) Name of program file: plot_hat.py. �
Exercise 4.26. Experience overflow in a function.

When object (ball, car, airplane) moves through the air, there is a
very, very thin layer of air close to the object’s surface where the air
velocity varies dramatically15, from the same value as the velocity of
the object at the object’s surface to zero a few centimeters away. The
change in velocity is quite abrupt and can modeled by the functiion

v(x) =
1 − ex/μ

1 − e1/μ
,

where x = 1 is the object’s surface and x = 0 is some distance “far”
away where one cannot notice any wind velocity v because of the pass-
ing object (v = 0). The vind velocity coincides with the velocity of the
object at x = 1, here set to v = 1. The parameter μ reflects the viscous
behavior of air, which is very small, so typically μ = 10−6. With this
relevant physical value of μ, it quickly becomes difficult to calculate
v(x) on a computer.

Make a function v(x, mu=1E-6, exp=math.exp) for calculating the
formula of v using exp as a possibly user-given exponentional function.
Let the v function return the nominator and denominator in the for-
mula as well as the fraction (result). Call the v function for various x

15 This layer is called a boundary layer. The physics in the boundary layer is very
important for air resistance and cooling/heating of objects.

4.8 Exercises 233

values between 0 and 1 in a for loop, let mu be 1E-3, and have an inner
for loop over two different exp functions: math.exp and numpy.exp. The
output will demonstrate how the denominator is subject to overflow
and how difficult it is to calculate this function on a computer.

Also plot v(x) for μ = 1, 0.01, 0.001 on [0, 1] using 10,000
points to see what the function looks like. Name of program file:
boundary_layer_func1.py. �
Exercise 4.27. Experience less overflow in a function.

In the program from Exercise 4.26, convert x and eps to a higher
presicion representation of real numbers, with the aid of the NumPy
type float96:

import numpy
x = numpy.float96(x); mu = numpy.float96(e)

Call the v function with these type of variables observe how much“bet-
ter” results we get with float96 compared the standard float value
(which is float64 – the number reflects the number of bits in the ma-
chine’s representation of a real number). Also call the v function with x

and mu as float32 variables and report how the function now behaves.
Name of program file: boundary_layer_func2.py. �
Exercise 4.28. Extend Exer. 4.4 to a rank 2 array.

Let A be a two-dimensional array with two indices:⎡
⎣ 0 12 −1
−1 −1 −1
11 5 5

⎤
⎦

Apply the function f from Exercise 4.4 to each element in A. There-
after, calculate the result of the array expression A ∗ ∗3 + A ∗ eA + 1
and demonstrate that the end result of the two methods are the same.
�
Exercise 4.29. Explain why array computations fail.

The following loop computes the array y from x:

>>> x = linspace(0, 1, 3)
>>> y = zeros(len(x))
>>> for i in range(len(x)):
... y[i] = x[i] + 4

However, the alternative loop

>>> for xi, yi in zip(x, y):
... yi = xi + 5

leaves y unchanged. Why? Explain in detail what happens in each pass
of this loop and write down the contents of xi, yi, x, and y as the loop
progresses. �

