
Object-Oriented Programming 9

This chapter introduces the basic ideas of object-oriented program-
ming. Different people put different meanings into the term object-
oriented programming: Some use the term for programming with ob-
jects in general, while others use the term for programming with class
hierarchies. The author applies the second meaning, which is the most
widely accepted one in computer science. The first meaning is better
named object-based programming. Since everything in Python is an
object, we do object-based programming all the time, yet one usually
reserves this term for the case when classes different from Python’s
basic types (int, float, str, list, tuple, dict) are involved.

A necessary background for the present chapter is Chapter 7. For
Chapters 9.2 and 9.3 one must know basic methods for numerical differ-
entiation and integration, for example from Appendix A. Chapter 9.4
requires knowledge of numerical solution of ordinary differential equa-
tions, which is treated in Appendix B and Chapter 7.4. It takes time to
grasp the ideas of object-oriented programming, but it will hopefully
become clear through many examples. During the initial readings of
the chapter, it can be beneficial to skip the more advanced material in
Chapters 9.2.3–9.2.6 and 9.4.7–9.4.9.

All the programs associated with this chapter are found in the src/oo
folder.

9.1 Inheritance and Class Hierarchies

Most of this chapter tells you how to put related classes together in
families such that the family can be viewed as one unit. This idea helps
to hide details in a program, and makes it easier to modify or extend
the program.

479
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A family of classes is known as a class hierarchy. As in a biological
family, there are parent classes and child classes. Child classes can
inherit data and methods from parent classes, they can modify these
data and methods, and they can add their own data and methods. This
means that if we have a class with some functionality, we can extend
this class by creating a child class and simply add the functionality we
need. The original class is still available and the separate child class is
small, since it does not need to repeat the code in the parent class.

The magic of object-oriented programming is that other parts of the
code do not need to distinguish whether an object is the parent or the
child – all generations in a family tree can be treated as a unified object.
In other words, one piece of code can work with all members in a class
family or hierarchy. This principle has revolutionized the development
of large computer systems1.

The concepts of classes and object-oriented programming first ap-
peared in the Simula programming language in the 1960s. Simula was
invented by the Norwegian computer scientists Ole-Johan Dahl and
Kristen Nygaard, and the impact of the language is particularly evi-
dent in C++, Java, and C#, three of the most dominating program-
ming languages in the world today. The invention of object-oriented
programming was a remarkable achievement, and the professors Dahl
and Nygaard recieved two very prestigious prizes: the von Neumann
medal and the Turing prize (popularly known as the Nobel prize of
computer science).

A parent class is usually called base class or superclass, while the
child class is known as a subclass or derived class. We shall use the
terms superclass and subclass from now on.

9.1.1 A Class for Straight Lines

Assume that we have written a class for straight lines, y = c0+c1x:

class Line:
def __init__(self, c0, c1):

self.c0 = c0
self.c1 = c1

def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
for x in linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

1 Two of the most widely used computer languages today are Java and C#. Both of
them force programs to be written in an object-oriented style.
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The constructor __init__ initializes the coefficients c0 and c1 in the
expression for the straight line: y = c0+c1x. The call operator __call__
evaluates the function c1x + c0, while the table method samples the
function at n points and creates a table of x and y values.

9.1.2 A First Try on a Class for Parabolas

A parabola y = c0 + c1x + c2x
2 contains a straight line as a special

case (c2 = 0). A class for parabolas will therefore be similar to a class
for straight lines. All we have do to is to add the new term c2x

2 in the
function evaluation and store c2 in the constructor:

class Parabola:
def __init__(self, c0, c1, c2):

self.c0 = c0
self.c1 = c1
self.c2 = c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
for x in linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

Observe that we can copy the table method from class Line without
any modifications.

9.1.3 A Class for Parabolas Using Inheritance

Python and other languages that support object-oriented programming
have a special construct, so that class Parabola does not need to repeat
the code that we have already written in class Line. We can specify
that class Parabola inherits all code from class Line by adding“(Line)”
in the class headline:

class Parabola(Line):

Class Parabola now automatically gets all the code from class Line –
invisibly. Exercise 9.1 asks you to explicitly demonstrate the validity
of this assertion. We say that class Parabola is derived from class Line,
or equivalently, that class Parabola is a subclass of its superclass Line.

Now, class Parabola should not be identical to class Line: it needs
to add data in the constructor (for the new term) and to modify the
call operator (because of the new term), but the table method can be
inherited as it is. If we implement the constructor and the call operator
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in class Parabola, these will override the inherited versions from class
Line. If we do not implement a table method, the one inherited from
class Line is available as if it were coded visibly in class Parabola.

Class Parabola must first have the statements from the class Line

methods __call__ and __init__, and then add extra code in these
methods. An important principle in computer programming is to avoid
repeating code. We should therefore call up functionality in class Line

instead of copying statements from class Line methods to Parabola

methods. Any method in the superclass Line can be called using the
syntax

Line.methodname(self, arg1, arg2, ...)
# or
super(Line, self).methodname(arg1, arg2, ...)

Let us now show how to write class Parabola as a subclass of class Line,
and implement just the new additional code that we need and that is
not already written in the superclass:

class Parabola(Line):
def __init__(self, c0, c1, c2):

Line.__init__(self, c0, c1) # let Line store c0 and c1
self.c2 = c2

def __call__(self, x):
return Line.__call__(self, x) + self.c2*x**2

This short implementation of class Parabola provides exactly the same
functionality as the first version of class Parabola that we showed on
page 481 and that did not inherit from class Line. Figure 9.1 shows the
class hiearchy in UML fashion. The arrow from one class to another
indicates inheritance.

Line

__init__
__call__
table

c0
c1

Parabola

__init__
__call__

c0
c1
c2

Fig. 9.1 UML diagram for the class hierarchy with superclass Line and subclass
Parabola.

A quick demo of the Parabola class in a main program,

p = Parabola(1, -2, 2)
p1 = p(x=2.5)
print p1
print p.table(0, 1, 3)
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gives this output:
8.5

0 1
0.5 0.5
1 1

Program Flow. The program flow can be somewhat complicated when
we work with class hierarchies. Consider the code segment

p = Parabola(1, -1, 2)
p1 = p(x=2.5)

Let us explain the program flow in detail for these two statements. As
always, you can monitor the program flow in a debugger as explained
in Chapter D.1.

Calling Parabola(1, -1, 2) leads to a call to the constructor method
__init__, where the arguments c0, c1, and c2 in this case are int

objects with values 1, -1, and 2. The self argument in the constructor
is the object that will be returned and referred to by the variable p.
Inside the constructor in class Parabola we call the constructor in class
Line. In this latter method, we create two attributes in the self object.
Printing out dir(self) will explicitly demonstrate what self contains
so far in the construction process. Back in class Parabola’s constructor,
we add a third attribute c2 to the same self object. Then the self

object is invisibly returned and referred to by p.
The other statement, p1 = p(x=2.5), has a similar program flow.

First we enter the p.__call__ method with self as p and x as a float

object with value 2.5. The program flow jumps to the __call__ method
in class Line for evaluating the linear part c1x+c0 of the expression for
the parabola, and then the flow jumps back to the __call__ method in
class Parabola where we add the new quadratic term.

9.1.4 Checking the Class Type

Python has the function isinstance(i,t) for checking if an instance i

is of class type t:

>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False

A Line is not a Parabola, but is a Parabola a Line?

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
>>> isinstance(p, Line)
True
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Yes, from a class hierarchy perspective, a Parabola instance is regarded
as a Line instance too, since it contains everything that a Line instance
contains.

Every instance has an attribute __class__ that holds the type of
class:

>>> p.__class__
<class __main__.Parabola at 0xb68f108c>
>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
’Parabola’

Note that p.__class__ is a class object (or class definition one may
say2), while p.__class__.__name__ is a string. These two variables can
be used as an alternative test for the class type:

if p.__class__.__name__ == ’Parabola’:
<statements>

# or
if p.__class__ == Parabola:

<statements>

However, isinstance(p, Parabola) is the recommended programming
style for checking the type of an object.

A function issubclass(c1, c2) tests if class c1 is a subclass of class
c2, e.g.,

>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False

The superclasses of a class are stored as a tuple in the __bases__ at-
tribute of the class object:

>>> p.__class__.__bases__
(<class __main__.Line at 0xb7c5d2fc>,)
>>> p.__class__.__bases__[0].__name__ # extract name as string
’Line’

9.1.5 Attribute versus Inheritance

Instead of letting class Parabola inherit from a class Line, we may let
it contain a class Line instance as an attribute:

class Parabola:
def __init__(self, c0, c1, c2):

self.line = Line(c0, c1) # let Line store c0 and c1
self.c2 = c2

2 This means that even the definition of a class, i.e., the class code, is an object that
can be referred to by a variable. This is useful in many occasions, see pages 504
and 519.
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def __call__(self, x):
return self.line(x) + self.c2*x**2

Whether to use inheritance or an attribute depends on the problem
being solved. If it is natural to say that class Parabola is a Line

object, we say that Parabola has an is-a relationship with class Line.
Alternatively, if it is natural to think that class Parabola has a Line

object, we speak about a has-a relationship with class Line. In the
present example, the is-a relationship is most natural since a special
case of a parabola is a straight line.

9.1.6 Extending versus Restricting Functionality

In our example of Parabola as a subclass of Line, we used inheritance
to extend the functionality of the superclass. Inheritance can also be
used for restricting functionality. Say we have class Parabola:

class Parabola:
def __init__(self, c0, c1, c2):

self.c0 = c0
self.c1 = c1
self.c2 = c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
...

We can define Line as a subclass of Parabola and restrict the function-
ality:

class Line(Parabola):
def __init__(self, c0, c1):

Parabola.__init__(self, c0, c1, 0)

The __call__ and table methods can be inherited as they are defined
in class Parabola.

From this example it becomes clear that there is no unique way of ar-
ranging classes in hierarchies. Rather than starting with Line and intro-
ducing Parabola, Cubic, and perhaps eventually a general Polynomial
class, we can start with a general Polynomial class and let Parabola

be a subclass which restricts all coefficients except the first three to
be zero. Class Line can then be a subclass of Parabola, restricting the
value of one more coefficient. Exercise 9.4 asks you to implement such
a class hierarchy, and to discuss what kind of hierarchy design you like
best.
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9.1.7 Superclass for Defining an Interface

As another example of class hierarchies, we now want to represent
functions by classes, as described in Chapter 7.1.2, but in addition to
the __call__ method, we also want to provide methods for the first
and second derivative. The class can be sketched as

class SomeFunc:
def __init__(self, parameter1, parameter2, ...)

# store parameters
def __call__(self, x):

# evaluate function
def df(self, x):

# evaluate the first derivative
def ddf(self, x):

# evaluate the second derivative

For a given function, the analytical expressions for first and second
derivative must be manually coded. However, we could think of in-
heriting general functions for computing these derivatives numerically,
such that the only thing we must always implement is the function
itself. To realize this idea, we create a superclass3

class FuncWithDerivatives:
def __init__(self, h=1.0E-9):

self.h = h # spacing for numerical derivatives

def __call__(self, x):
raise NotImplementedError\
(’___call__ missing in class %s’ % self.__class__.__name__)

def df(self, x):
# compute first derivative by a finite difference:
h = self.h
return (self(x+h) - self(x-h))/(2.0*h)

def ddf(self, x):
# compute second derivative by a finite difference:
h = self.h
return (self(x+h) - 2*self(x) + self(x-h))/(float(h)**2)

This class is only meant as a superclass of other classes. For a particular
function, say f(x) = cos(ax) + x3, we represent it by a subclass:

class MyFunc(FuncWithDerivatives):
def __init__(self, a):

self.a = a

def __call__(self, x):
return cos(self.a*x) + x**3

def df(self, x):
a = self.a
return -a*sin(a*x) + 3*x**2

def ddf(self, x):
a = self.a
return -a*a*cos(a*x) + 6*x

3 Observe that we carefully ensure that the divisions in methods df and ddf can
never be integer divisions.
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The superclass constructor is never called, hence h is never initialized,
and there are no possibilities for using numerical approximations via
the superclass methods df and ddf. Instead, we override all the in-
herited methods and implement our own versions. Many think it is a
good programming style to always call the superclass constructur in a
subclass constructor, even in simple classes where we do not need the
functionality of the superclass constructur.

For a more complicated function, e.g., f(x) = ln |p tanh(qx cos rx)|,
we may skip the analytical derivation of the derivatives, and just code
f(x) and rely on the difference approximations inherited from the su-
perclass to compute the derivatives:

class MyComplicatedFunc(FuncWithDerivatives):
def __init__(self, p, q, r, h=1.0E-9):

FuncWithDerivatives.__init__(self, h)
self.p, self.q, self.r = p, q, r

def __call__(self, x):
return log(abs(self.p*tanh(self.q*x*cos(self.r*x))))

That’s it! We are now ready to use this class:

>>> f = MyComplicatedFunc(1, 1, 1)
>>> x = pi/2
>>> f(x)
-36.880306514638988
>>> f.df(x)
-60.593693618216086
>>> f.ddf(x)
3.3217246931444789e+19

Class MyComplicatedFunc inherits the df and ddf methods from the
superclass FuncWithDerivatives. These methods compute the first
and second derivatives approximately, provided that we have de-
fined a __call__ method. If we fail to define this method, we will
inherit __call__ from the superclass, which just raises an excep-
tion, saying that the method is not properly implemented in class
MyComplicatedFunc.

The important message in this subsection is that we introduced a
super class to mainly define an interface, i.e., the operations (in terms
of methods) that one can do with a class in this class hierarchy. The
superclass itself is of no direct use, since it does not implement any
function evaluation in the __call__ method. However, it stores a vari-
able common to all subclasses (h), and it implements general methods
df and ddf that any subclass can make use of. A specific mathematical
function must be represented as a subclass, where the programmer can
decide whether analytical derivatives are to be used, or if the more lazy
approach of inheriting general functionality (df and ddf) for computing
numerical derivatives is satisfactory.



488 9 Object-Oriented Programming

In object-oriented programming, the superclass very often defines
an interface, and instances of the superclass have no applications on
their own – only instances of subclasses can do anything useful.

To digest the present material on inheritance, we recommend to do
Exercises 9.1–9.4 before reading the next section.

9.2 Class Hierarchy for Numerical Differentiation

Chapter 7.3.2 presents a class Derivative that “can differentiate” any
mathematical function represented by a callable Python object. The
class employs the simplest possible numerical derivative. There are a
lot of other numerical formulas for computing approximations to f ′(x):

f ′(x) =
f(x + h) − f(x)

h
+ O(h), (1st-order forward diff.) (9.1)

f ′(x) =
f(x) − f(x − h)

h
+ O(h), (1st-order backward diff.) (9.2)

f ′(x) =
f(x + h) − f(x − h)

2h
+ O(h2), (2nd-order central diff.) (9.3)

f ′(x) =
4

3

f(x + h) − f(x − h)

2h
− 1

3

f(x + 2h) − f(x − 2h)

4h
+ O(h4),

(4th-order central diff.) (9.4)

f ′(x) =
3

2

f(x + h) − f(x − h)

2h
− 3

5

f(x + 2h) − f(x − 2h)

4h
+

1

10

f(x + 3h) − f(x − 3h)

6h
+ O(h6),

(6th-order central diff.) (9.5)

f ′(x) =
1

h

(
−1

6
f(x + 2h) + f(x + h) − 1

2
f(x) − 1

3
f(x − h)

)
+ O(h3),

(3rd-order forward diff.) (9.6)

The key ideas about the implementation of such a family of formu-
las are explained in Chapter 9.2.1. For the interested reader, Chap-
ters 9.2.3–9.2.6 contains more advanced additional material that can
well be skipped in a first reading. However, the additional material puts
the basic solution in Chapter 9.2.1 into a wider perspective, which may
increase the understanding of object orientation.

9.2.1 Classes for Differentiation

It is argued in Chapter 7.3.2 that it is wise to implement a numerical
differentiation formula as a class where f(x) and h are attributes and
a __call__ method makes class instances behave as ordinary Python
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functions. Hence, when we have a collection of different numerical dif-
ferentiation formulas, like (9.1)–(9.6), it makes sense to implement each
one of them as a class.

Doing this implementation (see Exercise 7.15), we realize that the
constructors are identical because their task in the present case to store
f and h. Object-orientation is now a natural next step: We can avoid
duplicating the constructors by letting all the classes inherit the com-
mon constructor code. To this end, we introduce a superclass Diff and
implement the different numerical differentiation rules in subclasses
of Diff. Since the subclasses inherit their constructor, all they have
to do is to provide a __call__ method that implements the relevant
differentiation formula.

Let us show what the superclass Diff looks like and how three sub-
classes implement the formulas (9.1)–(9.3):

class Diff:
def __init__(self, f, h=1E-9):

self.f = f
self.h = float(h)

class Forward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Backward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

These small classes demonstrates an important feature of object-
orientation: code common to many different classes are placed in a
superclass, and the subclasses add just the code that differs among the
classes.

We can easily implement the formulas (9.4)–(9.6) by following the
same method:

class Central4(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

class Central6(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (3./2) *(f(x+h) - f(x-h)) /(2*h) - \

(3./5) *(f(x+2*h) - f(x-2*h))/(4*h) + \
(1./10)*(f(x+3*h) - f(x-3*h))/(6*h)

class Forward3(Diff):
def __call__(self, x):
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f, h = self.f, self.h
return (-(1./6)*f(x+2*h) + f(x+h) - 0.5*f(x) - \

(1./3)*f(x-h))/h

Here is a short example of using one of these classes to numerically
differentiate the sine function4:

>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> # compute sin’(pi):
>>> mycos(pi)
-1.000000082740371

Instead of a plain Python function we may use an object with a
__call__ method, here exemplified through the function f(t; a, b, c) =
at2 + bt + c:

class Poly2:
def __init__(self, a, b, c):

self.a, self.b, self.c = a, b, c
def __call__(self, t):

return self.a*t**2 + self.b*t + self.c

f = Poly2(1, 0, 1)
dfdt = Central4(f)
t = 2
print "f’(%g)=%g" % (t, dfdt(t))

Let us examine the program flow. When Python encounters dfdt =

Central4(f), it looks for the constructor in class Central4, but there is
no constructor in that class. Python then examines the superclasses of
Central4, listed in Central4.__bases__. The superclass Diff contains a
constructor, and this method is called. When Python meets the dfdt(t)
call, it looks for __call__ in class Central4 and finds it, so there is no
need to examine the superclass. This process of looking up methods of
a class is called dynamic binding.

Computer Science Remark. Dynamic binding means that a name is
bound to a function while the program is running. Normally, in com-
puter languages, a function name is static in the sense that it is hard-
coded as part of the function body and will not change during the
execution of the program. This principle is known as static binding of
function/method names. Object orientation offers the technical means
to associate different functions with the same name, which yields a kind
of magic for incrased flexibility in programs. The particular function
that the name refers to can be set at run-time, i.e., when the program
is running, and therefore known as dynamic binding.

In Python, dynamic binding is a natural feature since names (vari-
ables) can refer to functions and therefore be dynamically bound dur-

4 We have placed all the classes in the file Diff.py such that these classes consti-
tute a module. In an interactive session or a small program, we must import the
differentiation classes from the Diff module.
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ing execution, just as any ordinary variable. To illustrate this point,
let func1 and func2 be two Python functions of one argument, and
consider the code

if input == ’func1’:
f = func1

elif input == ’func2’:
f = func2

y = f(x)

Here, the name f is bound to one of the func1 and func2 function ob-
jects while the program is running. This is a result of two features:
(i) dynamic typing (so the contents of f can change), and (ii) func-
tions being ordinary objects. The bottom line is that dynamic binding
comes natural in Python, while it appears more like convenient magic
in languages like C++, Java, and C#.

9.2.2 A Flexible Main Program

As a demonstration of the power of Python programming, we shall now
write a program that accepts a function on the command-line, together
with information about the difference type (centered, backward, or for-
ward), the order of the approximation, and a value of the independent
variable. The output from the program is the derivative of the given
function. An example of the usage of the program goes like this:

Terminal

differentiate.py ’exp(sin(x))’ Central 2 3.1
-1.04155573055

Here, we asked the program to differentiate f(x) = esin x at x = 3.1
with a central scheme of order 2 (using the Central2 class in the Diff

hierarchy).
We can provide any expression with x as input and request any

scheme from the Diff hierarchy, and the derivative will be (approxi-
mately) computed. One great thing with Python is that the code is
very short:

import sys
from Diff import *
from math import *
from scitools.StringFunction import StringFunction

formula = sys.argv[1]
f = StringFunction(formula)
difftype = sys.argv[2]
difforder = sys.argv[3]
classname = difftype + difforder
df = eval(classname + ’(f)’)
x = float(sys.argv[4])
print df(x)
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Read the code line by line, and convince yourself that you under-
stand what is going on. You may need to review Chapters 3.1.2 and
3.1.4.

One disadvantage is that the code above is limited to x as the name
of the independent variable. If we allow a 5th command-line argument
with the name of the independent variable, we can pass this name on
to the StringFunction constructor, and suddenly our program works
with any name for the independent variable!

varname = sys.argv[5]
f = StringFunction(formula, independent_variables=varname)

Of course, the program crashes if we do not provide five command-
line arguments, and the program does not work properly if we are not
careful with ordering of the command-line arguments. There is some
way to go before the program is really user friendly, but that is beyond
the scope of this chapter.

There are two strengths of the differentiate.py program: i) in-
teractive specification of the function and the differentiation method,
and ii) identical syntax for calling any differentiation method. With
one line we create the subclass instance based on input strings. Many
other popular programming languages (C++, Java, C#) cannot per-
form the eval operation while the program is running. The result is
that we need if tests to turn the input string information into cre-
ation of subclass instances. Such type of code would look like this in
Python:

if classname == ’Forward1’:
df = Forward1(f)

elif classname == ’Backward1’:
df = Backward1(f)

...

and so forth. This piece of code is very common in object-oriented sys-
tems and often put in a function that is referred to as a factory function.
Factory functions can be made very compact in Python thanks to eval.

9.2.3 Extensions

The great advantage of sharing code via inheritance becomes obvious
when we want to extend the functionality of a class hierarchy. It is pos-
sible to do this by adding more code to the superclass only. Suppose we
want to be able to assess the accuracy of the numerical approximation
to the derivative by comparing with the exact derivative, if available.
All we need to do is to allow an extra argument in the constructor
and provide an additional superclass method that computes the error
in the numerical derivative. We may add this code to class Diff, or
we may add it in a subclass Diff2 and let the other classes for various
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numerical differentiation formulas inherit from class Diff2. We follow
the latter approach:

class Diff2(Diff):
def __init__(self, f, h=1E-9, dfdx_exact=None):

Diff.__init__(self, f, h)
self.exact = dfdx_exact

def error(self, x):
if self.exact is not None:

df_numerical = self(x)
df_exact = self.exact(x)
return df_exact - df_numerical

class Forward1(Diff2):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

The other subclasses, Backward1, Central2, and so on, must also
be derived from Diff2 to equip all subclasses with new functionality
for perfectly assessing the accuracy of the approximation. No other
modifications are necessary in this example, since all the subclasses
can inherit the superclass constructor and the error method. Figure 9.2
shows a UML diagram of the new Diff class hierarchy.

Here is an example of usage:

mycos = Forward1(sin, dfdx_exact=cos)
print ’Error in derivative is’, mycos.error(x=pi)

The program flow of the mycos.error(x=pi) call can be interesting to
follow. We first enter the error method in class Diff2, which then calls
self(x), i.e., the __call__ method in class Forward1, which jumps out
to the self.f function, i.e., the sin function in the math module in the
present case. After returning to the error method, the next call is to
self.exact, which is the cos function (from math) in our case.

Application. We can apply the methods in the Diff2 hierarchy to get
some insight into the accuracy of various difference formulas. Let us
write out a table where the rows correspond to different h values, and
the columns correspond to different approximation methods (except
the first column which reflects the h value). The values in the table can
be the numerically computed f ′(x) or the error in this approximation
if the exact derivative is known. The following function writes such a
table:

def table(f, x, h_values, methods, dfdx=None):
# print headline (h and class names for the methods):
print ’ h ’,
for method in methods:

print ’%-15s’ % method.__name__,
print # newline
for h in h_values:

print ’%10.2E’ % h,
for method in methods:
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Fig. 9.2 UML diagram of the Diff hierarchy for a series of differentiation formulas
(Backward1, Central2, etc.).

if dfdx is not None: # write error
d = method(f, h, dfdx)
output = d.error(x)

else: # write value
d = method(f, h)
output = d(x)

print ’%15.8E’ % output,
print # newline

The next lines tries three approximation methods on f(x) = e−10x for
x = 0 and with h = 1, 1/2, 1/4, 1/16, . . . , 1/512:

from Diff2 import *
from math import exp

def f1(x):
return exp(-10*x)

def df1dx(x):
return -10*exp(-10*x)
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table(f1, 0, [2**(-k) for k in range(10)],
[Forward1, Central2, Central4], df1dx)

Note how convenient it is to make a list of class names – class names can
be used as ordinary variables, and to print the class name as a string
we just use the __name__ attribute. The output of the main program
above becomes

h Forward1 Central2 Central4
1.00E+00 -9.00004540E+00 1.10032329E+04 -4.04157586E+07
5.00E-01 -8.01347589E+00 1.38406421E+02 -3.48320240E+03
2.50E-01 -6.32833999E+00 1.42008179E+01 -2.72010498E+01
1.25E-01 -4.29203837E+00 2.81535264E+00 -9.79802452E-01
6.25E-02 -2.56418286E+00 6.63876231E-01 -5.32825724E-02
3.12E-02 -1.41170013E+00 1.63556996E-01 -3.21608292E-03
1.56E-02 -7.42100948E-01 4.07398036E-02 -1.99260429E-04
7.81E-03 -3.80648092E-01 1.01756309E-02 -1.24266603E-05
3.91E-03 -1.92794011E-01 2.54332554E-03 -7.76243120E-07
1.95E-03 -9.70235594E-02 6.35795004E-04 -4.85085874E-08

From one row to the next, h is halved, and from about the 5th row and
onwards, the Forward1 errors are also halved, which is consistent with
the error O(h) of this method. Looking at the 2nd column, we see that
the errors are reduced to 1/4 when going from one row to the next, at
least after the 5th row. This is also according to the theory since the
error is proportional to h2. For the last row with a 4th-order scheme,
the error is reduced by 1/16, which again is what we expect when the
error term is O(h4). What is also interesting to observe, is the benefit of
using a higher-order scheme like Central4: with, for example, h = 1/128
the Forward1 scheme gives an error of −0.7, Central2 improves this to
0.04, while Central4 has an error of −0.0002. More accurate formulas
definitely give better results5. The test example shown here is found
in the file Diff2_examples.py.

9.2.4 Alternative Implementation via Functions

Could we implement the functionality offered by the Diff hierarchy of
objects by using plain functions and no object orientation? The answer
is“yes, almost”. What we have to pay for a pure function-based solution
is a less friendly user interface to the differentiation functionality: More
arguments must be supplied in function calls, because each difference
formula, now coded as a straight Python function, must get f(x), x,
and h as arguments. In the class version we first store f and h as
attributes in the constructor, and every time we want to compute the
derivative, we just supply x as argument.

A Python function for implementing numerical differentiation reads

5 Strictly speaking, it is the fraction of the work and the accuracy that counts: Cen-
tral4 needs four function evaluations, while Central2 and Forward1 only needs
two.
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def central2_func(f, x, h=1.0E-9):
return (f(x+h) - f(x-h))/(2*h)

The usage demonstrates the difference from the class solution:

mycos = central2_func(sin, pi, 1E-6)
# compute sin’(pi):
print "g’(%g)=%g (exact value is %g)" % (pi, mycos, cos(pi))

Now, mycos is a number, not a callable object. The nice thing with the
class solution is that mycos appeared to be a standard Python function
whose mathematical values equal the derivative of the Python function
sin(x). But does it matter whether mycos is a function or a number?
Yes, it matters if we want to apply the difference formula twice to
compute the second-order derivative. When mycos is a callable object
of type Central2, we just write

mysin = Central2(mycos)
# or
mysin = Central2(Central2(sin))

# compute g’’(pi):
print "g’’(%g)=%g" % (pi, mysin(pi))

With the central2_func function, this composition will not work. More-
over, when the derivative is an object, we can send this object to any
algorithm that expects a mathematical function, and such algorithms
include numerical integration, differentation, interpolation, ordinary
differential equation solvers, and finding zeros of equations, so the ap-
plications are many.

9.2.5 Alternative Implementation via Functional Programming

As a conclusion of the previous section, the great benefit of the object-
oriented solution in Chapter 9.2.1 is that one can have some subclass
instance d from the Diff (or Diff2) hieararchy and write d(x) to eval-
uate the derivative at a point x. The d(x) call behaves as if d were a
standard Python function containing a manually coded expression for
the derivative.

The d(x) interface to the derivative can also be obtained by other
and perhaps more direct means than object-oriented programming. In
programming languages where functions are ordinary objects that can
be referred to by variables, as in Python, one can make a function
that returns the right d(x) function according to the chosen numerical
derivation rule. The code looks as this:

def differentiate(f, method, h=1.0E-9):
h = float(h) # avoid integer division

if method == ’Forward1’:
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def Forward1(x):
return (f(x+h) - f(x))/h

return Forward1

elif method == ’Backward1’:
def Backward1(x):

return (f(x) - f(x-h))/h
return Backward1

...

And the usage is like this:

mycos = differentiate(sin, ’Forward1’)
mysin = differentiate(mycos, ’Forward1’)
x = pi
print mycos(x), cos(x), mysin, -sin(x)

The surprising thing is that when we call mycos(x) we provide only x,
while the function itself looks like

def Forward1(x):
return (f(x+h) - f(x))/h

return Forward1

How do the parameters f and h get their values when we call mycos(x)?
There is some magic attached to the Forward1 function, or literally,
there are some variables attached to Forward1: this function “remem-
bers” the values of f and h that existed as local variables in the
differentiate function when the Forward1 function was defined.

In computer science terms, the Forward1 always has access to vari-
ables in the scope in which the function was defined. The Forward1

function is what is known as a closure in some computer languages.
Closures are much used in a programming style called functional pro-
gramming. Two key features of functional programming is operations
on lists (like list comprehensions) and returning functions from func-
tions. Python supports functional programming, but we will not con-
sider this programming style further in this book.

9.2.6 Alternative Implementation via a Single Class

Instead of making many classes or functions for the many different
differentiation schemes, the basic information about the schemes can
be stored in one table. With a single method in one single class can use
the table information, and for a given scheme, compute the derivative.
To do this, we need to reformulate the mathematical problem (actually
by using ideas from Chapter 9.3.1).

A family of numerical differentiation schemes can be written

f ′(x) ≈
r∑

i=−r

wif(xi), (9.7)



498 9 Object-Oriented Programming

where wi are weights and xi are points. The 2r+1 points are symmetric
around some point x:

xi = x + ih, i = −r, . . . , r .

The weights depend on the differentation scheme. For example, the
midpoint scheme (9.3) has

w−1 = −1, w0 = 0, w1 = 1 .

Table 9.1 lists the values of wi for different difference formulas. In this
table we have set r = 4, which is sufficient for the schemes written up
in this book.

Given a table of the wi values, we can use (9.7) to compute the
derivative. A faster, vectorized computation can have the xi, wi, and
f(xi) values as stored in three vectors. Then

∑
i wif(xi) can be inter-

preted as a dot product between the two vectors with components wi

and f(xi), respectively.

Table 9.1 Weights in some difference schemes. The number after the nature of a
scheme denotes the order of the schemes (for example, “central 2” is a central difference
of 2nd order).

points x − 4h x − 3h x − 2h x − h x x + h x + 2h x + 3h x + 4h

central 2 0 0 0 − 1

2
0 1

2
0 0 0

central 4 0 0 1

12
− 2

3
0 2

3
− 1

12
0 0

central 6 0 − 1

60

3

20
− 3

4
0 3

4
− 3

20

1

60
0

central 8 1

280
− 4

105

12

60
− 4

5
0 4

5
− 12

60

4

105
− 1

280

forward 1 0 0 0 0 1 1 0 0 0

forward 3 0 0 0 − 2

6
− 1

2
1 − 1

6
0 0

backward 1 0 0 0 −1 1 0 0 0 0

A class with the table of weights as a static variable, a constructor,
and a __call__ method for evaluating the derivative via

∑
i wif(xi)

looks as follows:

class Diff3:
table = {
(’forward’, 1):
[0, 0, 0, 0, 1, 1, 0, 0, 0],
(’central’, 2):
[0, 0, 0, -1./2, 0, 1./2, 0, 0, 0],
(’central’, 4):
[ 0, 0, 1./12, -2./3, 0, 2./3, -1./12, 0, 0],
...
}
def __init__(self, f, h=1.0E-9, type=’central’, order=2):

self.f, self.h, self.type, self.order = f, h, type, order
self.weights = array(Diff2.table[(type, order)])

def __call__(self, x):
f_values = array([f(self.x+i*self.h) for i in range(-4,5)])
return dot(self.weights, f_values)/self.h
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Here we used numpy’s dot(x, y) function for computing the inner or
dot product between two arrays x and y.

Class Diff3 can be found in the file Diff3.py. Using class Diff3 to
differentiate the sine function goes like this:

import Diff3
mycos = Diff3.Diff3(sin, type=’central’, order=4)
print "sin’(pi):", mycos(pi)

Remark. The downside of class Diff3, compared with the other im-
plementation techniques, is that the sum

∑
i wif(xi) contains many

multiplications by zero for lower-order schemes. These multiplications
are known to yield zero in advance so we waste computer resources on
trivial calculations. Once upon a time, programmers would have been
extremely careful to avoid wasting multiplications this way, but today
arithmetic operations are quite cheap, especially compared to fetching
data from the computer’s memory. Lots of other factors also influence
the computational efficiency of a program, but this is beyond the scope
of this book.

9.3 Class Hierarchy for Numerical Integration

There are many different numerical methods for integrating a mathe-
matical function, just as there are many different methods for differ-
entiating a function. It is thus obvious that the idea of object-oriented
programming and class hierarchies can be applied to numerical inte-
gration formulas in the same manner as we did in Chapter 9.2.

9.3.1 Numerical Integration Methods

First, we list some different methods for integrating
∫ b
a f(x)dx using n

evaluation points. All the methods can be written as

∫ b

a
f(x)dx ≈

n−1∑
i=0

wif(xi), (9.8)

where wi are weights and xi are evaluation points, i = 0, . . . , n − 1.
The Midpoint method has

xi = a +
h

2
+ ih, wi = h, h =

b − a

n
, i = 0, . . . , n − 1 . (9.9)

The Trapezoidal method has the points

xi = a + ih, h =
b − a

n − 1
, i = 0, . . . , n − 1, (9.10)
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and the weights

w0 = wn−1 =
h

2
, wi = h, i = 1, . . . , n − 2 . (9.11)

Simpson’s rule has the same evaluation points as the Trapezoidal rule,
but

h = 2
b − a

n − 1
, w0 = wn−1 =

h

6
, (9.12)

wi =
h

3
for i = 2, 4, . . . , n − 3, (9.13)

wi =
2h

3
for i = 1, 3, 5, . . . , n − 2 . (9.14)

Note that n must be odd in Simpson’s rule. A Two-Point Gauss-
Legendre method takes the form

xi = a + (i +
1

2
)h − 1√

3

h

2
for i = 0, 2, 4, . . . , n − 2, (9.15)

xi = a + (i +
1

2
)h +

1√
3

h

2
for i = 1, 3, 5, . . . , n − 1, (9.16)

with h = 2(b − a)/n. Here n must be even. All the weights have the
same value: wi = h/2, i = 0, . . . , n − 1. Figure 9.3 illustrates how the
points in various integration rules are distributed over a few intervals.

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

Midpoint
Trapezoidal

Simpson
GaussLegendre2

Fig. 9.3 Illustration of the distribution of points for various numerical integration
methods. The Gauss-Legendre method has 10 points, while the other methods have
11 points in [0, 10].
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9.3.2 Classes for Integration

We may store xi and wi in two NumPy arrays and compute the integral
as
∑n−1

i=0 wif(xi). This operation can also be vectorized as a dot (inner)
product between the wi vector and the f(xi) vector, provided f(x) is
implemented in a vectorizable form.

We argued in Chapter 7.3.3 that it pays off to implement a numerical
integration formula as a class. If we do so with the different methods
from the previous section, a typical class looks like this:

class SomeIntegrationMethod:
def __init__(self, a, b, n):

# compute self.points and self.weights

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

Making such classes for many different integration methods soon re-
veals that all the classes contain common code, namely the integrate

method for computing
∑n−1

i=0 wif(xi). Therefore, this common code
can be placed in a superclass, and subclasses can just add the code
that is specific to a certain numerical integration formula, namely the
definition of the weights wi and the points xi.

Let us start with the superclass:

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError(’no rule in class %s’ % \

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

As we have seen, we store the a, b, and n data about the integra-
tion method in the constructor. Moreover, we compute arrays or lists
self.points for the xi points and self.weights for the wi weights. All
this code can now be inherited by all subclasses.

The initialization of points and weights is put in a seperate method,
construct_method, which is supposed to be implemented in each sub-
class, but the superclass provides a default implementation which
tells the user that the method is not implemented. What happens is
that when subclasses redefine a method, that method overrides the
method inherited from the superclass. Hence, if we forget to redefine
construct_method in a subclass, we will inherit the one from the su-
perclass, and this method issues an error message. The construction of
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this error message is quite clever in the sense that it will tell in which
class the construct_method method is missing (self will be the subclass
instance and its __class__.__name__ is a string with the corresponding
subclass name).

In computer science one usually speaks about overloading a method
in a subclass, but the words redefining and overriding are also used. A
method that is overloaded is said to be polymorphic. A related term,
polymorphism, refers to coding with polymorphic methods. Very often,
a superclass provides some default implementation of a method, and a
subclass overloads the method with the purpose of tailoring the method
to a particular application.

The integrate method is common for all integration rules, i.e., for
all subclasses, so it can be inherited as it is. A vectorized version can
also be added in the superclass to make it automatically available also
in all subclasses:

def vectorized_integrate(self, f):
return dot(self.weights, f(self.points))

Let us then implement a subclass. Only the construct_method

method needs to be written. For the Midpoint rule, this is a matter of
translating the formulas in (9.9) to Python:

class Midpoint(Integrator):
def construct_method(self):

a, b, n = self.a, self.b, self.n # quick forms
h = (b-a)/float(n)
x = linspace(a + 0.5*h, b - 0.5*h, n)
w = zeros(len(x)) + h
return x, w

Observe that we implemented directly a vectorized code. We could also
have used (slow) loops and explicit indexing:

x = zeros(n)
w = zeros(n)
for i in range(n):

x[i] = a + 0.5*h + i*h
w[i] = h

Before we continue with other subclasses for other numerical inte-
gration formulas, we will have a look at the program flow when we
use class Midpoint. Suppose we want to integrate

∫ 2
0 x2dx using 101

points:

def f(x): return x*x
m = Midpoint(0, 2, 101)
print m.integrate(f)

How is the program flow? The assignment to m invokes the construc-
tor in class Midpoint. Since this class has no constructor, we invoke
the inherited one from the superclass Integrator. Here attributes are
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stored, and then the construct_method method is called. Since self is
a Midpoint instance, it is the construct_method in the Midpoint class
that is invoked, even if there is a method with the same name in the su-
perclass. Class Midpoint overloads construct_method in the superclass.
In a way, we “jump down” from the constructor in class Integrator

to the construct_method in the Midpoint class. The next statment,
m.integrate(f), just calls the inherited integral method that is com-
mon to all subclasses.

A vectorized Trapezoidal rule can be implemented in another sub-
class with name Trapezoidal:

class Trapezoidal(Integrator):
def construct_method(self):

x = linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)
w = zeros(len(x)) + h
w[0] /= 2
w[-1] /= 2
return x, w

Observe how we divide the first and last weight by 2, using index 0
(the first) and -1 (the last) and the /= operator (a /= b is equivalent to
a = a/b). Here also we could have implemented a scalar version with
loops. The relevant code is in function trapezoidal in Chapter 7.3.3.

Class Simpson has a slightly more demanding rule, at least if we
want to vectorize the expression, since the weights are of two types.

class Simpson(Integrator):
def construct_method(self):

if self.n % 2 != 1:
print ’n=%d must be odd, 1 is added’ % self.n
self.n += 1

x = linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)*2
w = zeros(len(x))
w[0:self.n:2] = h*1.0/3
w[1:self.n-1:2] = h*2.0/3
w[0] /= 2
w[-1] /= 2
return x, w

We first control that we have an odd number of points, by checking that
the remainder of self.n divided by two is 1. If not, an execption could
be raised, but for smooth operation of the class, we simply increase n
so it becomes odd. Such automatic adjustments of input is not a rule to
be followed in general. Wrong input is best notified explicitly. However,
sometimes it is user friendly to make small adjustments of the input,
as we do here, to achieve a smooth and successful operation. (In cases
like this, a user might become uncertain whether the answer can be
trusted if she (later) understands that the input should not yield a
correct result. Therefore, do the adjusted computation, and provide a
notification to the user about what has taken place.)
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The computation of the weights w in class Simpson applies slices with
stride (jump/step) 2 such that the operation is vectorized for speed.
Recall that the upper limit of a slice is not included in the set, so
self.n-1 is the largest index in the first case, and self.n-2 is the
largest index in the second case. Instead of the vectorized operation of
slices for computing w, we could use (slower) straight loops:

for i in range(0, self.n, 2):
w[i] = h*1.0/3

for i in range(1, self.n-1, 2):
w[i] = h*2.0/3

The points in the Two-Point Gauss-Legendre rule are slightly more
complicated to calculate, so here we apply straight loops to make a
safe first implementation:

class GaussLegendre2(Integrator):
def construct_method(self):

if self.n % 2 != 0:
print ’n=%d must be even, 1 is subtracted’ % self.n
self.n -= 1

nintervals = int(self.n/2.0)
h = (self.b - self.a)/float(nintervals)
x = zeros(self.n)
sqrt3 = 1.0/sqrt(3)
for i in range(nintervals):

x[2*i] = self.a + (i+0.5)*h - 0.5*sqrt3*h
x[2*i+1] = self.a + (i+0.5)*h + 0.5*sqrt3*h

w = zeros(len(x)) + h/2.0
return x, w

A vectorized calculation of x is possible by observing that the
(i+0.5)*h expression can be computed by linspace, and then we can
add the remaining two terms:

m = linspace(0.5*h, (nintervals-1+0.5)*h, nintervals)
x[0:self.n-1:2] = m + self.a - 0.5*sqrt3*h
x[1:self.n:2] = m + self.a + 0.5*sqrt3*h

The array on the right-hand side has half the length of x (n/2), but
the length matches exactly the slice with stride 2 on the left-hand side.

9.3.3 Using the Class Hierarchy

To verify the implementation, we first try to integrate a linear function.
All methods should compute the correct integral value regardless of the
number of evaluation points:

def f(x):
return x + 2

a = 2; b = 3; n = 4
for Method in Midpoint, Trapezoidal, Simpson, GaussLegendre2:

m = Method(a, b, n)
print m.__class__.__name__, m.integrate(f)
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Observe how we simply list the class names as a tuple (comma-
separated objects), and Method will in the for loop attain the values
Midpoint, Trapezoidal, and so forth. For example, in the first pass of
the loop, Method(a, b, n) is identical to Midpoint(a, b, n).

The output of the test above becomes
Midpoint 4.5
Trapezoidal 4.5
n=4 must be odd, 1 is added
Simpson 4.5
GaussLegendre2 4.5

Since
∫ 3
2 (x + 2)dx = 9

2 = 4.5, all methods passed this simple test.
A more challenging integral, from a numerical point of view, is

1∫
0

(
1 +

1

m

)
t

1

m dt = 1 .

To use any subclass in the Integrator hierarchy, the integrand must
be a function of one variable only. For the present integrand, which
depends on t and m, we use a class to represent it:

class F:
def __init__(self, m):

self.m = float(m)

def __call__(self, t):
m = self.m
return (1 + 1/m)*t**(1/m)

We now ask the question: How much is the error in the integral reduced
as we increase the number of integration points (n)? It appears that the
error decreases exponentially with n, so if we want to plot the errors
versus n, it is best to plot the logarithm of the error versus lnn. We
expect this graph to be a straight line, and the steeper the line is, the
faster the error goes to zero as n increases. A common conception is to
regard one numerical method as better than another if the error goes
faster to zero as we increase the computational work (here n).

For a given m and method, the following function computes two
lists containing the logarithm of the n values, and the logarithm of the
corresponding errors in a series of experiments:

def error_vs_n(f, exact, n_values, Method, a, b):
log_n = [] # log of actual n values (Method may adjust n)
log_e = [] # log of corresponding errors
for n_value in n_values:

method = Method(a, b, n_value)
error = abs(exact - method.integrate(f))
log_n.append(log(method.n))
log_e.append(log(error))

return log_n, log_e

We can plot the error versus n for several methods in the same plot
and make one plot for each m value. The loop over m below makes
such plots:
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n_values = [10, 20, 40, 80, 160, 320, 640]
for m in 1./4, 1./8., 2, 4, 16:

f = F(m)
figure()
for Method in Midpoint, Trapezoidal, \

Simpson, GaussLegendre2:
n, e = error_vs_n(f, 1, n_values, Method, 0, 1)
plot(n, e); legend(Method.__name__); hold(’on’)

title(’m=%g’ % m); xlabel(’ln(n)’); ylabel(’ln(error)’)

The code snippets above are collected in a function test in the
integrate.py file.

The plots for m > 1 look very similar. The plots for 0 < m < 1 are
also similar, but different from the m > 1 cases. Let us have a look at
the results for m = 1/4 and m = 2. The first, m = 1/4, corresponds to∫ 1
0 5x4dx. Figure 9.4 shows that the error curves for the Trapezoidal

and Midpoint methods converge more slowly compared to the error
curves for Simpson’s rule and the Gauss-Legendre method. This is the
usual situation for these methods, and mathematical analysis of the
methods can confirm the results in Figure 9.4.

However, when we consider the integral
∫ 1
0

3
2

√
xdx, (m = 2) and

m > 1 in general, all the methods converge with the same speed, as
shown in Figure 9.5. Our integral is difficult to compute numerically
when m > 1, and the theoretically better methods (Simpson’s rule and
the Gauss-Legendre method) do not converge faster than the simpler
methods. The difficulty is due to the infinite slope (derivative) of the
integrand at x = 0.
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Fig. 9.4 The logarithm of the error versus the logarithm of integration points for
integral 5x4 computed by the Trapezoidal and Midpoint methods (upper two lines),
and Simpson’s rule and the Gauss-Legendre methods (lower two lines).
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integral 3
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√
x computed by the Trapezoidal method and Simpson’s rule (upper two

lines), and Midpoint and Gauss-Legendre methods (lower two lines).

9.3.4 About Object-Oriented Programming

From an implementational point of view, the advantage of class hierar-
chies in Python is that we can save coding by inheriting functionality
from a superclass. In programming languages where each variable must
be specified with a fixed type, class hierarchies are particularly useful
because a function argument with a special type also works with all
subclasses of that type. Suppose we have a function where we need to
integrate:

def do_math(arg1, arg2, integrator):
...
I = integrator.integrate(myfunc)
...

That is, integrator must be an instance of some class, or a module,
such that the syntax integrator.integrate(myfunc) corresponds to a
function call, but nothing more (like having a particular type) is de-
manded.

This Python code will run as long as integrator has a method
integrate taking one argument. In other languages, the function argu-
ments are specified with a type, say in Java we would write

void do_math(double arg1, int arg2, Simpson integrator)

A compiler will examine all calls to do_math and control that the ar-
guments are of the right type. Instead of specifying the integration
method to be of type Simpson, one can in Java and other object-oriented
languages specify integrator to be of the superclass type Integrator:

void do_math(double arg1, int arg2, Integrator integrator)
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Now it is allowed to pass an object of any subclass type of Integrator

as the third argument. That is, this method works with integrator of
type Midpoint, Trapezoidal, Simpson, etc., not just one of them. Class
hierarchies and object-oriented programming are therefore important
means for parameterizing away types in languages like Java, C++, and
C#. We do not need to parameterize types in Python, since arguments
are not declared with a fixed type. Object-oriented programming is
hence not so technically important in Python as in other languages for
providing increased flexibility in programs.

Is there then any use for object-oriented programming beyond inher-
itance? The answer is yes! For many code developers object-oriented
programming is not just a technical way of sharing code, but it is more
a way of modeling the world, and understanding the problem that the
program is supposed to solve. In mathematical applications we already
have objects, defined by the mathematics, and standard programming
concepts such as functions, arrays, lists, and loops are often sufficient
for solving simpler problems. In the non-mathematical world the con-
cept of objects is very useful because it helps to structure the problem
to be solved. As an example, think of the phone book and message list
software in a mobile phone. Class Person can be introduced to hold the
data about one person in the phone book, while class Message can hold
data related to an SMS message. Clearly, we need to know who sent a
message so a Message object will have an associated Person object, or
just a phone number if the number is not registered in the phone book.
Classes help to structure both the problem and the program. The im-
pact of classes and object-oriented programming on modern software
development can hardly be exaggerated.

9.4 Class Hierarchy for Numerical Methods for ODEs

The next application targets numerical solution of ordinary differen-
tial equations. There is a jungle of such solution methods, a fact that
suggests collecting the methods in a class hierarchy, just as we did for
numerical differentation and integration formulas.

9.4.1 Mathematical Problem

We may distinguish between two types of ordinary differential equa-
tions (ODEs): scalar ODEs and systems of ODEs. The former type
involves one single equation,

du

dt
= f(u, t), u(0) = u0, (9.17)
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with one unknown function u(t). The latter type involves n equations
with n unknown functions u(i)(t), i = 0, . . . , n − 1:

du(i)

dt
= f(u(0), u(1), . . . , u(n−1), t), (9.18)

In addition, we need n initial conditions for a system with n equations
and unknowns:

u(i)(0) = u
(i)
0 , i = 0, . . . , n − 1 . (9.19)

It is common to collect the functions u(0), u(1), . . . , u(n−1) in a vector

u = (u(0), u(1), . . . , u(n−1))

and the initial conditions also in a vector

u0 = (u
(0)
0 , u

(1)
0 , . . . , u

(n−1)
0 ) .

In that case, (9.18) and (9.19) can be written as (9.17). We may take
important advantage of this fact in an implementation: If the vectors
are represented by Numerical Python arrays, the code we write for a
scalar will very often work for arrays too. Unless you are quite familiar
with systems of ODEs and array arithmetics, it can be a good idea to
just think about scalar ODEs and that u(t) is a function of one variable
when you read on. Later, you can come back and reread the text with
systems of ODEs and u(t) as a vector (array) in mind. The text that
follows and the program code are in fact independent of whether we
solve scalar ODEs or systems of ODEs. This is quite a remarkable
achievement, obtained by using a clever mathematical notation, where
we do not distinguish between u as a scalar function or as a vector of
functions, and the fact that scalar and array computations in Python
look the same6.

Example of a System of ODEs. An oscillating spring-mass system can
be governed by a second-order ODE (see (C.8) in Appendix C for
derivation):

mu′′ + βu′ + ku = F (t), u(0) = u0, u′(0) = 0 .

The parameters m, β, and k are known and F (t) is a prescribed func-
tion. This second-order equation can be rewritten as two first-order
equations by introducing two functions (see Chapter B.5),

6 The invisible difference between scalar ODEs and systems of ODEs is not only
important for addressing both newcomers to ODEs and more experienced readers.
The principle is very important for software development too: We can write code
with scalar ODEs in mind and test this code. Afterwards, the code should also work
immediately for systems and u(t) as a vector of functions!
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u(0)(t) = u(t), u(1)(t) = u′(t) .

The unknowns are now the position u(0)(t) and the velocity u(1)(t). We
can then create equations where the derivative of the two new primary
unknowns u(0) and u(1) appear alone on the left-hand side:

d

dt
u(0)(t) = u(1)(t), (9.20)

d

dt
u(1)(t) = m−1(F (t) − βu(1) − ku(0)) . (9.21)

It is common to express such a system as u′(t) = f(u, t) where now u
and f are vectors, here of length two:

u(t) = (u(0)(t), u(1)(t))

f(t, u) = (u(1), m−1(F (t) − βu(1) − ku(0))) . (9.22)

9.4.2 Numerical Methods

Numerical methods for ODEs compute approximations uk to u at dis-
crete time levels tk, k = 1, 2, 3, . . .. With a constant time step size Δt
in time, we have tk = kΔt. Some of the simplest, but also most widely
used methods for ODEs are listed below.

1. The Forward Euler method:

uk+1 = uk + Δt f(uk, tk) . (9.23)

2. The Midpoint method:

uk+1 = uk−1 + 2Δtf(uk, tk), (9.24)

for k = 1, 2, . . .. For the first step, to compute u1, the formula
(9.24) involves u−1, which is unknown, so here we must use another
method, for instance, (9.23).

3. The 2nd-order Runge-Kutta method:

uk+1 = uk + K2 (9.25)

where

K1 = Δt f(uk, tk), (9.26)

K2 = Δt f(uk +
1

2
K1, tk +

1

2
Δt) . (9.27)

4. The 4th-order Runge-Kutta method:

uk+1 = uk +
1

6
(K1 + 2K2 + 2K3 + K4) , (9.28)
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where

K1 = Δt f(uk, tk), (9.29)

K2 = Δt f(uk +
1

2
K1, tk +

1

2
Δt), (9.30)

K3 = Δt f(uk +
1

2
K2, tk +

1

2
Δt), (9.31)

K4 = Δt f(uk + K3, tk + Δt) . (9.32)

5. The Backward Euler method:

uk+1 = uk + Δt f(uk+1, tk+1) . (9.33)

If f(u, t) is nonlinear in u, (9.33) constitutes a nonlinear equation in
uk+1, which must be solved by some method for nonlinear equations,
say Newton’s method (see Chapter 9.4.4 for more details).

The methods above are valid both for scalar ODEs and for systems of
ODEs. In the system case, the quantities u, uk, uk+1, f , K1, K2, etc.,
are vectors.

9.4.3 The ODE Solver Class Hierarchy

Chapter 7.4.2 presents a class ForwardEuler for implementing the For-
ward Euler scheme (9.23). Most of the code in this class is independent
of the numerical method we use. In fact, we only need to change the
advance method7. if we want another method, such as the 4-th order
Runge-Kutta method, instead of the Forward Euler scheme. Copying
the ForwardEuler class and editing just the advance method is consid-
ered bad programming practice, because we get two copies the general
parts of class ForwardEuler. As we implement more schemes, we end up
with a lot of copies of the same code. Correcting an error or improving
the code in this general part then requires identical edits in several
almost identical classes.

A good programming practice is to collect all the common code in
a superclass. Subclasses can implement the advance method and share
all other code.

The Superclass. We introduce class ODESolver as the superclass of all
numerical methods for solving ODEs. Class ODESolver should provide
all functionality that is common to all numerical methods for ODEs:

1. hold the solution u(t) at discrete time points in a list u

2. hold the corresponding time values t

7 For more advanced methods than (9.23)–(9.33), especially so-called adaptive meth-
ods where Δt is automatically adjusted to gain an overall accuracy of the compu-
tations, there are more details that differ between various solution methods.
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3. hold information about the f(u, t) function, i.e., a callable Python
object f(u, t)

4. hold the (constant) time step Δt in an attribute dt

5. hold the time step number k in an attribute k

6. set the initial condition u0

7. implement the loop over all time steps

As already outlined, we implement the last point as two methods: solve
for performing the time loop and advance for advancing the solution
one time step. The latter method is empty in the superclass since the
method is to be implemented by various subclasses for various numer-
ical schemes.

A first version class ODESolver may follow the structure and contents
of class ForwardEuler from Chapter 7.4.2:

class ODESolver:
def __init__(self, f, dt):

self.f = f
self.dt = dt

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError

def set_initial_condition(self, u0, t0=0):
self.u = [] # u[k] is solution at time t[k]
self.t = [] # time levels in the solution process

self.u.append(float(u0))
self.t.append(float(t0))
self.k = 0 # time level counter (k in formulas)

def solve(self, T):
"""Advance solution in time until t <= T."""
tnew = 0
while tnew <= T:

unew = self.advance()
self.u.append(unew)
tnew = self.t[-1] + self.dt
self.t.append(tnew)
self.k += 1

return numpy.array(self.u), numpy.array(self.t)

Provided that self.advance() returns the solution at a new time level,
this superclass contains everything needed to solve an ODE.

We can make an improvement of the solve method as explained in
Exercise 7.26: The time loop is run as long as k ≤ N and a user-defined
function terminate(u,t,k) is False. By default, terminate can be the
value False, and if desired, the programmer supplies some function
that can be used to terminate the time loop on basis of the lists u and
t and the time step counter k. For example, if we want to solve an
ODE until the solution becomes zero, we can supply the function

def terminate(u, t, k):
eps = 1.0E-6 # small number
if abs(u[-1]) < eps: # close enough to zero?

return True
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else:
return False

The solve method then looks like

def solve(self, T, terminate=None):
"""
Advance solution from t = t0 to t <= T, steps of dt
as long as terminate(u,t,k) is False.
terminate(u,t,k) is a user-given function
returning True or False. By default, a terminate
function which always returns False is used.
"""
if terminate is None:

terminate = lambda u, t, k: False
self.k = 0
tnew = 0
while tnew <= T and \

not terminate(self.u, self.t, self.k):

unew = self.advance()

self.u.append(unew)
tnew = self.t[-1] + self.dt
self.t.append(tnew)
self.k += 1

return numpy.array(self.u), numpy.array(self.t)

We use a default value of None to indicate that the user has not provided
a terminate function. In that case, we make a terminate function that
always returns False (see Chapter 2.2.11 for an explanation of using
lambda for quickly defining a function).

The Forward Euler Method. Subclasses implement specific numerical
formulas for numerical solution of ODEs in the advance method. For
the Forward Euler the formula is given by (9.23). All data we need for
this formula are stored as attributes by the superclass. First we load
these data into variables with shorter names, to avoid the lengthy self

prefix and obtain a notation closer to the mathematics. Then we apply
the formula (9.23), and finally we return the new value:

class ForwardEuler(ODESolver):
def advance(self):

u, dt, f, k, t = \
self.u, self.dt, self.f, self.k, self.t[-1]

unew = u[k] + dt*f(u[k], t)
return unew

A remark is worth mentioning: When we extract attributes to local
variables with short names, we can only use these local variables for
reading values, not setting values. For example, if we do a k += 1 to
update the time step counter, that increased value is not reflected in
self.k (which is the “official” counter). Extracting class attributes in
local variables is done for getting the code closer to the mathematics,
but has a danger of introducing bugs that might be hard to track down.
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Systems of ODEs. The codes for solving ODEs have up to now be
written scalar ODEs, not systems. However, we can with very small
adjustments make all the code work with systems as well. In an ODE
system, f(u[k], t) returns a list or array, depending on what the user
prefers when implementing the right-hand side function. If a list is re-
turned, we face a problem with dt*f(u[k], t) since multiplication of
a float and a list is not defined. Therefore, we should automatically
convert all right-hand sides to arrays. This is tedious to do inside the
numerical algorithm. It is better to do it once and for all by redefining
self.f in the constructor: we let self.f be a function that calls the
user-given f and then feeds the returned list or array to numpy.asarray

to ensure that we have an array to compute with. The asarray func-
tion does nothing if the argument is already an array. The following
adjustment is then needed in the constructor:

def f_wrapper(u, t):
return numpy.asarray(f(u, t), float)

self.f = f_wrapper

# or just
self.f = lambda u, t: numpy.asarray(f(u, t), float)

No other modifications are necessary for the ODE solvers to work per-
fectly with systems of ODEs, although we had only scalar ODEs in
mind when we wrote the code!

The 4th-order Runge-Kutta Method. Below is an implementation of
the 4th-order Runge-Kutta method (9.28):

class RungeKutta4(ODESolver):
def advance(self):

u, dt, f, k, t = \
self.u, self.dt, self.f, self.k, self.t[-1]

dt2 = dt/2.0
K1 = dt*f(u[k], t)
K2 = dt*f(u[k] + 0.5*K1, t + dt2)
K3 = dt*f(u[k] + 0.5*K2, t + dt2)
K4 = dt*f(u[k] + K3, t + dt)
unew = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return unew

As long as the right-hand side function f is guaranteed to return
an array in the case we want to solve an ODE system, the imple-
mented Runge-Kutta method works systems of ODEs as well as for
scalar ODEs.

It is left as exercises to implement other numerical methods in the
ODESolver class hierarchy (see Exercises 9.27 and 9.28). However, the
Backward Euler method (9.33) requires a much more advanced imple-
mentation than the other methods so that particular method deserves
its own section.
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9.4.4 The Backward Euler Method

The Backward Euler scheme (9.33) leads in general to a nonlinear
equation at a new time level, while all the other schemes listed in
Chapter 9.4.2 has a simple formula for a new uk+1 value. We see that
(9.33) gives an equation to be solved for uk+1 by rearranging

uk+1 = uk + Δt f(uk+1, tk+1)

to
F (uk+1) ≡ uk+1 − Δtf(uk+1, tk+1) − uk = 0 .

We must solve the equation F (uk+1) = 0 with respect to uk+1. It
may be easier to see this, and later easier to implement method, if we
introduce a new variable w for uk+1. The equation to be solved is then

F (w) ≡ w − Δtf(w, tk) − uk = 0 . (9.34)

If now f(u, t) is a nonlinear function of u, F (w) will also be a nonlinear
function of w.

To solve F (w) = 0 we can use the Bisection method from Chap-
ter 3.6.2, Newton’s method from Chapter 5.1.9, or the Secant method
from Exercise 5.14. Here we apply Newton’s method and the implemen-
tation given in src/diffeq/Newton.py. A disadvantage with Newton’s
method is that we need the derivative of F with respect to w, which
requires the derivative ∂f(w, t)/∂w. A quick solution is to use a nu-
merical derivative. Class Derivative from Chapter 7.3.2.

We make a subclass BackwardEuler. As we need to solve F (w) = 0
at every time step, we also need to implement the F (w) function. We
can do this in a method, as in

class BackwardEuler:
def F(self, w):

return w - \
self.dt*self.f(w, self.t[-1]) - self.u[self.k]

Alternatively, we can make F as a local function inside the advance

method8:

def advance(self):
u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t[-1]

def F(w):
return w - dt*f(w, t) - u[k]

dFdw = Derivative(F)
w_start = u[k] + dt*f(u[k], t)
unew, n, F_value = Newton(F, w_start, dFdw, N=30)
if n >= 30:

8 The local variables in the advance function, e.g., dt and u, act as “global”variables
for the F function. Hence, when F is sent away to some Newton function, F remembers
the values of dt, f, t, and u!.
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print "Newton’s failed to converge at t=%g "\
"(%d iterations)" % (t, n)

return unew

The F(w) now looks closer to the mathematics. There are also some
other statements that deserve a comment. The derivative dF/dw is
computed numerically by a class Derivative, which is a slight modifi-
cation of the similar class in Chapter 7.3.2, because we now want to
use a more accurate, centered formula:

class Derivative:
def __init__(self, f, h=1E-9):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

This code is included in the ODESolver.py file after class BackwardEuler.
The next step is to call Newton’s method. For this purpose we need

to import the Newton function from the Newton module. However, this
module is not located in the same folder as the ODESolver module, since
the latter is in src/oo while the former is in src/diffeq. To tell Python
to look for modules in src/diffeq, we modify sys.path as explained in
Chapter 3.5.3:

import sys, os
sys.path.insert(0, os.path.join(os.pardir, ’diffeq’))
from Newton import Newton

Note that diffeq is a subfolder of our parent folder so we specify
../diffeq rather than the full and possibly complicated path to diffeq.
The parent folder is available as os.pardir (“parent directory”), and
os.path.join combines folders with the right delimiter (forward slash
on Mac/Linux/Unix and backward slash on Windows).

Having the Newton function from Chapter 5.1.9 accessible in our
ODESolver.py, we can make a call and supply our F function as the
argument f, a start value for the iteration, here called w_start, as the
argument x, and the derivative dFdw for the argument dfdx. We rely on
default values for the epsilon and store arguments, while the maxi-
mum number of iterations is set to N=30. The program is terminated if
it happens that the number of iterations exceeds that value, because
then the method has diverged, and we have not been able to compute
the next uk+1 value.

The starting value for Newton’s method must be chosen. As we
expect the solution to not change much from one time level to the
next, uk could be a good initial guess. However, we can do better by
using a simple Forward Euler step uk + Δtf(uk, tk), which is exactly
what we do in the advance function above.
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Since Newton’s method always has the danger of converging slowly,
it can be interesting to store the number of iterations at each time level
as an attribute in the BackwardEuler class. We can easily insert extra
statement for this purpose:

def advance(self):
...
unew, n, F_value = Newton(F, w_start, dFdw, N=30)
if k == 0:

self.Newton_iter = []
self.Newton_iter.append(n)
...

Note the need for creating an empty list (at the first call of advance)
before we can append elements.

There is now one important question to ask: Will the advance method
work for systems of ODEs? In that case, F (w) is a vector of functions.
The implementation of F will work when w is a vector, because all the
quantities involved in the formula are arrays or scalar variables. The
dFdw instance will compute a numerical derivative of each component
of the vector function dFdw.f (which is simply our F function). The call
to the Newton function is more critical: It turns out that this function,
as the algorithm behind it, works for scalar equations only. Newton’s
method can quite easily be extended to a system of nonlinear equa-
tions, but we do not consider that topic here. Instead we equip class
BackwardEuler with a constructor that calls the f object and controls
that the returned value is a float and not an array:

class BackwardEuler(ODESolver):
def __init__(self, f, dt):

ODESolver.__init__(self, f, dt)
# make a sample call to check that f is a scalar function:
value = f(1,1)
if not isinstance(value, (int, float)):

raise ValueError\
(’f(u,t) must return float/int, not %s’ % type(value))

Observe that we must explicitly call the superclass constructor and pass
on the arguments f and dt to achieve the right storage and treatment
of these arguments.

Understanding class BackwardEuler implies a good understanding
of classes in general, a good understanding of numerical methods for
ODEs, for numerical differentiation, and for finding roots of functions,
and a good understanding on how to combine different code segments
from different parts of the book. Therefore, if you have digested class
BackwardEuler, you have all reasons to believe that you have digested
the key topics of this book.



518 9 Object-Oriented Programming

9.4.5 Verification

We use the same verification problem as in Chapter 7.4.3, namely a
function u(t) that is linear in t and that will be exactly reproduced
by any of our schemes. Choosing u(t) = 0.2t + 3 with a corresponding
f(u, t) = 0.2+(u−0.2t−3)5, we can write the following code for testing
the Forward Euler, Runge-Kutta, and Backward Euler methods:

def _f1(u, t):
return 0.2 + (u - _u_solution_f1(t))**5

def _u_solution_f1(t):
"""Exact u(t) corresponding to _f1 above."""
return 0.2*t + 3

def _verify(f, exact):
u0 = 3; dt = 0.4; T = 2.8
for Method_class in ForwardEuler, RungeKutta4, BackwardEuler:

method = Method_class(f, dt)
method.set_initial_condition(u0)
u, t = method.solve(T)
print Method_class.__name__, ’:\n’, u

u_exact = exact(t)
print ’Exact:\n’, u_exact
print ’Backward Euler iterations:’, method.Newton_iter

if __name__ == ’__main__’:
_verify(_f1, _u_solution_f1)

The output shows that all numerical methods provide exact num-
bers:

ForwardEuler:
[ 3. 3.08 3.16 3.24 3.32 3.4 3.48 3.56]
RungeKutta4:
[ 3. 3.08 3.16 3.24 3.32 3.4 3.48 3.56]
BackwardEuler :
[ 3. 3.08 3.16 3.24 3.32 3.4 3.48 3.56]
Exact:
[ 3. 3.08 3.16 3.24 3.32 3.4 3.48 3.56]

This is a good indication that many parts of our code are correct.
(For the Backward Euler method, the test is insuffient because the
starting value, being the Forward Euler prediction, is exact. Therefore,
Newton’s method does not need any interations! Changing the start
value to u[k] results in a linear equation for w and a need for one
Newton iteration.)

9.4.6 Application 1: u′ = u

The perhaps simplest of all ODEs, u′ = u, is our first target problem for
the classes in the ODESolver hierarchy. The basic part of the application
of class ForwardEuler goes as follows:

from ODESolver import *
from scitools.std import *

def f(u, t):



9.4 Class Hierarchy for Numerical Methods for ODEs 519

return u

T = 3
dt = 0.1
method = ForwardEuler(f, dt)
method.set_initial_condition(1.0)
u, t = method.solve(N)
plot(t, u)

We can easily demonstrate how superior the 4-th order Runge-Kutta
method is for this equation when the time step is bigger (Δt = 1):

dt = 1
figure()
for Method_class in ForwardEuler, RungeKutta4:

method = Method_class(f, dt)
method.set_initial_condition(1)
u, t = method.solve(T)
plot(t, u)
legend(’%s’ % method.__name__)
hold(’on’)

t = linspace(0, T, 41) # finer resolution
plot(t, u_exact)
legend(’exact’)

Figure 9.6 shows the plot. The complete program can be found in the
file app1_exp.py.
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Fig. 9.6 Comparison of the Forward Euler and the 4-th order Runge-Kutta method
for solving u′ = u for t ∈ [0, 3] and a long time step Δt = 1.

9.4.7 Application 2: The Logistic Equation

The logistic ODE (B.23) is copied here for convenience:

u′(t) = αu(t)

(
1 − u(t)

R

)
, u(0) = u0 .
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The right-hand side contains the parameters α and R. As emphasized
in Chapters 7.1.1–7.1.2, the “right” way to code the right-hand side
is then to make a class where α and R are attributes, and where a
__call__ method evaluates the formula for the right-hand side. Such
code is explained in Chapter 7.4.4.

However, by a mathematical simplification we can remove the α and
R parameters from the ODE and thereby simplify the ODE and also
the implementation of the right-hand side. The simplification consists
in scaling the independent and dependent variables, which is advan-
tageous to do anyway if the goal is to understand more of the model
equation and its solution. The scaling consists in introducing new vari-
ables

v =
u

R
, τ = αt .

Inserting u = Rv and t = τ/α in the equation gives

dv

dτ
= v(1 − v), v(0) =

u0

R
.

Assume that we start with a small population, say u0/R = 0.05. Amaz-
ingly, there are no more parameters in the equation for v(τ). That is,
we can solve for v once and for all, and then recover u(t) by

u(t) = Rv(αt) .

Geometrically, the transformation from v to u is just a stretching of
the two axis in the coordinate system.

We can compute v(τ) by the 4-th order Runge-Kutta method in a
program:

v0 = 0.05
dtau = 0.05
T = 10
method = RungeKutta4(lambda v, tau: v*(1-v), dtau)
method.set_initial_condition(v0)
v, tau = method.solve(T)

Observe that we use a lambda function (Chapter 2.2.11) to save some
typing of a separate function for the right-hand side of the ODE. Now
we need to run the program only once to compute v(t), and from this
solution we can easily create the solution u(t), represented in terms of
u and t arrays, by

t = alpha*tau
u = R*v

Below we make a plot to show how the u(t) curve varies with α:

def ut(alpha, R):
return alpha*tau, R*v

figure()
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for alpha in linspace(0.2, 1, 5):
t, u = ut(alpha, R=1)
plot(t, u, legend=’alpha=%g’ % alpha)
hold(’on’)

The resulting plot appears in Figure 9.7. Without the scaling, we would
need to solve the ODE for each desired α value. Futhermore, with the
scaling we understand better that the influence of α is only to stretch
the t axis, or equivalently, stretch the curve along the t axis.

The complete program for this example is found in the file
app2_logistic.py.
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Fig. 9.7 Solution of the logistic equation u′ = αu
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by the 4-th order Runge-

Kutta method for various choices of α.

9.4.8 Application 3: An Oscillating System

The motion of a box attached to a spring (Appendix C) can be modeled
by two first-order differential equations as listed in (9.22) and repeated
here for convenience:

du(0)

dt
= u(1),

du(1)

dt
= w′′(t) + g − m−1βu(1) − m−1ku(0) .

We now have a system of two ODEs, and the unknown is a vector
containing the two functions, and the right-hand side f is also a vector
with two components.

The code related to this example is found in app3_osc.py. Because
our right-hand side f contains several parameters, we implement it as
a class with the parameters as attributes and a __call__ method for
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returning the 2-vector f . We assume that the user of the class supplies
the w(t) function, so it is natural to compute w′′(t) by a finite difference
formula.

class OscSystem:
def __init__(self, m, beta, k, g, w):

self.m, self.beta, self.k, self.g, self.w = \
float(m), float(beta), float(k), float(g), w

def __call__(self, u, t):
u0, u1 = u
m, beta, k, g, w = \

self.m, self.beta, self.k, self.g, self.w
# use a finite difference for w’’(t):
h = 1E-5
ddw = (w(t+h) - 2*w(t) + w(t-h))/(2*h)
f = [u1, ddw + g - beta/m*u1 - k/m*u0]
return f

A simple test case arises if we set m = k = 1 and β = g = w = 0:

du(0)

dt
= u(1),

du(1)

dt
= −u(0) .

Suppose that u(0)(0) = 1 and u(1)(0) = 0. An exact solution is then

u(0)(t) = cos t, u(1)(t) = − sin t .

We can use this case to check how the Forward Euler method compares
with the 4-th order Runge-Kutta method:

f = OscSystem(1.0, 0.0, 1.0, 0.0, lambda t: 0)
u_init = [1, 0] # initial condition
T = 7*pi
for Method_class in ForwardEuler, RungeKutta4:

# let ForwardEuler dt be 1/10 of the RungeKutta dt:
if Method_class == ForwardEuler:

dt = 2*pi/200
elif Method_class == RungeKutta4:

dt = 2*pi/20
method = Method_class(f, dt)
method.set_initial_condition(u_init)
u, t = method.solve(T)

# u is an array of [u0,u1] pairs for each time level,
# get the u0 values from u for plotting:
u0_values = u[:, 0]
u1_values = u[:, 1]
u0_exact = cos(t)
u1_exact = -sin(t)
figure()
alg = Method_class.__name__ # (class) name of algorithm
plot(t, u0_values, ’r-’,

t, u0_exact, ’b-’,
legend=(’numerical’, ’exact’),
title=’Oscillating system; position - %s’ % alg,
hardcopy=’tmp_oscsystem_pos_%s.eps’ % alg)

figure()
plot(t, u1_values, ’r-’,
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t, u1_exact, ’b-’,
legend=(’numerical’, ’exact’),
title=’Oscillating system; velocity - %s’ % alg,
hardcopy=’tmp_oscsystem_vel_%s.eps’ % alg)

For this particular application it turns out that the 4-th order Runge-
Kutta is very accurate, even with few (20) time steps per oscillation
(period). Unfortunately, the Forward Euler method leads to a solution
with increasing amplitude in time. Figure 9.8 contains a comparison
between the two methods. Note that the Forward Euler method uses 10
times as many time steps as the 4-th order Runge-Kutta method and
is still much less accurate. A very much smaller time step is needed to
limit the growth of the Forward Euler scheme for oscillating systems.

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 0  5  10  15  20  25

Oscillating system; position − ForwardEuler

numerical
exact

(a)

−1

−0.5

 0

 0.5

 1

 0  5  10  15  20  25

Oscillating system; position − RungeKutta4

numerical
exact

(b)

Fig. 9.8 Solution of an oscillating system (u′′ + u = 0 formulated as system of two
ODEs) by (a) the Forward Euler method with Δt = 2π/200; and (b) the 4-th order
Runge-Kutta method with Δt = 2π/20.

9.4.9 Application 4: The Trajectory of a Ball

Exercise 1.14 derives the following two second-order differential equa-
tions for the motion of a ball (neglecting air resistance):

d2x

dt2
= 0, (9.35)

d2y

dt2
= −g, (9.36)

where (x, y) is the position of the ball (x is a horizontal measure and y
is a vertical measure), and g is the acceleration of gravity. To use nu-
merical methods for first-order equations, we must rewrite the system
of two second-order equations as a system of four first-order equations.
This is done by introducing to new unknowns, the velocities vx = dx/dt
and vy = dy/dt. We then have the first-order system of ODEs
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dx

dt
= vx, (9.37)

dvx

dt
= 0, (9.38)

dy

dt
= vy, (9.39)

dvy

dt
= −g . (9.40)

The initial conditions are

x(0) = 0, (9.41)

vx(0) = v0 cos θ, (9.42)

y(0) = y0, (9.43)

vy(0) = v0 sin θ, (9.44)

where v0 is the initial magnitude of the velocity of the ball. The initial
velocity has a direction that makes the angle θ with the horizontal.

The code related to this example is found in app4_ball.py. A func-
tion returning the right-hand side of our ODE system reads

def f(u, t):
x, vx, y, vy = u
g = 9.81
return [vx, 0, vy, -g]

The main program for solving the ODEs can be set up as

v0 = 5
theta = 80*pi/180
u0 = [0, v0*cos(theta), 0, v0*sin(theta)]
T = 1.2
dt = 0.01
method = ForwardEuler(f, dt)
method.set_initial_condition(u0, 0)
u, t = method.solve(T)

Now, u is an array of 4-arrays [x, vx, y, vy]. Say we want to plot x

as a function of time. We then have to extract all the x values as the
first column in the two-dimensional u array:

x_values = u[:,0]
# or (slower):
x_values = array([x for x, vx, y, vy in u])
plot(t, x_values)

When a plot of the trajectory is desired, we need to plot the y coordi-
nates of the ball against the x coordinates:

x_values = u[:,0]
y_values = u[:,2]
plot(x_values, y_values)
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The exact solution is given by (1.5), so we can easily assess the accuracy
of the numerical solution:

def exact(x):
g = 9.81; y0 = u0[2]
return x*tan(theta) - g*x**2/(2*v0**2)*1/(cos(theta))**2 + y0

plot(x_values, y_values, "r-",
x_values, exact(x_values), "b-",
legend=("numerical", "exact"),
title="dt=%g" % dt)

Figure 9.9 shows a comparison of the numerical and the exact solution
in this simple test problem. Note that even if we are just interested in
y as a function of x, we first need to solve the complete ODE system
for the arrays x, vx, y, vy before we have x and y and can plot these.

The real strength of the numerical approach is the ease with which
we can add air resistance and lift to the system of ODEs. Insight in
physics is necessary to derive what the additional terms are, but im-
plementing the terms is trivial in our test program above.
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Fig. 9.9 The trajectory of a ball solved as a system of four ODEs by the Forward
Euler method.

9.5 Class Hierarchy for Geometric Shapes

Our next examples concern drawing geometric shapes. We know from
Chapter 4 how to draw curves y = f(x), but the point now is to con-
struct some convenient software tools for drawing squares, circles, arcs,
springs, wheels, and other shapes. With these tools we can create fig-
ures describing physical systems, for instance. Classes are very suitable
for implementing the software because each shape is naturally associ-
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ated with a class, and the various classes are related to each other
through a natural hierarchy.

9.5.1 Using the Class Hierarchy

Before we dive into implementation details, let us first decide upon the
interface we want to have for drawing various shapes. We start out by
defining a rectangular area in which we will draw our figures. This is
done by

from shapes import *
set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)

A line from (0, 0) to (1, 1) is defined by

l1 = Line(start=(0,0), stop=(1,1)) # define line
l1.draw() # make plot data
display() # display the plot data

A rectangle whose lower left corner is at (0, 1), and where the width is
3 and the height is 5, is constructed by

r1 = Rectangle(lower_left_corner=(0,1), width=3, height=5)
r1.draw()
display()

A circle with center at (5, 2) and unit radius, along with a wheel, is
drawn by the code

Circle(center=(5,7), radius=1).draw()
Wheel(center=(6,2), radius=2, inner_radius=0.5, nlines=7).draw()
display()
hardcopy(’tmp’) # create PNG file tmp.png

The latter line also makes a hardcopy of the figure in a PNG file.
Figure 9.10 shows the resulting drawing after these commands.

We can change the color and thickness of the lines and also fill
circles, rectangles, etc. with a color. Figure 9.11 shows the result of
the following example, where we first define elements in the figure and
then adjust the line color and other properties prior to calling the draw

methods:

r1 = Rectangle(lower_left_corner=(0,1), width=3, height=5)
c1 = Circle(center=(5,7), radius=1)
w1 = Wheel(center=(6,2), radius=2, inner_radius=0.5, nlines=7)
c2 = Circle(center=(7,7), radius=1)
filled_curves(True)
c1.draw() # filled red circle
set_linecolor(’blue’)
r1.draw() # filled blue rectangle
set_linecolor(’aqua’)
c2.draw() # filled aqua/cyan circle
# add thick aqua line around rectangle:
filled_curves(False)
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Fig. 9.10 Result of a simple drawing session with shapes from the Shape class hier-
archy.

Fig. 9.11 Redrawing of some shapes from Figure 9.10 with some thicker lines and
different colors.

set_linewidth(4)
r1.draw()
set_linecolor(’red’)
w1.draw()
display()

9.5.2 Overall Design of the Class Hierarchy

Let us have a class Shape as superclass for all specialized shapes. Class
Line is a subclass of Shape and represents the simplest shape: a stright
line between two points. Class Rectangle is another subclass of Shape,
implementing the functionality needed to specify the four lines of a
rectangle. Class Circle can be yet another subclass of Shape, or we
may have a class Arc and let Circle be a subclass of Arc since a circle
is an arc of 360 degrees. Class Wheel is also subclass of Shape, but it
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contains naturally two Circle instances for the inner and outer circles,
plus a set of Line instances going from the inner to the outer circles.

The discussion in the previous paragraph shows that a subclass in
the Shape hierarchy typically contains a list of other subclass instances,
or the shape is a primitive, such as a line, circle, or rectangle, where
the geometry is defined through a set of (x, y) coordinates rather than
through other Shape instances. It turns out that the implementation
is simplest if we introduce a class Curve for holding a primitive shape
defined by (x, y) coordinates. Then all other subclasses of Shape can
have a list shapes holding the various instances of subclasses of Shape

needed to build up the geometric object. The shapes attribute in class
Circle will contain one Curve instance for holding the coordinates along
the circle, while the shapes attribute in class Wheel contains two Circle

instances and a number of Line instances. Figures 9.12 and 9.13 display
two UML drawings of the shapes class hierarchy where we can get a
view of how Rectangle and Wheel relate to other classes: the darkest
arrows represent is-a relationship while the lighter arrows represent
has-a relationship.

All instances in the Shape hierarchy must have a draw method. The
draw method in class Curve plots the (x, y) coordinates as a curve, while
the draw method in all other classes simply do a

for shape in self.shapes:
shape.draw()

Shape

__init__
subshapes
ok
draw
rotate
translate
scale

display
erase
hardcopy
set_coordinate_system

Rectangle

__init__
subshapes

_init_called
height
lower_left_corner
shapes
width

Curve

__init__
ok
subshapes
rotate
draw
scale
translate

_init_called
shapes
x
y

NumPyArray

__init__

array

Fig. 9.12 UML diagram of parts of the shapes hierarchy. Classes Rectangle and
Curve are subclasses of Shape. The darkest arrow with the biggest arrowhead indi-
cates inheritance and is-a relationship: Rectangle and Curve are both also Shape. The
lighter arrow indicates has-a relationship: Rectangle has a Curve, and a Curve has a
NumPyArray.
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Shape

draw
scale
rotate
translate
__init__
subshapes
ok

Wheel

subshapes
__init__

_init_called
center
inner_radius
nlines
radius
shapes

Arc

__init__
subshapes

Circle

__init__

_init_called
center
opening_degrees
radius
resolution
shapes
start_degrees

Curve

scale
translate
__init__
ok
subshapes
rotate
draw

_init_called
shapes
x
y

Line

__init__
subshapes

_init_called
shapes
start
stop

NumPyArray

__init__

array

Fig. 9.13 This is a variant of Figure 9.12 where we display how class Wheel relates
to other classes in the shapes hierarchy. Wheel is a Shape, like Arc, Line, and Curve,
but Wheel contains Circle and Line objects, while the Circle and Line objects have
a Curve, which has a NumPyArray. We also see that Circle is a subclass of Arc.

9.5.3 The Drawing Tool

We have in Chapter 4 introduced the Easyviz tool for plotting graphs.
This tool is quite well suited for drawing geometric shapes defined
in terms of curves, but when drawing shapes we often want to skip
ticmarks on the axis, labeling of the curves and axis, and perform
other adjustments. Instead of using Easyviz, which aims at function
plotting, we have decided to use a plotting tool directly and fine-tune
the few commands we need for drawing shapes.

A simple plotting tool for shapes is based on Gnuplot and imple-
mented in class GnuplotDraw in the file GnuplotDraw.py. This class has
the following user interface:
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class GnuplotDraw:
def __init__(self, xmin, xmax, ymin, ymax):

"""Define the drawing area [xmin,xmax]x[ymin,ymax]."""

def define_curve(self, x, y):
"""Define a curve with coordinates x and y (arrays)."""

def erase(self):
"""Erase the current figure."""

def display(self):
"""Display the figure."""

def hardcopy(self, name):
"""Save figure in PNG file name.png."""

def set_linecolor(self, color):
"""Change the color of lines."""

def set_linewidth(self, width):
"""Change the line width (int, starts at 1)."""

def filled_curves(self, on=True):
"""Fill area inside curves with current line color."""

One can easily make a similar class with an identical interface that
applies another plotting package than Gnuplot to create the drawings.
In particular, encapsulating the drawing actions in such a class makes
it trivial to change the drawing program in the future. The program
pieces that apply a drawing tool like GnuplotDraw remain the same.
This is an important strategy to follow, especially when developing
larger software systems.

9.5.4 Implementation of Shape Classes

Our superclass Shape can naturally hold a coordinate system specifica-
tion, i.e., the rectangle in which other shapes can be drawn. This area
is fixed for all shapes, so the associated variables should be static and
the method for setting them should also be static (see Chapter 7.7 for
static attributes and methods). It is also natural that class Shape holds
access to a drawing tool, in our case a GnuplotDraw instance. This ob-
ject is also static. However, it can be an advantage to mirror the static
attributes and methods as global variables and functions in the shapes

modules. Users not familiar with static class items can drop the Shape

prefix and just use plain module variables and functions. This is what
we do in the application examples.

Class Shape defines an imporant method, draw, which just calls the
draw method for all subshapes that build up the current shape.

Here is a brief view of class Shape9:

9 We have for simplicity omitted the static attributes and methods. These can be
viewed in the shapes.py file.
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class Shape:
def __init__(self):

self.shapes = self.subshapes()
if isinstance(self.shapes, Shape):

self.shapes = [self.shapes] # turn to list

def subshapes(self):
"""Define self.shapes as list of Shape instances."""
raise NotImplementedError(self.__class__.__name__)

def draw(self):
for shape in self.shapes:

shape.draw()

In class Shape we require the shapes attribute to be a list, but if the
subshape method in subclasses returns just one instance, this is auto-
matically wrapped in a list in the constructor.

First we implement the special case class Curve, which does not have
subshapes but instead (x, y) coordinates for a curve:

class Curve(Shape):
"""General (x,y) curve with coordintes."""
def __init__(self, x, y):

self.x, self.y = x, y
# turn to Numerical Python arrays:
self.x = asarray(self.x, float)
self.y = asarray(self.y, float)
Shape.__init__(self)

def subshapes(self):
pass # geometry defined in constructor

The simplest ordinary Shape class is Line:

class Line(Shape):
def __init__(self, start, stop):

self.start, self.stop = start, stop
Shape.__init__(self)

def subshapes(self):
x = [self.start[0], self.stop[0]]
y = [self.start[1], self.stop[1]]
return Curve(x,y)

The code in this class works with start and stop as tuples, lists, or
arrays of length two, holding the end points of the line. The underlying
Curve object needs only these two end points.

A rectangle is represented by a slightly more complicated class, hav-
ing the lower left corner, the width, and the height of the rectangle as
attributes:

class Rectangle(Shape):
def __init__(self, lower_left_corner, width, height):

self.lower_left_corner = lower_left_corner # 2-tuple
self.width, self.height = width, height
Shape.__init__(self)

def subshapes(self):
ll = self.lower_left_corner # short form
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x = [ll[0], ll[0]+self.width,
ll[0]+self.width, ll[0], ll[0]]

y = [ll[1], ll[1], ll[1]+self.height,
ll[1]+self.height, ll[1]]

return Curve(x,y)

Class Circle needs many coordinates in its Curve object in order to
display a smooth circle. We can provide the number of straight line
segments along the circle as a parameter resolution. Using a default
value of 180 means that each straight line segment approximates an arc
of 2 degrees. This resolution should be sufficient for visual purposes.
The set of coordinates along a circle with radius R and center (x0, y0)
is defined by

x = x0 + R cos(t), (9.45)

y = y0 + R sin(t), (9.46)

for resolution+1 t values between 0 and 2π. The vectorized NumPy
code for computing the coordinates becomes

t = linspace(0, 2*pi, self.resolution+1)
x = x0 + R*cos(t)
y = y0 + R*sin(t)

The complete Circle class is shown below:

class Circle(Shape):
def __init__(self, center, radius, resolution=180):

self.center, self.radius = center, radius
self.resolution = resolution
Shape.__init__(self)

def subshapes(self):
t = linspace(0, 2*pi, self.resolution+1)
x0 = self.center[0]; y0 = self.center[1]
R = self.radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
return Curve(x,y)

We can also introduce class Arc for drawing the arc of a circle. Class
Arc could be a subclass of Circle, extending the latter with two addi-
tional parameters: the opening of the arc (in degrees) and the starting
t value in (9.45)–(9.46). The implementation of class Arc will then be
almost a copy of the implementation of class Circle. The subshapes

method will just define a different t array.
Another view is to let class Arc be a subclass of Shape, and Circle

a subclass of Arc, since a circle is an arc of 360 degrees. Let us employ
this idea:

class Arc(Shape):
def __init__(self, center, radius,

start_degrees, opening_degrees, resolution=180):
self.center = center
self.radius = radius
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self.start_degrees = start_degrees*pi/180
self.opening_degrees = opening_degrees*pi/180
self.resolution = resolution
Shape.__init__(self)

def subshapes(self):
t = linspace(self.start_degrees,

self.start_degrees + self.opening_degrees,
self.resolution+1)

x0 = self.center[0]; y0 = self.center[1]
R = self.radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
return Curve(x,y)

class Circle(Arc):
def __init__(self, center, radius, resolution=180):

Arc.__init__(self, center, radius, 0, 360, resolution)

In this latter implementation, we save a lot of code in class Circle since
all of class Arc can be reused.

Class Wheel may conceptually be a subclass of Circle. One circle,
say the outer, is inherited and the subclass must have the inner circle
as an attribute. Because of this “asymmetric” representation of the two
circles in a wheel, we find it more natural to derive Wheel directly from
Shape, and have the two circles as two attributes of type Circle:

class Wheel(Shape):
def __init__(self, center, radius, inner_radius=None, nlines=10):

self.center = center
self.radius = radius
if inner_radius is None:

self.inner_radius = radius/5.0
else:

self.inner_radius = inner_radius
self.nlines = nlines
Shape.__init__(self)

If the radius of the inner circle is not defined (None) we take it as 1/5
of the radius of the outer circle. The wheel is naturally composed of
two Circle instances and nlines Line instances:

def subshapes(self):
outer = Circle(self.center, self.radius)
inner = Circle(self.center, self.inner_radius)
lines = []
t = linspace(0, 2*pi, self.nlines)
Ri = self.inner_radius; Ro = self.radius
x0 = self.center[0]; y0 = self.center[1]
xinner = x0 + Ri*cos(t)
yinner = y0 + Ri*sin(t)
xouter = x0 + Ro*cos(t)
youter = y0 + Ro*sin(t)
lines = [Line((xi,yi),(xo,yo)) for xi, yi, xo, yo in \

zip(xinner, yinner, xouter, youter)]
return [outer, inner] + lines

For the fun of it, we can implement other shapes, say a sine wave

y = m + A sin kx, k = 2π/λ,
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where ,\ is the wavelength of the sine waves, A is the wave amplitude,
and m is the mean value of the wave. The class looks like

class Wave(Shape):
def __init__ Cself, xstart, xstop,

wavelength, amplitude, mean_level):
self.xstart = xstart
self.xstop = xstop
self.wavelength = wavelength
self.amplitude = amplitude
self.mean_level = mean_level
Shape. __ init __ (self)

def subshapes(self):
npoints ~ (self.xstop - self.xstart)/(self.wavelength/61.0)
x linspaceCself.xstart, self.xstop, npoints)
k = 2*pi/self.wavelength # frequency
y = self.mean_level + self.amplitude*sin(k*x)
return Curve(x,y)

With this and the previous example, you should be in a position to
write your own subclasses. Exercises 9.:35-9.:39 suggest some smaller
projects.

Functions for' Controlling Lines, Colors, etc. The shapes module con-
taining class Shape and all subclasses mentioned above, also offers some
additional functions that do not depend on any particular shape:

• display () for displaying the defined figures so far (all figures whose
draw method is called).

• erase () for ereasing the current figure.
• hardcopy Cnane) for saving the current figure to a PNG file name.png.

• set_linecolor(color) for setting the color of lines, where color

is a string like 'red' (default), 'blue', 'green', 'aqua', 'purple',

)yellow', and )black J •

• set_linewidth(width) for setting the width of a line, measured as
an integer (default is 2).

• filled_curves(on) for turrning on (on=True) or off (on=False)

whether the area inside a shape should be filled with the current
line color.

Actually, the functions above are static methods in class Shape

(d. Chapter 7.7), and they are just mirrored as global functions!" in
the shapes module. Users without knowledge of static methods do not
need to use the Shape prefix for reaching this functionality.

9.5.5 Scaling, Translating, and Rotating a Figure

The real power of object-oriented prograrnrning will be obvious in a
minute when we, with a few lines of code, suddenly can equip all shape

10 You can look into shapes. py to see how we automate the duplication of static
methods as global functions.
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objects with additional functionality for scaling, translating, and rotat-
ing the figure.

Scaling. Let us first treat the simplest of the three cases: scaling. For a
Curve instance containing a set of n coordinates (xi, yi) that make up
a curve, scaling by a factor a means that we multiply all the x and y
coordinates by a:

xi ← axi, yi ← ayi, i = 0, . . . , n − 1 .

Here we apply the arrow as an assignment operator. The corresponding
Python implementation in class Curve reads

class Curve:
...
def scale(self, factor):

self.x = factor*self.x
self.y = factor*self.y

Note here that self.x and self.y are Numerical Python arrays, so that
multiplication by a scalar number factor is a vectorized operation.

In an instance of a subclass of Shape, the meaning of a method
scale is to run through all objects in the list self.shapes and ask each
object to scale itself. This is the same delegation of actions to subclass
instances as we do in the draw method, and all objects, except Curve

instances, can share the same implementation of the scale method.
Therefore, we place the scale method in the superclass Shape such
that all subclasses can inherit this method. Since scale and draw are
so similar, we can easily implement the scale method in class Shape by
copying and editing the draw method:

class Shape:
...
def scale(self, factor):

for shape in self.shapes:
shape.scale(factor)

This is all we have to do in order to equip all subclasses of Shape

with scaling functionality! But why is it so easy? All subclasses inherit
scale from class Shape. Say we have a subclass instance s and that we
call s.scale(factor). This leads to calling the inherited scale method
shown above, and in the for loop we call the scale method for each
shape object in the self.shapes list. If shape is not a Curve object, this
procedure repeats, until we hit a shape that is a Curve, and then the
scaling on that set of coordinates is performed.

Translation. A set of coordinates (xi, yi) can be translated x units in
the x direction and y units in the y direction using the formulas

xi ← x + xi, yi ← y + yi, i = 0, . . . , n − 1 .
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The corresponding Python implementation in class Curve becomes

class Curve:
...
def translate(self, x, y):

self.x = x + self.x
self.y = y + self.y

The translation operation for a shape object is very similar to the
scaling and drawing operations. This means that we can implement a
common method translate in the superclass Shape. The code is parallel
to the scale method:

class Shape:
....
def translate(self, x, y):

for shape in self.shapes:
shape.translate(x, y)

Rotation. Rotating a figure is more complicated than scaling and trans-
lating. A counter clockwise rotation of θ degrees for a set of coordinates
(xi, yi) is given by

x̄i ← xi cos θ − yi sin θ,

ȳi ← xi sin θ + yi cos θ .

This rotation is performed around the origin. If we want the figure to
be rotated with respect to a general point (x, y), we need to extend the
formulas above:

x̄i ← x + (xi − x) cos θ − (yi − y) sin θ,

ȳi ← y + (xi − x) sin θ + (yi − y) cos θ .

The Python implementation in class Curve, assuming that θ is given in
degrees and not in radians, becomes

def rotate(self, angle, x=0, y=0):
angle = angle*pi/180
c = cos(angle); s = sin(angle)
xnew = x + (self.x - x)*c - (self.y - y)*s
ynew = y + (self.x - x)*s + (self.y - y)*c
self.x = xnew
self.y = ynew

The rotate method in class Shape is identical to the draw, scale, and
translate methods except that we have other arguments:

class Shape:
....
def rotate(self, angle, x=0, y=0):

for shape in self.shapes:
shape.rotate(angle, x, y)
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Application: Rolling Wheel. To demonstrate the effect of translation
and rotation we can roll a wheel on the screen. First we draw the wheel
and rotate it a bit to demonstrate the basic operations:

center = (6,2) # the wheel’s center point
w1 = Wheel(center=center, radius=2, inner_radius=0.5, nlines=7)
# rorate the wheel 2 degrees around its center point:
w1.rotate(angle=2, center[0], center[1])
w1.draw()
display()

Now we want to roll the wheel by making many such small rotations.
At the same time we need to translate the wheel since rolling an arc
length L = Rθ, where θ is the rotation angle (in radians) and R is
the outer radius of the wheel, implies that the center point moves a
distance L to the left (θ > 0 means counter clockwise rotation). In
code we must therefore combine rotation with translation:

L = radius*angle*pi/180 # translation = arc length
w1.rotate(angle, center[0], center[1])
w1.translate(-L, 0)
center = (center[0] - L, center[1])

We are now in a position to put the rotation and translation operations
in a for loop and make a complete function:

def rolling_wheel(total_rotation_angle):
"""Animation of a rotating wheel."""
set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)

center = (6,2)
radius = 2.0
angle = 2.0
w1 = Wheel(center=center, radius=radius,

inner_radius=0.5, nlines=7)
for i in range(int(total_rotation_angle/angle)):

w1.draw()
display()

L = radius*angle*pi/180 # translation = arc length
w1.rotate(angle, center[0], center[1])
w1.translate(-L, 0)
center = (center[0] - L, center[1])

erase()

To control the visual “velocity” of the wheel, we can insert a pause
between each frame in the for loop. A call to time.sleep(s), where s

is the length of the pause in seconds, can do this for us.
Another convenient feature is to save each frame drawn in the for

loop as a hardcopy in PNG format and then, after the loop, make an
animated GIF file based on the individual PNG frames. The latter
operation is performed either by the movie function from scitools.std

or by the convert program from the ImageMagick suite. With the latter
you write the following command in a terminal window:

convert -delay 50 -loop 1000 xxx tmp_movie.gif
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Here, xxx is a space-separated list of all the PNG files, and
tmp_movie.gif is the name of the resulting animated GIF file. We
can easily make xxx by collecting the names of the PNG files from the
loop in a list object, and then join the names. The convert command
can be run as an os.system call.

The complete rolling_wheel function, incorporating the mentioned
movie making, will then be

def rolling_wheel(total_rotation_angle):
"""Animation of a rotating wheel."""
set_coordinate_system(xmin=0, xmax=10, ymin=0, ymax=10)

import time
center = (6,2)
radius = 2.0
angle = 2.0
pngfiles = []
w1 = Wheel(center=center, radius=radius,

inner_radius=0.5, nlines=7)
for i in range(int(total_rotation_angle/angle)):

w1.draw()
display()

filename = ’tmp_%03d’ % i
pngfiles.append(filename + ’.png’)
hardcopy(filename)
time.sleep(0.3) # pause 0.3 sec

L = radius*angle*pi/180 # translation = arc length
w1.rotate(angle, center[0], center[1])
w1.translate(-L, 0)
center = (center[0] - L, center[1])

erase() # erase the screen before new figure

cmd = ’convert -delay 50 -loop 1000 %s tmp_movie.gif’ \
% (’ ’.join(pngfiles))

import commands
failure, output = commands.getstatusoutput(cmd)
if failure: print ’Could not run’, cmd

The last two lines run a command, from Python, as we would run the
command in a terminal window. The resulting animated GIF file can
be viewed with animate tmp_movie.gif as a command in a terminal
window.

9.6 Summary

9.6.1 Chapter Topics

A subclass inherits everyting from its superclass, both attributes and
methods. The subclass can add new attributes, overload methods, and
thereby enrich or restrict functionality of the superclass.

Subclass Example. Consider class Gravity from Chapter 7.8.1 for rep-
resenting the gravity force GMm/r2 between two masses m and M
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being a distance r apart. Suppose we want to make a class for the elec-
tric force between two charges q1 and q2, being a distance r apart in a
medium with permittivity ε0 is Gq1q2/r2, where G−1 = 4πε0. We use
the approximate value G = 8.99 · 109 Nm2/C2 (C is the Coulumb unit
used to measure electric charges such as q1 and q2). Since the electric
force is similar to the gravity force, we can easily implement the elet-
ric force as a subclass of Gravity. The implementation just needs to
redefine the value of G!

class CoulumbsLaw(Gravity):
def __init__(self, q1, q2):

Gravity.__init__(self, q1, q2)
self.G = 8.99E9

We can now call the inherited force(r) method to compute the eletric
force and the visualize method to make a plot of the force:

c = CoulumbsLaw(1E-6, -2E-6)
print ’Electric force:’, c.force(0.1)
c.visualize(0.01, 0.2)

However, the plot method inherited from class Gravity has an inap-
propriate title referring to “Gravity force” and the masses m and M .
An easy fix could be to have the plot title as an attribute set in the
constructor. The subclass can then override the contents of this at-
tribute, as it overrides self.G. It is quite common to discover that a
class needs adjustments if it is to be used as superclass.

Subclassing in General. The typical sketch of creating a subclass goes
as follows:

class SuperClass:
def __init__(self, p, q):

self.p, self.q = p, q

def where(self):
print ’In superclass’, self.__class__.__name__

def compute(self, x):
self.where()
return self.p*x + self.q

class SubClass(SuperClass):
def __init__(self, p, q, a):

SuperClass.__init__(self, p, q)
self.a = a

def where(self):
print ’In subclass’, self.__class__.__name__

def compute(self, x):
self.where()
return SuperClass.compute(self, x) + self.a*x**2

This example shows how a subclass extends a superclass with one at-
tribute (a). The subclass’ compute method calls the corresponding su-
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perclass method, as well as the overloaded method where. Let us invoke
the compute method through superclass and subclass instances:

>>> super = SuperClass(1, 2)
>>> sub = SubClass(1, 2, 3)
>>> v1 = super.compute(0)
In superclass SuperClass
>>> v2 = sub.compute(0)
In subclass SubClass
In subclass SubClass

Observe that in the subclass sub, method compute calls self.where,
which translates to the where method in SubClass. Then the compute

method in SuperClass is invoked, and this method also makes a
self.where call, which is a call to SubClass’ where method (think of
what self is here, it is sub, so it is natural that we get where in the
subclass (sub.where) and not where in the superclass part of sub).

In this example, classes SuperClass and SubClass constitute a class
hierarchy. Class SubClass inherits the attributes p and q from its su-
perclass, and overrides the methods where and compute.

9.6.2 Summarizing Example: Input Data Reader

The summarizing example of this chapter concerns a class hierarchy
for simplifying reading input data into programs. Input data may come
from several different sources: the command line, a file, or from a dia-
log with the user, either of input form or in a graphical user interface
(GUI). Therefore it makes sense to create a class hierarchy where sub-
classes are specialized to read from different sources and where the
common code is placed in a superclass. The resulting tool will make
it easy for you to let your programs read from many different input
sources by adding just a few lines.

Problem. Let us motive the problem by a case where we want to write
a program for dumping n function values of f(x) to a file for x ∈ [a, n].
The core part of the program typically reads

outfile = open(filename, ’w’)
from numpy import linspace
for x in linspace(a, b, n):

outfile.write(’%12g %12g\n’ % (x, f(x)))
outfile.close()

Our purpose is to read data into the variables a, b, n, filename, and f.
For the latter we want to specify a formula and use the StringFunction

tool (Chapter 3.1.4) to make the function f:

from scitools.StringFunction import StringFunction
f = StringFunction(formula)
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How can we read a, b, n, formula, and filename conveniently into the
program?

The basic idea is that we place the input data in a dictionary, and
create a tool that can update this dictionary from sources like the
command line, a file, a GUI, etc. Our dictionary is then

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)

This dictionary specifies the names of the input parameters to the
program and the default values of these parameters.

Using the tool is a matter of feeding p into the constructor of a
subclass in the tools’ class hierarchy and extract the parameters into,
for example, distinct variables:

inp = Subclassname(p)
a, b, filename, formula, n = inp.get_all()

Depending on what we write as Subclassname, the five variables can be
read from the command line, the terminal window, a file, or a GUI. The
task now is to implement a class hierarchy to facilitate the described
flexible reading of input data.

Solution. We first create a very simple superclass ReadInput. Its main
purpose is to store the parameter dictionary as an attribute, provide a
method get to extract single values, and a method get_all to extract
all parameters into distinct variables:

class ReadInput:
def __init__(self, parameters):

self.p = parameters

def get(self, parameter_name):
return self.p[parameter_name]

def get_all(self):
return [self.p[name] for name in sorted(self.p)]

def __str__(self):
import pprint
return pprint.pformat(self.p)

Note that we in the get_all method must sort the keys in self.p such
that the list of returned variables is well defined. In the calling program
we can then list variables in the same order as the alphabetic order of
the parameter names, for example:

a, b, filename, formula, n = inp.get_all()

The __str__ method applies the pprint module to get a pretty print
of all the parameter names and their values.

Class ReadInput cannot read from any source – subclasses are sup-
posed to do this. The forthcoming text describes various types of sub-
classes for various types of reading input.
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Prompting the User. The perhaps simplest way of getting data into a
program is to use raw_input. We then prompt the user with a text Give
name: and get an appropriate object back (recall that strings must be
enclosed in quotes). The subclass PromptUser for doing this then reads

class PromptUser(ReadInput):
def __init__(self, parameters):

ReadInput.__init__(self, parameters)
self._prompt_user()

def _prompt_user(self):
for name in self.p:

self.p[name] = eval(raw_input("Give " + name + ": "))

Note the underscore in _prompt_user: the underscore signifies that this
is a “private”method in the PromptUser class, not intended to be called
by users of the class.

There is a major difficulty with using eval on the input from the user.
When the input is intended to be a string object, such as a filename,
say tmp.inp, the program will perform the operation eval(tmp.inp),
which leads to an exception because tmp.inp is treated as a variable
inp in a module tmp and not as the string ’tmp.inp’. To solve this
problem, we use the str2obj function from the scitools.misc module.
This function will return the right Python object also in the case where
the argument should result in a string object (see Chapter 3.6.1 for
some information about str2obj). The bottom line is that str2obj

acts as a safer eval(raw_input(...)) call. The key assignment in class
PromptUser is then changed to

self.p[name] = str2obj(raw_input("Give " + name + ": "))

Reading from File. We can also place name = value commands in a file
and load this information into the dictionary self.p. An example of a
file can be

formula = sin(x) + cos(x)
filename = tmp.dat
a = 0
b = 1

In this example we have omitted n, so we rely on its default value.
A problem is how to give the filename. The easy way out of this

problem is to read from standard input, and just redirect standard
input from a file when we run the program. For example, if the filename
is tmp.inp, we run the program as follows in a terminal window11

Terminal

Unix/DOS> python myprog.py < tmp.inp

11 The redirection of standard input from a file does not work in IPython so we are
in this case forced to run the program in a terminal window.
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To interpret the contents of the file, we read line by line, split each line
with respect to =, use the left-hand side as the parameter name and
the right-hand side as the corresponding value. It is important to strip
away unnecessary blanks in the name and value. The complete class
now reads

class ReadInputFile(ReadInput):
def __init__(self, parameters):

ReadInput.__init__(self, parameters)
self._read_file()

def _read_file(self, infile=sys.stdin):
for line in infile:

if "=" in line:
name, value = line.split("=")
self.p[name.strip()] = str2obj(value.strip())

A nice feature with reading from standard input is that if we do not
redirect standard input to a file, the program will prompt the user in
the terminal window, where the user can give commands of the type
name = value for setting selected input data. A Ctrl-D is needed to
terminate the interactive session in the terminal window and continue
execution of the program.

Reading from the Command Line. For input from the command line
we assume that parameters and values are given as option-value pairs,
e.g., as in

--a 1 --b 10 --n 101 --formula "sin(x) + cos(x)"

We apply the getopt module (Chapter 3.2.4) to parse the command-
line arguments. The list of legal option names must be constructed
from the list of keys in the self.p dictionary. The complete class takes
the form

class ReadCommandLine(ReadInput):
def __init__(self, parameters):

self.sys_argv = sys.argv[1:] # copy
ReadInput.__init__(self, parameters)
self._read_command_line()

def _read_command_line(self):
# make getopt list of options:
option_names = [name + "=" for name in self.p]
try:

options, args = getopt.getopt(self.sys_argv,
’’, option_names)

except getopt.GetoptError, e:
print ’Error in command-line option:\n’, e
sys.exit(1)

for option, value in options:
for name in self.p:

if option == "--" + name:
self.p[name] = str2obj(value)
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Reading from a GUI. We can with a little extra effort also make a
graphical user interface (GUI) for reading the input data. An example
of a user interface is displayed in Figure 9.14. Since the technicalities of
the implementation is beyond the scope of this book, we do not show
the subclass GUI that creates the GUI and loads the user input into the
self.p dictionary.

Fig. 9.14 Screen dump of a graphical user interface to read input data into a program
(class GUI in the ReadInput hierarchy).

More Flexibility in the Superclass. Some extra flexibility can easily be
added to the get method in the superclass. Say we want to extract a
variable number of parameters:

a, b, n = inp.get(’a’, ’b’, ’n’) # 3 variables
n = inp.get(’n’) # 1 variable

The key to this extension is to use a variable number of arguments as
explained in Appendix E.5.1:

class ReadInput:
...
def get(self, *parameter_names):

if len(parameter_names) == 1:
return self.p[parameter_names[0]]

else:
return [self.p[name] for name in parameter_names]

Demonstrating the Tool. Let us show how we can use the classes in the
ReadInput hiearchy. We apply the motivating example described earlier.
The name of the program is demo_ReadInput.py. As first command-line
argument it takes the name of the input source, given as the name of
a subclass in the ReadInput hierarchy. The code for loading input data
from any of the sources supported by the ReadInput hierarchy goes as
follows:

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)
from ReadInput import *
input_reader = eval(sys.argv[1]) # PromptUser, ReadInputFile, ...
del sys.argv[1] # otherwise getopt does not work properly...
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inp = input_reader(p)
a, b, filename, formula, n = inp.get_all()
print inp

Note how convenient eval is to automatically create the right subclass
for reading input data.

Our first try on running this program applies the PromptUser class:

Terminal

demo_ReadInput.py PromptUser
Give a: 0
Give formula: sin(x) + cos(x)
Give b: 10
Give filename: function_data
Give n: 101
{’a’: 0,
’b’: 10,
’filename’: ’function_data’,
’formula’: ’sin(x) + cos(x)’,
’n’: 101}

The next example reads data from a file tmp.inp with the same
contents as shown under the Reading from File paragraph above12.

Terminal

demo_ReadInput.py ReadFileInput < tmp.inp
{’a’: 0, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

We can also drop the redirection of standard input to a file, and instead
run an interactive session in IPython or the terminal window:

Terminal

demo_ReadInput.py ReadFileInput
n = 101
filename = myfunction_data_file.dat
^D
{’a’: 0,
’b’: 1,
’filename’: ’myfunction_data_file.dat’,
’formula’: ’x+1’,
’n’: 101}

Note that Ctrl-D is needed to end the interactive session with the user
and continue program execution.

Command-line arguments can also be specified:

Terminal

demo_ReadInput.py ReadCommandLine \
--a -1 --b 1 --formula "sin(x) + cos(x)"

{’a’: -1, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

Finally, we can run the program with a GUI,

12 This command with redirection from file must be run from a standard terminal
window, not in an interactive IPython session.
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Terminal

demo_ReadInput.py GUI
{’a’: -1, ’b’: 10, ’filename’: ’tmp.dat’,
’formula’: ’x+1’, ’n’: 2}

The GUI is shown in Figure 9.14.
Fortunately, it is now quite obvious how to apply the ReadInput hi-

erarchy of classes in your own programs to simplify input. Especially
in applications with a large number of parameters one can initially
define these in a dictionary and then automatically create quite com-
prehensive user interfaces where the user can specify only some subset
of the parameters (if the default values for the rest of the parameters
are suitable).

9.7 Exercises

Exercise 9.1. Demonstrate the magic of inheritance.
Consider class Line from Chapter 9.1.1 and a subclass Parabola0

defined as

class Parabola0(Line):
pass

That is, class Parabola0 does not have any own code, but it inherits
from class Line. Demonstrate in a program or interactive session, us-
ing methods from Chapter 7.6.5, that an instance of class Parabola0

contains everything (i.e., all attributes and methods) that an instance
of class Line contains. Name of program file: dir_subclass.py. �
Exercise 9.2. Inherit from classes in Ch. 9.1.

The task in this exercise is to make a class Cubic for cubic functions

c3x
3 + c2x

2 + c1x + c0

with a call operator and a table method as in classes Line and Parabola

from Chapter 9.1. Implement class Cubic by inheriting from class
Parabola, and call up functionality in class Parabola in the same way
as class Parabola calls up functionality in class Line.

Make a similar class Poly4 for 4-th degree polynomials

c4x
4 + c3x

3 + c2x
2 + c1x + c0

by inheriting from class Cubic. Insert print statements in all the
__call__ methods where you print out in which class you are. Evaluate
cubic and a 4-th degree polynomial at a point, and observe the print-
outs from all the superclasses. Name of program file: Cubic_Poly4.py.
�
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Exercise 9.3. Inherit more from classes in Ch. 9.1.
Implement a class for the function f(x) = A sin(wx) + ax2 + bx + c.

The class should have a call operator for evaluating the function for
some argument x, and a constructor that takes the function parame-
ters A, w, a, b, and c as arguments. Also a table method as in classes
Line and Parabola should be present. Implement the class by deriv-
ing it from class Parabola and call up functionality already imple-
mented in class Parabola whenever possible. Name of program file:
sin_plus_quadratic.py. �
Exercise 9.4. Reverse the class hierarchy from Ch. 9.1.

Let class Polynomial from Chapter 7.3.7 be a superclass and imple-
ment class Parabola as a subclass. The constructor in class Parabola

should take the three coefficients in the parabola as separate argu-
ments. Try to reuse as much code as possible from the superclass in
the subclass. Implement class Line as a subclass specialization of class
Parabola (let the constructor take the two coefficients as two separate
arguments).

Which class design do you prefer – class Line as a subclass of
Parabola and Polynomial, or Line as a superclass with extensions in
subclasses? Name of program file: Polynomial_hier.py. �
Exercise 9.5. Super- and subclass for a point.

A point (x, y) in the plane can be represented by a class:

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def __str__(self):
return ’(%g, %g)’ % (self.x, self.y)

We can extend the Point class to also contain the representation of the
point in polar coordinates. To this end, create a subclass PolarPoint

whose constructor takes the polar representation of a point, (r, θ), as
arguments. Store r and θ as attributes and call the superclass con-
structor with the corresponding x and y values (recall the relations
x = r cos θ and y = r sin θ between Cartesian and polar coordinates).
Also, in class PolarPoint, add a __str__ method which prints out r,
θ, x, and y of a point. Verify the implementation by initializing three
points and printing these points. Name of program file: PolarPoint.py.
�
Exercise 9.6. Modify a function class by subclassing.

Consider the VelocityProfile class from page 346 for computing
the function v(r; β, μ0, n, R) in formula (4.20) on page 230. Suppose
we want to have v explicitly as a function of r and n (this is necessary
if we want to illustrate how the velocity profile, the v(r) curve, varies
as n varies). We would then like to have a class VelocityProfile2 that
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is initialized with β, μ0, and R, and that takes r and n as arguments in
the __call__ method. Implement such a class by inheriting from class
VelocityProfile and by calling the __init__ and value methods in the
superclass. It should be possible to try the class out with the following
statements:

v = VelocityProfile2(beta=0.06, mu0=0.02, R=2)
# evaluate v for various n values at r=0:
for n in 0.1, 0.2, 1:

print v(0, n)

Name of program file: VelocityProfile2.py. �
Exercise 9.7. Explore the accuracy of difference formulas.

The purpose of this exercise is to investigate the accuracy of the
Backward1, Forward1, Forward3, Central2, Central4, Central6 methods
for the function13

v(x) =
1 − ex/μ

1 − e1/μ
.

To solve the exercise, modify the src/oo/Diff2_examples.py pro-
gram which produces tables of errors of difference approximations
as discussed at the end of Chapter 9.2.3. Test the approximation
methods for x = 0, 0.9 and μ = 1, 0.01. Plot the v(x) func-
tion for the two μ values using 1001 points. Name of program file:
boundary_layer_derivative.py. �
Exercise 9.8. Implement a subclass.

Make a subclass Sine1 of class FuncWithDerivatives from Chap-
ter 9.1.7 for the sinx function. Implement the function only, and rely
on the inherited df and ddf methods for computing the derivatives.
Make another subclass Sine2 for sinx where you also implement the
df and ddf methods using analytical expressions for the derivatives.
Compare Sine1 and Sine2 for computing the first- and second-order
derivatives of sinx at two x points. Name of program file: Sine12.py. �
Exercise 9.9. Make classes for numerical differentiation.

Carry out Exercise 7.15. Find the common code in the classes
Derivative, Backward, and Central. Move this code to a superclass,
and let the three mentioned classes be subclasses of this superclass.
Compare the resulting code with the hierarchy shown in Chapter 9.2.1.
Name of program file: numdiff_classes.py. �
Exercise 9.10. Implement a new subclass for differentiation.

A one-sided, three-point, second-order accurate formula for differen-
tiating a function f(x) has the form

f ′(x) ≈ f(x − 2h) − 4f(x − h) + 3f(x)

2h
. (9.47)

13 This function is discussed more in detail in Exercise 4.26.
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Implement this formula in a subclass Backward2 of class Diff from
Chapter 9.2. Compare Backward2 with Backward1 for g(t) = e−t for
t = 0 and h = 2−k for k = 0, 1, . . . , 14 (write out the errors in g′(t)).
Name of program file: Backward2.py. �
Exercise 9.11. Understand if a class can be used recursively.

Suppose you want to compute f ′′(x) of some mathematical function
f(x), and that you apply class Diff3 from Chapter 9.2.6 twice:

ddf = Diff3(Diff3(f, ’central’, 2), ’central’, 2)

Will this work? Hint: Follow the program flow, and find out what the
resulting formula will be. Then see if this formula coincides with a
formula you know for approximating f ′′(x). �
Exercise 9.12. Represent people by a class hierarchy.

Classes are often used to model objects in the real world. We may
represent the data about a person in a program by a class Person, con-
taining the person’s name, address, phone number, date of birth, and
nationality. A method __str__ may print the person’s data. Implement
such a class Person.

A worker is a person with a job. In a program, a worker is nat-
urally represented as class Worker derived from class Person, because
a worker is a person, i.e., we have an is-a relationship. Class Worker

extends class Person with additional data, say name of company, com-
pany address, and job phone number. The print functionality must be
modified accordingly. Implement this Worker class.

A scientist is a special kind of a worker. Class Scientist may there-
fore be derived from class Worker. Add data about the scientific dis-
cipline (physics, chemistry, mathematics, computer science, ...). One
may also add the type of scientist: theoretical, experimental, or com-
putational. The value of such a type attribute should not be restricted
to just one category, since a scientist may be classified as, e.g., both
experimental and computational (i.e., you can represent the value as a
list or tuple). Implement class Scientist.

Researcher, postdoc, and professor are special cases of a scientist.
One can either create classes for these job positions, or one may add an
attribute (position) for this information in class Scientist. We adopt
the former strategy. When, e.g., a researcher is represented by a class
Researcher, no extra data or methods are needed. In Python we can
create such an “empty” class by writing pass (the empty statement) as
the class body:

class Researcher(Scientist):
pass

Finally, make a demo program where you create and print instances of
classes Person, Worker, Scientist, Researcher, Postdoc, and Professor.
Print out the attribute contents of each instance (use the dir function).
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Remark. An alternative design is to introduce a class Teacher as a spe-
cial case of Worker and let Professor be both a Teacher and Scientist,
which is natural. This implies that class Professor has two superclasses,
Teacher and Scientist, or equivalently, class Professor inherits from
to superclasses. This is known as multiple inheritance and technically
achieved as follows in Python:

class Professor(Teacher, Scientist):
pass

It is a continuous debate in computer science whether multiple inher-
itance is a good idea or not. One obvious problem14 in the present
example is that class Professor inherits two names, one via Teacher

and one via Scientist (both these classes inherit from Person). Nei-
ther of the two widely used languages Java and C# allow multiple
inheritance. Nor in this book will we persue the idea of multiple inher-
itance further. Name of program file: Person.py. �
Exercise 9.13. Add a new class in a class hierarchy.

Add the Monte Carlo integration method from Chapter 8.5.1 as a
subclass in the Integrator hierarchy explained in Chapter 9.3. Im-
port the superclass Integrator from the integrate module in the
file with the new integration class. Test the Monte Carlo integration
class in a case with known analytical solution. Name of program file:
MCint_class.py. �
Exercise 9.14. Change the user interface of a class hierarchy.

All the classes in the Integrator hierarchy from Chapter 9.3 take the
integration limits a and b plus the number of integration points n as
input to the constructor. The integrate method takes the function to
integrate, f(x), as parameter. Another possibility is to feed f(x) to the
constructor and let integrate take a, b, and n as parameters. Make this
change to the integrate.py file with the Integrator hierarchy. Name
of program file: integrate2.py. �
Exercise 9.15. Compute convergence rates of numerical integration
methods.

Most numerical methods have a discretization parameter, call it n,
such that if n increases (or decreases), the method performs better.
Often, the relation between the error in the numerical approximation
(compared with the exact analytical result) can be written as

E = Cnr,

where E is the error, and C and r are constants.

14 It is usually not a technical problem, but more a conceptual problem when the
world is modeled by objects in a program.
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Suppose you have performed an experiment with a numerical
method using discretization parameters n0, n1, . . . , nN . You have com-
puted the corresponding errors E0, E1, . . . , EN in a test problem with
an analytical solution. One way to estimate r goes as follows. For two
successive experiments we have

Ei−1 = Cnr
i−1

and
Ei = Cnr

i .

Divide the first equation by the second to eliminate C, and then take
the logarithm to solve for r:

r =
ln(Ei−1/Ei)

ln(ni−1/ni)
.

We can compute r for all pairs of two successive experiments. Usually,
the “last r”, corresponding to i = N in the formula above, is the “best”
r value15. Knowing this r, we can compute C as ENn−r

N .
Having stored the ni and Ei values in two lists n and E, the following

code snippet computes r and C:

from scitools.convergencerate import convergence_rate
C, r = convergence_rate(n, E)

Construct a test problem for integration where you know the an-
alytical result of the integral. Run different numerical methods (the
midpoint method, the Trapezoidal method, Simpson’s method, Monte
Carlo integration) with the number of evaluation points n = 2k +1 for
k = 2, . . . , 11, compute corresponding errors, and use the code snippet
above to compute the r value for the different methods in questions.
The higher the absolute error of r is, the faster the method converges
to the exact result as n increases, and the better the method is. Which
is the best and which is the worst method?

Let the program file import methods from the integrate module
and the module with the Monte Carlo integration method from Exer-
cise 9.13. Name of program file: integrators_convergence.py. �
Exercise 9.16. Add common functionality in a class hierarchy.

Suppose you want to use classes in the Integrator hieararchy from
Chapter 9.3 to calculate integrals of the form

F (x) =

∫ x

a
f(t)dt .

15 This guideline is rough. If the method convergences, and round-off errors do not
influence the values of Ei, the guideline is good. However, for very large/small n

round-off errors can cause the method to diverge, and then the “last r” is not a
relevant value to pick.
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Such functions F (x) can be efficiently computed by the method from
Exercise 7.22. Implement this computation of F (x) in an additional
method in the superclass Integrator. Test that the implementation is
correct for f(x) = 2x − 3 for all the implemented integration methods
(the Midpoint, Trapezoidal and Gauss-Legendre methods, as well as
Simpson’s rule, integrate a linear function exactly). Name of program
file: integrate_efficient.py. �
Exercise 9.17. Make a class hierarchy for root finding.

Given a general nonlinear equation f(x) = 0, we want to imple-
ment classes for solving such an equation, and organize the classes in
a class hierarchy. Make classes for three methods: Newton’s method
(Chapter 5.1.9), the Bisection method (Chapter 3.6.2), and the Secant
method (Exercise 5.14). Move common code (starting values, the f(x)
functions, parameters in termination criteria, etc.) to a common super-
class. Do Exercise 5.15 using the new class hierarchy. Name of program
file: Rootfinders.py. �
Exercise 9.18. Use the ODESolver hierarchy to solve a simple ODE.

Solve the ODE problem u′ = u/2 with u(0) = 1, using a class in
the ODESolver hierarchy. Choose Δt = 0.5 and perform N = 12 steps.
Write out the approximate uN together with the exact value eNΔt/2.
Name of program file: ODESolver_demo.py. �
Exercise 9.19. Use the 4th-order Runge-Kutta on (B.34).

Investigate if the 4th-order Runge-Kutta method is better than the
Forward Euler scheme for solving the challenging ODE problem (B.34)
from Exercise B.3 on page 621. Name of program file: yx_ODE2.py. �
Exercise 9.20. Solve an ODE until constant solution.

Newton’s law of cooling,

dT

dt
= −h(T − Ts) (9.48)

can be used to see how the temperature T of an object changes be-
cause of heat exchange with the surroundings, which have a tempera-
ture Ts. The parameter h, with unit s−1 is an experimental constant
(heat transfer coefficient) telling how efficient the heat exchange with
the surroundings is. For example, (9.48) may model the cooling of a
hot pizza taken out of the oven. The problem with applying (9.48),
nevertheless, is that h must be measured. Suppose we have measured
T at t = 0 and t1. We can use a rough Forward Euler approximation
of (9.48) with one time step of length t1,

T (t1) − T (0)

t1
= −h(T (0) − Ts),

to make the estimate
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h =
T (t1) − T (0)

t1(Ts − T (0))
. (9.49)

Suppose now you take a hot pizza out of the oven. The temperature
of the pizza is 200 C at t = 0 and 180 C after 20 seconds, in a room
with temperature 20 C. Find an estimate of h from the formula above.

Solve (9.48) to find the evolution of the temperature of the pizza. Use
class ForwardEuler or RungeKutta4, and supply a terminate function to
the solve method so that the simulation stops when T is sufficiently
close to the final room temperature Ts. Plot the solution. Name of
program file: pizza_cooling1.py. �
Exercise 9.21. Use classes in Exer. 9.20.

Solve Exercise 9.20 with a class Problem containing the parameters
h, Ts, T (0), t1, and T (t1) as attributes. The class should have a method
estimate_h for returning an estimate of h, given the other parameters.
Also a method __call__ for computing the right-hand side must be in-
cluded. The terminate function can be a method in the class as well. By
using class Problem, we avoid having the physical parameters as global
variables in the program. Name of program file: pizza_cooling2.py. �
Exercise 9.22. Scale away parameters in Exer. 9.20.

Use the scaling approach from Chapter 9.4.7 to “scale away” the
parameters in the ODE in Exercise 9.20. That is, introduce a new
unknown u = (T − Ts)/(T (0) − Ts) and a new time scale τ = th. Find
the ODE and the initial condition that governs the u(τ) function. Make
a program that computes u(τ) until |u| < 0.001. Store the discrete
u and τ values in a file u_tau.dat if that file is not already present
(you can use os.path.isfile(f) to test if a file with name f exists).
Create a function T(u, tau, h, T0, Ts) that loads the u and τ data
from the u_tau.dat file and returns two arrays with T and t values,
corresponding to the computed arrays for u and τ . Plot T versus t.
Give the parameters h, Ts, and T (0) on the command line. Note that
this program is supposed to solve the ODE once and then recover any
T (t) solution by a simple scaling of the single u(τ) solution. Name of
program file: pizza_cooling3.py. �
Exercise 9.23. Compare ODE methods.

Equation (7.6) is a relevant model for radioactive decay. The function
u(t) is the fraction of particles that remains in the radioactive substance
at time t. The parameter a is the inverse of the so-called mean lifetime
of the substance. The initial condition is u(0) = 1.

Introdce a class Decay to hold information about the physical prob-
lem: the parameter a and a __call__ method for computing the right-
hand side −au of the ODE (see Chapters 7.4.4 or 9.4.8 for examples).
Initialize an instance of class Decay with a = ln(2)/5600 1/years (this
value of a corresponds to the Carbon-14 radioactive isotope whose
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decay is used extensively in dating organic material that is tens of
thousands of years old).

Solve (7.6) by both the Forward Euler and the 4-th order Runge-
Kutta method, using the ForwardEuler and the RungeKutta4 classes in
the ODESolver hierarchy. Use a time step of 500 years, and simulate
decay for 20,000 years (let the time unit be 1 year). Plot the two
solutions. Write out the final N value from the simulations and compare
it with the exact solution N(t) = N0e

−NΔt/τ . Name of program file:
radioactive_decay.py. �
Exercise 9.24. Solve two coupled ODEs for radioactive decay.

Consider two radioactive substances A and B. The nuclei in sub-
stance A decay to form nuclei of type B with a mean lifetime τA, while
substance B decay to form type A nuclei with a mean lifetime τB. Let-
ting uA and uB be the fractions of the initial amount of material in
substance A and B, respectively, the following system of ODEs governs
the evolution of uA(t) and uB(t):

u′
A = uB/τB − uA/τA, (9.50)

u′
B = uA/τA − uB/τB, (9.51)

with uA(0) = uB(0) = 1. As in Exercise 9.23, introduce a problem
class, which holds the parameters τA and τB and offers a __call__

method to compute the right-hand side vector of the ODE system,
i.e., (uB/τB − uA/τA, uA/τA − uB/τB). Solve for uA and uB using a
subclass in the ODESolver hierarchy and the parameter choice τA = 8
minutes, τB = 40 minutes, and Δt = 10 seconds. Plot uA and uB

against time measured in minutes. From the ODE system it follows
that the ratio uA/uB → τA/τB as t → ∞ (asssuming u′

A = u′
B = 0

in the limit t → ∞). Check that the solutions fulfills this requirement
(this is a partial verification of the program). Name of program file:
radioactive_decay2.py. �
Exercise 9.25. Compare methods for solving the ODE (B.36).

Consider emptying a tank of water as described in Exercise B.7 on
page 554. The governing ODE problem is (B.36) with h(0) = h0. Make
a class Tank for storing the physical parameters of the problem: r, R,
g, and h0. This class should also have a __call__ method for defin-
ing the right-hand side of (B.36). Solve this ODE problem using the
ForwardEuler, BackwardEuler, and RungeKutta4 classes in the ODESolver

hierarchy. Apply data in the Tank instance to initialize the solver
classes. Read Δt from the command line and try out values between 5
and 50 s. Compare the numerical solutions in a plot. Comment upon
the quality of the various methods to compute a correct limiting value
of h (0) as Δt is varied. Name of program file: tank_ODE_3methods.py.
�
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Exercise 9.26. Code a 2nd-order Runge-Kutta method; function.
Implement the 2nd-order Runge-Kutta method specified in formula

(9.25) for solving ordinary differential equations. Use a plain function
RungeKutta2 of the type shown in Chapter 7.4.1 for the Forward Eu-
ler method. Construct a test problem where you know the analytical
solution, and plot the difference between the numerical and analytical
solution. Name of program file: RungeKutta2_func.py. �
Exercise 9.27. Code a 2nd-order Runge-Kutta method; class.

Make a new subclass RungeKutta2 in the ODESolver hierarchy from
Chapter 9.4 for solving ordinary differential equations with the 2nd-
order Runge-Kutta method specified in formula (9.25). Construct a
test problem where you know the analytical solution, and plot the
difference between the numerical and analytical solution. Store the
RungeKutta2 class and the test problem in a file where the base class
ODESolver is imported from the ODESolver module. Name of program
file: RungeKutta2.py. �
Exercise 9.28. Implement a midpoint method for ODEs.

This exercise is similar to Exercise 9.27, but the purpose now is to
implement the midpoint method specified in formula (9.24).

Compare in a plot the midpoint method with the Forward Euler and
4th-order Runge-Kutta methods and the exact solution for the problem
u′ = u, u(0) = 1, with Δt = 0.5 and 10 steps. Name of program file:
Midpoint.py. �
Exercise 9.29. Implement a modified Euler method for ODEs.

Do Exercise 7.29 and incorporate the class in the ODESolver hierar-
chy. Compare the method with other methods in the same test problem
as in Exercise 9.28. Name of program file: ModifiedEuler.py. �
Exercise 9.30. Improve the implementation in Exer. 7.25.

We consider the physical problem of an object falling or rising in
a fluid as described in Exercise 7.25. The purpose now is to solve the
governing ODE (7.16) using classes in theODESolver hierarchy. We also
want to set the physical and numerical parameters of the problem on
the command line.

First make a class for defining the right-hand side of (7.16). The
physical parameters needed in the definition of the right-hand side
should be attributes in the class.

Continue with making a function solve(method, f, v0, T, dt) for
solving (7.16). The argument method is the name of a subclass in the
ODESolver hieararchy, f is the object defining the right-hand side of the
ODE, v0 is the initial condition, T is the final time for the simulation,
and dt is the time step. The solve should return two arrays, one with
the velocity values and one with the corresponding time values.

A separate function read_input can read all the input data from
the command line, preferably using the getopt module, or better, the



556 9 Object-Oriented Programming

ReadInput class hierarchy from Chapter 9.6.2. The read_input function
first sets some default values, then reads input, and finally returns the
set of variables that must be sent further to the solve function (see
src/box_spring/box_spring.py for a similar example using getopt).

Implement the simple verification test as a function verify. The two
other real test cases can be implemented in two separate functions,
parachute_jumper and rising_ball. Let these three functions return
the computed velocities and corresponding time points. Collect the
right-hand side class and all the functions in a module file. Run one of
the three cases from the test block, using a command-line argument to
determine which case. Name of program file: body_in_fluid2.py. �
Exercise 9.31. Visualize the different forces in Exer. 9.30.

The purpose of this exercise is to plot the forces Fg, Fb, and Fd in the
model from Exercise 9.30 as functions of t. Seeing the relative impor-
tance of the forces as time develops gives an increased understanding
of how the different forces contribute to change the velocity.

Import the functions from the module developed in Exercise 9.30
in a new program, call the function for computing one of the two real
cases from Exercise 9.30, and feed the returned v to a new function for
computing the forces Fg, Fb, and Fd. Plot these three forces against
time. Name of program file: body_in_fluid_forces.py. �
Exercise 9.32. Find the body’s position in Exer. 9.30.

In Exercise 9.30 we compute v(t). The position of the body, y(t),
is related to the velocity v by y′(t) = v(t). Extend the program from
Exercise 9.30 to solve the system

dy

dt
= v,

dv

dt
= −g

(
1 − �

�b

)
−−1

2
CD

�A

�bV
|v|v .

Name of program file: body_in_fluid2.py. �
Exercise 9.33. Compare methods for solving (B.37)–(B.38).

Consider the system of ODEs in Exercise B.8 for simulating an elec-
tric circuit. The purpose now is to compare the Forward Euler scheme
with the 4-th order Runge-Kutta method. Make a class Circuit for
storing the physical parameters of the problem (L, R, C, E(t)) as well
as the initial conditions (I(0), Q(0)). Class Circuit should also define
the right-hand side of the ODE through a __call__ method. Create
two solver instances, one from the ForwardEuler class and one from the
RungeKutta4 class. Solve the ODE system using both methods. Plot the
two I(t) solutions for comparison. As you will see, the Forward Euler
scheme overestimates the amplitudes significantly, compared with the
more accurate 4th-order Runge-Kutta method. Name of program file:
electric_circuit2.py. �
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Exercise 9.34. Add the effect of air resistance on a ball.
The differential equations governing the horizontal and vertical mo-

tion of a ball subject to gravity and air resistance read16

d2x

dt2
= −3

8
CD�̄a−1

√(
dx

dt

)2

+

(
dy

dt

)2 dx

dt
, (9.52)

d2y

dt2
= −g − 3

8
CD�̄a−1

√(
dx

dt

)2

+

(
dy

dt

)2 dy

dt
, (9.53)

where (x, y) is the position of the ball (x is a horizontal measure and
y is a vertical measure), g is the acceleration of gravity, CD = 0.2 is
a drag coefficient, �̄ is the ratio of the density of air and the ball, and
a is the radius of the ball. The latter two quantities can be taken as
0.017 and 11 cm for a football.

Let the initial condition be x = y = 0 (start position in origo) and

dx/dt = v0 cos θ, dy/dt = v0 sin θ,

where v0 is the magnitude of the initial velocity and θ is the angle the
velocity makes with the horizontal. For a hard football kick we can set
v0 = 120 km/h and take θ as 30 degrees.

Express the two second-order equations above as a system of four
first-order equations with four initial conditions. Implement the right-
hand side in a problem class where the physical parameters CD, �̄, a,
v0, and θ are stored along with the initial conditions.

Solve the ODE system for CD = 0 (no air resistance) and CD = 0.2,
and plot y as a function of x in both cases to illustrate the effect of
air resistance. Use the 4-th order Runge-Kutta method. (Make sure
you express all units in kg, m, s, and radians.) Name of program file:
kick2D.py. �
Exercise 9.35. Make a class for drawing an arrow.

Make a class in the Shape hierarchy from Chapter 9.5 for drawing an
arrow. An arrow consists of three lines, so the arrow class will naturally
contain three Line instances. Let each line in the arrow head make an
angle of 30 degrees with the main line, and let the length of the arrow
head be 1/8 of the length of the main line. It is easiest to always draw
a vertical arrow in the Arrow class. The constructor can then take a
bottom point and the length of the arrow. With the rotate method
the user can later rotate the arrow.

Make some arrows of different lengths, and call rotate to rotate
them differently. Name of program file: Arrow.py. �

16 The equations arise by combining the models in Exercises 1.10 and 1.14.
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Exercise 9.36. Make a class for drawing a person.
A very simple sketch of a human being can be made of a circle for

the head, two lines for the arms, one vertical line or a rectangle for the
torso, and two lines for the legs. Make a class in the Shape hierarchy
from Chapter 9.5 for drawing such a simple sketch of a person. Build the
figure from Line and Circle instances. Supply the following arguments
to the constructor: the center point of the head and the radius R of
the head. Let the arms and the torso be of length 4R, and the legs of
length 6R. The angle between the legs can be fixed (say 30 degrees),
while the angle of the arms relative to the torso can be an argument
to the constructor with a suitable default value. Name of program file:
draw_person.py. �
Exercise 9.37. Animate a person with waving hands.

Make a subclass of the class from Exercise 9.36 where the constructor
can take an argument describing the angle between the arms and the
torso. Use this new class to animate a person who waves her/his hands.
Name of program file: draw_waving_person.py. �
Exercise 9.38. Make a class for drawing a car.

A two-dimensional car can be drawn by putting together a rectan-
gle, circles, arcs, and lines. Make a class in the Shape hierarchy from
Chapter 9.5 for drawing a car, following the same principle as in Exer-
cise 9.36. The constructor takes a length L of the car and the coordi-
nates of a point p. The various shapes that build up the car must have
dimensions relative to L and placements relative to p. Draw a small car
and a large car in the same figure. Name of program file: draw_car.py.
�
Exercise 9.39. Make a car roll.

Use the class for drawing a car in Exercise 9.38 and the ideas from
Chapter 9.5.5 to make an animation of a rolling car. Implement the
rolling functionality in a subclass of the car class from Exercise 9.38.
Name of program file: rolling_car.py. �
Exercise 9.40. Make a class for differentiating noisy data.

Suppose you have some time series signal y(tk) for k = 0, . . . , n− 1,
where tk = kΔt are time points. Differentiating such a signal can give
very inaccurate results if the signal contains noise. Exercises 8.44–8.47
explore this topic, and Exericse 8.47 suggests to filter the signal. The
purpose of the present exercise is to make a tool for differentating noisy
signals.

Make a class DiffNoisySignal where the constructor takes three ar-
guments: the signal y(tk) (as an array), the order of the desired deriva-
tive (as an int, either 1 or 2), and the name of the signal (as a string).
A method filter(self, n) runs the filter from Exericse 8.47 n times
on the signal. The method diff(self) performs the differentiation and
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stores the differentiated signal as an attribute in the class. There should
also be some plotting methods: plot(self) for plotting the current
(original or filtered) signal, plot_diff(self) for plotting the differen-
tiated signal, animate_filter for animating the effect of filtering (run
filter once per frame in the movie), and animate_diff for animating
the evolution of the derivative when filter and diff are called once
each per frame.

Implement the class and test it on the noisy signal

y(tk) = cos(2πtk) + 0.1rk, tk = kΔt, k = 0, . . . , n − 1,

with Δt = 1/60. The quantities rk are random numbers in [0, 1). Make
animations with the animate_filter and animate_diff methods. Name
of program file: DiffNoisySignal.py. �
Exercise 9.41. Find local and global extrema of a function.

Extreme points of a function f(x) are normally found by solving
f ′(x) = 0. A much simpler method is to evaluate f(x) for a set of
discrete points in the interval [a, b] and look for local minima and
maxima among these points. We work with n equally spaced points
a = x0 < x1 < · · · < xn−1 = b, xi = a + ih, h = (b − a)/(n − 1).

1. First we find all local extreme points in the interior of the domain.
Local minima are recognized by

f(xi−1) > f(xi) < f(xi+1), i = 1, . . . , n − 2 .

Similarly, at a local maximum point xi we have

f(xi−1) < f(xi) > f(xi+1), i = 1, . . . , n − 2 .

We let Pmin be the set of x values for local minima and Fmin the
set of the corresponding f(x) values at these minimum points. Two
sets Pmax and Fmax are defined correspondingly, containing the max-
imum points and their values.

2. The boundary points x = a and x = b are for algorithmic simplicity
also defined as local extreme points: x = a is a local minimum if
f(a) < f(x1), and a local maximum otherwise. Similarly, x = b is a
local minimum if f(b) < f(xn−2), and a local maximum otherwise.
The end points a and b and the corresponding function values must
be added to the sets Pmin, Pmax, Fmin, Fmax.

3. The global maximum point is defined as the x value corresponding
to the maximum value in Fmax. The global minimum point is the x
value corresponding to the minimum value in Fmin.

Make a class MinMax with the following functionality:
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• The constructor takes f (x), a, b, and n as arguments, and calls
a method _find_extrema to compute the local and global extreme
points.

• The method _find_extrema implements the algorithm above
for finding local and global extreme points, and stores the sets
Pmin, Pmax~ Fmin~ Fmax as list attributes in the (self) instance.

• The method get_global_minimum returns the global minimum point
(x) .

• The method get_globaLmaximum returns the global maximum point
(x) .

• The method get_alI_minima returns a list or array of all minimum
points.

• The method get_alI_maxima returns a list or array of all maximum
points.

• The method __str__ returns a string where all the min/max points
are listed, plus the global extreme points.

Here is a sample code using class MinMax:

def f (x) :
return x**2*exp(-O.2*x)*sin(2*pi*x)

m = MinMax(f, 0, 4)
print m

The output becomes
All minima: 0.8056, 1.7736, 2.7632, 3.7584, 0
All maxima: 0.3616, 1.284, 2.2672, 3.2608, 4
Global minimum: 3.7584
Global maximum: 3.2608

Make sure that the program also works for functions without local
extrema, c.g., linear functions f(:r) = per + q. Name of program file:
minmaxf.py. 0

Exercise 9.42. Improve the accuracy in Exer. 9.41.
The algorithm in Exercise 9.41 finds a local extreme point if the

function value at Xi is larger or smaller than the function values at the
neighboring points. If we have found a minimum at :ri, all we know is
that f(:r) has a minimum in the interval (:ri-l, :ri+l). With h as the
distance between the points, the error in the coordinate of an extreme
point can be as high as 2h. Of course, increasing the number of points
decreases this error. Nevertheless, we may think of a computationally
more efficient method, namely a bisection method for finding l' (x) = 0
in (Xi- 1: XH1). In class MinMax, add a method _refine_extrema, which
goes through all the interior local minima and maxima, makes a callable
object for f'(2:) using the Central2 class in the Diff hierarchy, and
calls a bisection method to find where f'(,,;) = O. The tolerance in
the termination criterion for the bisection method can be given as an
argument to the constructor (None signifies that no bisection algorithm
is applied). Name of program file: minmaxf2.py. 0
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Exercise 9.43. Make a calculus calculator class.
Given a function f(x) defined on a domain [a, b], the purpose of

many mathematical exercises is to sketch the function curve y = f(x),
compute the derivative f ′(x), find local and global extreme points,

and compute the integral
∫ b
a f(x)dx. Make a class CalculusCalculator

which can perform all these actions for any function f(x) using nu-
merical differentiation and integration, and the method explained in
Exercise 9.41 or 9.42 for finding extrema.

Here is an interactive session with the class where we analyze f(x) =
x2e−0.2x sin(2πx) on [0, 6] with a grid (set of x coordinates) of 700
points:

>>> from CalculusCalculator import *
>>> def f(x):
... return x**2*exp(-0.2*x)*sin(2*pi*x)
...
>>> c = CalculusCalculator(f, 0, 6, resolution=700)
>>> c.plot() # plot f
>>> c.plot_derivative() # plot f’
>>> c.extreme_points()

All minima: 0.8052, 1.7736, 2.7636, 3.7584, 4.7556, 5.754, 0
All maxima: 0.3624, 1.284, 2.2668, 3.2604, 4.2564, 5.2548, 6
Global minimum: 5.754
Global maximum: 5.2548

>>> c.integral
-1.7353776102348935
>>> c.df(2.51) # c.df(x) is the derivative of f
-24.056988888465636
>>> c.set_differentiation_method(Central4)
>>> c.df(2.51)
-24.056988832723189
>>> c.set_integration_method(Simpson) # more accurate integration
>>> c.integral
-1.7353857856973565

Design the class such that the above session can be carried out.
Hint: Use classes from the Diff and Integrator hierarchies

(Chapters 9.2 and 9.3) for numerical differentiation and inte-
gration (with, e.g., Central2 and Trapezoidal as default meth-
ods for differentiation and integration, respectively). The method
set_differentiation_method takes a subclass name in the Diff hier-
archy as argument, and makes an attribute df that holds a subclass
instance for computing derivatives. With set_integration_method we
can similarily set the integration method as a subclass name in the
Integrator hierarchy, and then compute the integral

∫ b
a f(x)dx and

store the value in the attribute integral. The extreme_points method
performs a print on a MinMax instance, which is stored as an attribute
in the calculator class. Name of program file: CalculusCalculator.py.
�
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Exercise 9.44. Extend Exer. 9.43.
Extend class CalculusCalculator from Exercise 9.43 to offer com-

putations of inverse functions. A numerical way of computing inverse
functions is explained in Chapter 5.1.10. Exercise 7.20 suggests an im-
proved implementation using classes. Use the InverseFunction imple-
mentation from Exercise 7.20 in class CalculusCalculator. Name of
program file: CalculusCalculator2.py. �
Exercise 9.45. Formulate a 2nd-order ODE as a system.

In this and subsequent exercises we shall deal with the following
second-order ordinary differential equation with two initial conditions:

mü + f(u̇) + s(u) = F (t), t > 0, u(0) = U0, u̇(0) = V0 . (9.54)

Write (9.54) as a system of two first-order differential equations. Also
set up the initial condition for this system.

Physical Applications. Equation (9.54) has a wide range of applications
throughout science and engineering. A primary application is damped
spring systems in, e.g., cars and bicycles: u is the vertical displacement
of the spring system attached to a wheel; u̇ is then the corresponding
velocity; F (t) resembles a bumpy road; s(u) represents the force from
the spring; and f(u̇) models the damping force (friction) in the spring
system. For this particular application f and s will normally be linear
functions of their arguments: f(u̇) = βu̇ and s(u) = ku, where k is a
spring constant and β some parameter describing viscous damping.

Equation (9.54) can also be used to describe the motions of a
moored ship or oil platform in waves: the moorings act as a nonlin-
ear spring s(u); F (t) represents environmental excitation from waves,
wind, and current; f(u̇) models damping of the motion; and u is the
one-dimensional displacement of the ship or platform.

Oscillations of a pendulum can be described by (9.54): u is the angle
the pendulum makes with the vertical; s(u) = (mg/L) sin(u), where L
is the length of the pendulum, m is the mass, and g is the acceleration of
gravity; f(u̇) = β|u̇|u̇ models air resistance (with β being some suitable
constant, see Exercises 1.10 and 9.50); and F (t) might be some motion
of the top point of the pendulum.

Another application is electric circuits with u(t) as the charge, m =
L as the inductance, f(u̇) = Ru̇ as the voltage drop accross a resistor
R, s(u) = u/C as the voltage drop accross a capacitor C, and F (t) as
an electromotive force (supplied by a battery or generator).

Furthermore, Equation (9.54) can act as a simplified model of many
other oscillating systems: aircraft wings, lasers, loudspeakers, micro-
phones, tuning forks, guitar strings, ultrasound imaging, voice, tides,
the El Niño phenomenon, climate changes – to mention some.

We remark that (9.54) is a possibly nonlinear generalization of Equa-
tion (C.8) explained in Appendix C.1.3. The case in Appendix C cor-
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responds to the special choice of f(u̇) proportional to the velocity u̇,
s(u) proportional to the displacement u, and F (t) as the acceleration
ẅ of the plate and the action of the gravity force. �
Exercise 9.46. Solve the system in Exer. 9.45 in a special case.

Make a function

def rhs(u, t):
...

for returning the right-hand side of the first-order differential equation
system from Exercise 9.45. As usual, the u argument is an array or list
with the two solution components u[0] and u[1] at some time t. Inside
rhs, assume that you have access to three global Python functions
friction(dudt), spring(u), and external(t) for evaluating f(u̇), s(u),
and F (t), respectively.

Test the rhs function in combination with the functions f(u̇) = 0,
F (t) = 0, s(u) = u, and the choice m = 1. The differential equation
then reads ü + u = 0. With initial conditions u(0) = 1 and u̇(0) = 0,
one can show that the solution is given by u(t) = cos(t). Apply two nu-
merical methods: the 4th-order RungeKutta method and the Forward
Euler method from the ODESolver module developed in Chapter 9.4.
Use a time step Δt = π/20.

Plot u(t) and u̇(t) versus t together with the exact solutions. Also
make a plot of u̇ versus u (plot(u[:,0], u[:,1]) if u is the array re-
turned from the solver’s solve method). In the latter case, the exact
plot should be a circle17, but the ForwardEuler method results in a
spiral. Investigate how the spiral develops as Δt is reduced.

The kinetic energy K of the motion is given by 1
2mu̇2, and the po-

tential energi P (stored in the spring) is given by the work done by the
spring force: P = m

∫ u
0 s(v)dv = 1

2mu2. Make a plot with K and P as
functions of time for both the 4th-order Runge-Kutta method and the
Forward Euler method. In the present test case, the sum of the kinetic
and potential energy should be constant. Compute this constant ana-
lytically and plot it together with the sum K + P as computed by the
4th-order Runge-Kutta method and the Forward Euler method.

Name of program file: oscillator_v1.py. �
Exercise 9.47. Enhance the code from Exer. 9.46.

The rhs function written in Exercise 9.46 requires that threre is
one particular set of Python functions friction(dudt), spring(u), and
external(t) representing f(u̇), s(u), and F (t), respectively. One must
also assume that a global variable m holds the value of m. Frequently,
we want to work with different choices of f(u̇), s(u), and F (t), which
with the rhs function proposed in Exercise 9.46 leads to if tests for

17 The points on the curve are (cos t, sin t), which all lie on a circle as t is varied.
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the choices inside the friction, spring, and external functions. For
example,

def spring(u):
if spring_type == ’linear’:

return k*u
elif spring_type == ’cubic’:

return k*(u - 1./6*u**3)

It would be better to introduce two different spring functions instead,
or represent these functions by classes as explained in Chapter 7.1.2.

Instead of the rhs function in Exercise 9.46, develop a class RHS where
the constructor takes the f(u̇), s(u), and F (t) functions as arguments
friction, spring, and external. The m parameter must also be an
argument. Use a __call__ method to evaluate the right-hand side of
the differential equation system arising from (9.54).

Write a function

def solve(T,
dt,
initial_u,
initial_dudt,
method=RungeKutta4,
m=1.0,
friction=lambda dudt: 0,
spring=lambda u: u,
external=lambda t: 0):

...
return u, t

for solving (9.54) from time zero to some stopping time T with time step
dt. The other arguments hold the initial conditions for u and u̇, the
class for the numerical solution method, as well as the f(u̇), s(u), and
F (t) functions. (Note the use of lambda functions, see Chapter 2.2.11,
to quickly define some default choices for f(u̇), s(u), and F (t)). The
solve function must create an RHS instance and feed this to an instance
of the class referred to by method.

Also write a function

def makeplot(T,
dt,
initial_u,
initial_dudt,
method=RungeKutta4,
m=1.0,
friction=lambda dudt: 0,
spring=lambda u: u,
external=lambda t: 0,
u_exact=None):

which calls solve and makes plots of u versus t, u̇ versus t, and u̇ versus
u. If u_exact is not None, this argument holds the exact u(t) solution,
which should then be included in the plot of the numerically computed
solution.
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Make a function get_input, which reads input data from the com-
mand line and calls makeplot with these data. Use option-value pairs on
the command line to specify T, dt, initial_u, initial_dudt, m, method,
friction, spring, external, and u_exact. Use eval on the first five
values so that mathematical expressions like pi/10 can be specified.
Also use eval on method to transform the string with a class name
into a Python class object. For the latter four arguments, assume the
command-line value is a string that can be turned into a function via
the StringFunction tool from Chapter 3.1.4. Let string formulas for
friction, spring, and external have dudt, u, and t as independent
variables, respectively. For example,

elif option == ’--friction’:
friction = StringFunction(value, independent_variable=’dudt’)

The friction, spring, and external functions will be called with a
scalar (real number) argument, while it is natural to call u_exact with
an array of time values. In the latter case, the StringFunction object
must be vectorized (see Chapter 4.4.3):

elif option == ’--u_exact’:
u_exact = StringFunction(value, independent_variable=’t’)
u_exact.vectorize(globals())

Collect the functions in a module, and let the test block in this
module call the get_input function. Test the module by running the
tasks from Exercise 9.46:

Terminal

oscillator_v2.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/20" --T "5*pi"

oscillator_v2.py --method RungeKutta4 --u_exact "cos(t)" \
--dt "pi/20" --T "5*pi"

oscillator_v2.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/40" --T "5*pi"

oscillator_v2.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/80" --T "5*pi"

A demo with friction and external forcing can also be made, for exam-
ple,

Terminal

oscillator_v2.py --method RungeKutta4 --friction "0.1*dudt" \
--external "sin(0.5*t)" --dt "pi/80" --T "40*pi" --m 10

Name of program file: oscillator_v2.py. �
Exercise 9.48. Make a tool for analyzing oscillatory solutions.

The solution u(t) of the equation (9.54) often exhibit an oscilla-
tory behaviour (for the test problem in Exercise 9.46 we have that
u(t) = cos t). It is then of interest to find the wavelength of the oscilla-
tions. The purpose of this exercise is to find and visualize the distance
between peaks in a numerical representation of a continuous function.
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Given an array (y0, . . . , yn−1) representing a function y(t) sampled
at various points t0, . . . , tn−1. A local maximum of y(t) occurs at t = tk
if yk−1 < yk > yk+1. Similarly, a local minimum of y(t) occurs at t = tk
if yk−1 > yk < yk+1. By iterating over the y1, . . . , yn−2 values and
making the two tests, one can collect local maxima and minima as
(tk, yk) pairs. Make a function minmax(t, y) which returns two lists,
minima and maxima, where each list holds pairs (2-tuples) of t and y
values of local minima or maxima. Ensure that the t value increases
from one pair to the next. The arguments t and y in minmax hold the
coordinates t0, . . . , tn−1 and y0, . . . , yn−1, respectively.

Make another function wavelength(peaks) which takes a list peaks

of 2-tuples with t and y values for local minima or maxima as argu-
ment and returns an array of distances between consequtive t values,
i.e., the distances between the peaks. These distances reflect the lo-
cal wavelength of the computed y function. More precisely, the first
element in the returned array is peaks[1][0]-peaks[0][0], the next
element is peaks[2][0]-peaks[1][0], and so forth.

Test the minmax and wavelength functions on y values generated by
y = et/4 cos(2t) and y = e−t/4 cos(t2/5) for t ∈ [0, 4π]. Plot the y(t)
curve in each case, and mark the local minima and maxima computed
by minmax with circles and boxes, respectively. Make a separate plot
with the array returned from the wavelength function (just plot the
array against its indices - the point is to see if the wavelength varies
or not). Plot only the wavelengths corresponding to maxima.

Make a module with the minmax and wavelength function, and let
the test block perform the tests specified above. Name of program file:
wavelength.py. �
Exercise 9.49. Replace functions by class in Exer. 9.46.

The three functions solve, makeplot, and get_input from Exer-
cise 9.46 contain a lot of arguments. Instead of shuffling long argument
lists into functions, we can create classes that hold the arguments as
attributes.

Introduce three classes: Problem, Solver, and Visualize. In class
Problem, we store the specific data about the problem to be solved, in
this case the parameters initial_u, initial_dudt, m, friction, spring,
external, and u_exact, using the namings in Exercise 9.46. Methods
can read the user’s values from the command line and initialize at-
tributes, and form the right-hand side of the differential equation sys-
tem to be solved.

In class Solver, we store the data related to solving a system of ordi-
nary differential equations: T, dt, and method, plus the solution. Meth-
ods can read input from the command line and initialize attributes, and
solve the ODE system using information from a class Problem instance.
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The final class, Visualize, has attributes holding the solution of the
problem and can make various plots. We may control the type of plots
by command-line arguments.

Class Problem may look like

class Problem:
def initialize(self):

"""Read option-value pairs from sys.argv."""
self.m = eval(read_cml(’--m’, 1.0))
...
s = read_cml(’--spring’, ’0’)
self.spring = StringFunction(s, independent_variable=’u’)
...
s = read_cml(’--u_exact’, ’0’)
if s != ’0’:

self.u_exact = None
else:

self.u_exact = \
StringFunction(s, independent_variable=’t’)

self.u_exact.vectorize(globals())
...

def rhs(self, u, t):
"""Define the right-hand side in the ODE system."""
m, f, s, F = \

self.m, self.friction, self.spring, self.external
u, dudt = u
return [dudt,

(1./m)*(F(t) - f(dudt) - s(u))]

The initialize method calls read_cml from scitools.misc to extract
the value proceeding the option -m. We could have used the getopt

module, but we aim at reading data from the command line in separate
phases in the various classes, and getopt does not allow reading the
command line more than once. Therefore, we have to use a specialized
function read_cml.

The exemplified call to read_cml implies to look for the command-
line argument -m for m and treat the next command-line argument as
the value of m. If the option -m is not found at the command line, we
use the second argument in the call (here self.m) as default value, but
returned as a string (since values at the command line are strings).

The class Solver follows the design of class Problem, but it also has
a solve method that solves the problem and stores the solution u of
the ODEs and the time points t as attributes:

class Solver:
def initialize(self):

self.T = eval(read_cml(’--T’, 4*pi))
self.dt = eval(read_cml(’--dt’, pi/20))
self.method = eval(read_cml(’--method’, ’RungeKutta4’))

def solve(self, problem):
self.solver = self.method(problem.rhs, self.dt)
ic = [problem.initial_u, problem.initial_dudt]
self.solver.set_initial_condition(ic, 0.0)
self.u, self.t = self.solver.solve(self.T)
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The use of eval to initialize self.T and self.dt allows us to specify
these parameters by arithmetic expressions like pi/40. Using eval on
the string specifying the numerical method turns this string into a class
type (i.e., a name ’ForwardEuler’ is turned into the class ForwardEuler
and stored in self.method).

The Visualizer class holds references to a Problem and Solver in-
stance and creates plots. The user can specify plots in an interactive
dialog in the terminal window. Inside a loop, the user is repeatedly
asked to specify a plot until the user responds with quit. The spec-
ification of a plot can be one of the words u, dudt, dudt-u, K, and
wavelength which means a plot of u(t) versus t, u̇(t) versus t, u̇ versus
u, K versus t, and u’s wavelength versus its indices, respectively. The
wavelength can be computed from the local maxima of u as explained
in Exercise 9.48).

A sketch of class Visualizer is given next:

class Visualizer:
def __init__(self, problem, solver):

self.problem = problem
self.solver = solver

def visualize(self):
t = self.solver.t # short form
u, dudt = self.solver.u[:,0], self.solver.u[:,1]

# tag all plots with numerical and physical input values:
title = ’solver=%s, dt=%g, m=%g’ % \

(self.solver.method, self.solver.dt, self.problem.m)
# can easily get the formula for friction, spring and force
# if these are string formulas:
if isinstance(self.problem.friction, StringFunction):

title += ’ f=%s’ % str(self.problem.friction)
if isinstance(self.problem.spring, StringFunction):

title += ’ s=%s’ % str(self.problem.spring)
if isinstance(self.problem.external, StringFunction):

title += ’ F=%s’ % str(self.problem.external)

plot_type = ’’
while plot_type != ’quit’:

plot_type = raw_input(’Specify a plot: ’)
figure()
if plot_type == ’u’:

# plot u vs t
if self.problem.u_exact is not None:

hold(’on’)
# plot self.problem.u_exact vs t

show()
hardcopy(’tmp_u.eps’)

elif plot_type == ’dudt’:
...

Make a complete implementation of the three proposed classes. Also
make a main function that (i) creates a problem, solver, and visualizer,
(ii) initializes the problem and solver with input data from the com-
mand line, (iii) calls the solver, and (iv) calls the visualizer’s visualize
method to create plots. Collect the classes and functions in a module
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oscillator, which has a call to main in the test block. The first task
from Exercises 9.46 or 9.47 can now be run as

Terminal

oscillator.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/20" --T "5*pi"

The other tasks from Exercises 9.46 or 9.47 can be tested similarly.
Explore some of the possibilities of specifying several functions on

the command line:

Terminal

oscillator.py --method RungeKutta4 --friction "0.1*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "40*pi" --m 10

oscillator.py --method RungeKutta4 --friction "0.8*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "120*pi" --m 50

We remark that this module has the same physical and numerical
functionality as the module in Exercise 9.47. The only difference is that
the code in the modules is organized differently. The organization in
terms of classes in the present module avoids shuffling lots of arguments
to functions and is often viewed as superior. When solving more com-
plicated problems that result in much larger codes, the class version is
usually much simpler to maintain and extend. The reason is that vari-
ables are packed together in a few units along with the functionality
that operates on the variables.

We also remark that it can be difficult to get pyreport to work prop-
erly with the present module and further use of it in the forthcoming
exercises.

Name of program file: oscillator.py. �
Exercise 9.50. Allow flexible choice of functions in Exer. 9.49.

Some typical choices of f(u̇), s(u), and F (t) in (9.54) are listed
below:

1. Linear friction force (low velocities): f(u̇) = 6πμRu̇ (Stokes drag),
where R is the radius of a spherical approximation to the body’s
geometry, and μ is the viscosity of the surrounding fluid.

2. Quadratic friction force (high velocities): f(u̇) = 1
2CD�A|u̇|u̇, see

Exercise 1.10 for explanation of symbols.
3. Linear spring force: s(u) = ku, where k is a spring constant.
4. Sinusoidal spring force: s(u) = k sinu, where k is a constant.
5. Cubic spring force: s(u) = k(u− 1

6u3), where k is a spring constant.
6. Sinusoidal external force: F (t) = F0+A sinωt, where F0 is the mean

value of the force, A is the amplitude, and ω is the frequency.
7. “Bump” force: F (t) = H(t − t1)(1 − H(t − t2)F0, where H(t) is the

Heaviside function from Exercise 2.36, t1 and t2 are two given time
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points, and F0 is the size of the force. This F (t) is zero for t < t1
and t > t2, and F0 for t ∈ [t1, t2].

8. Random force 1: F (t) = F0 + A · U(t; B), where F0 and A are
constants, and U(t; B) denotes a function whose value at time t is
random and uniformly distributed in the interval [−B, B].

9. Random force 2: F (t) = F0 + A · N(t; μ, σ), where F0 and A are
constants, and N(t; μ, σ) denotes a function whose value at time t
is random, Gaussian distributed number with mean μ and standard
deviation σ.

Make a module functions where each of the choices above are imple-
mented as a class with a __call__ special method. Also add a class Zero
for a function whose value is always zero. It is natural that the parame-
ters in a function are set as arguments to the constructor. The different
classes for spring functions can all have a common base class holding
the k parameter as attribute. Name of program file: functions.py. �
Exercise 9.51. Use the modules from Exer. 9.49 and 9.50.

The purpose of this exercise is to demonstrate the use of the classes
from Exercise 9.50 to solve problems described by (9.54).

With a lot of models for f(u̇), s(u), and F (t) available as classes in
functions.py, it is more challenging to read information about these
mathematical functions from the command line18. We therefore pro-
pose to create the relevant instances in the program and assign them
directly to attributes in the Problem instance, e.g.,

problem = Problem()
problem.m = 1.0
k = 1.2
problem.spring = CubicSpring(k)
...

The solver and visualizer objects can still be initialized from the com-
mand line, if desired.

Make a separate file, say oscillator_test.py, where you import class
Problem, Sover, and Visualizer, plus all classes from the functions

module. Provide a main1 function with initializations of class Problem

attributes as indicated above for the case with a Forward Euler method,
m = 1, u(0) = 1, u̇(0) = 0, no friction (use class Zero), no external
forcing (class Zero), a linear spring s(u) = u, Δt = π/20, T = 8π, and
exact u(t) = cos(t).

Then make another function main2 for the case with a 4th-order
Runge-Kutta method, m = 5, u(0) = 1, u̇(0) = 0, linear friction f(u̇) =
0.1u̇, s(u) = u, F (t) = sin(1

2 t), Δt = π/80, T = 60π, and no knowledge
of an exact solution. Let the test block use the first command-line
argument to indicate a call to main1 or main2. Name of program file:
oscillator_test.py. �
18 It can be easily done, however, using read_cml_func from scitools.misc.
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Exercise 9.52. Use the modules from Exer. 9.49 and 9.50.
Make a program oscillator_conv.py where you import the Problem

and Solver classes from the oscillator module in Exercise 9.50 and
implement a loop in which Δt is reduced. The end result should be a
plot with the curves u versus t corresponding to the various Δt values.
Typically, we want to do something like

from oscillator import Problem, Solver
from scitools.std import plot, hold, hardcopy

problem = Problem()
problem.initialize()
solver = Solver()
solver.initialize()

# see how the solution changes by halving dt n times:
n = 4
for k in range(n):

solver.solve(problem)
u, t = solver.u[:,0], solver.t
# plot u
solver.dt = solver.dt/2.0

Extend this program with another loop over increasing m values.
Hopefully, you will realize how flexible the classes from Exercises 9.49

and 9.50 are for solving a variety of problems. We can give a set of
physical and numerical parameters in a flexible way on the command
line, and in the program we may make loops or other constructions to
manipulate the input data further.

Name of program file: oscillator_conv.py. �


