
Files, Strings, and Dictionaries 6

Files are used for permanent storage of information on a computer.
From previous computer experience you are hopefully used to save in-
formation to files and open the files at a later time for inspection again.
The present chapter tells you how Python programs can access infor-
mation in files (Chapter 6.1) and also create new files (Chapter 6.5).
The chapter builds on programming concepts introduced in the first
four chapters of this book.

Since files often contain structured information that one wants to
map to objects in a running program, there is a need for flexible objects
where various kinds of other objects can be stored. Dictionaries are very
handy for this purpose and are described in Chapter 6.2.

Information in files often appear as pure text, so to interpret and
extract data from files it is sometimes necessary to carry out sophisti-
cated operations on the text. Python strings have many methods for
performing such operations, and the most important functionality is
described in Chapter 6.3.

The World Wide Web is full of information and scientific data that
may be useful to access from a program. Chapter 6.4 tells you how to
read web pages from a program and interpret the contents using string
operations.

The folder src/files contains all the program example files referred
to in the present chapter.

6.1 Reading Data from File

Suppose we have recorded some measurements in a file data1.txt, lo-
cated in the src/files folder. The goal of our first example of reading
files is to read the measurement values in data1.txt, find the average
value, and print it out in the terminal window.

269

270 6 Files, Strings, and Dictionaries

Before trying to let a program read a file, we must know the file for-
mat, i.e., what the contents of the file looks like, because the structure
of the text in the file greatly influences the set of statements needed
to read the file. We therefore start with viewing the contents of the
file data1.txt. To this end, load the file into a text editor or viewer1.
What we see is a column with numbers:

21.8
18.1
19
23
26
17.8

Our task is to read this column of numbers into a list in the program
and compute the average of the list items.

6.1.1 Reading a File Line by Line

To read a file, we first need to open the file. This action creates a file
object, here stored in the variable infile:

infile = open(’data1.txt’, ’r’)

The second argument to the open function, the string ’r’, tells that
we want to open the file for reading. We shall later see that a file
can be opened for writing instead, by providing ’w’ as the second
argument. After the file is read, one should close the file object with
infile.close().

For Loop over Lines. We can read the contents of the file in various
ways. The basic recipe for reading the file line by line applies a for

loop like this:

for line in infile:
do something with line

The line variable is a string holding the current line in the file. The
for loop over lines in a file has the same syntax as when we go through
a list. Just think of the file object infile as a collection of elements,
here lines in a file, and the for loop visits these elements in sequence
such that the line variable refers to one line at a time. If something
seemingly goes wrong in such a loop over lines in a file, it is useful to
do a print line inside the loop.

Instead of reading one line at a time, we can load all lines into a list
of strings (lines) by

1 You can use emacs, vim, more, or less on Unix and Mac. On Windows, WordPad
is appropriate, or the type command in a DOS window. Word processors such as
OpenOffice or Microsoft Word can also be used.

6.1 Reading Data from File 271

lines = infile.readlines()

This statement is equivalent to

lines = []
for line in infile:

lines.append(line)

or the list comprehension:

lines = [line for line in infile]

In the present example, we load the file into the list lines. The next
task is to compute the average of the numbers in the file. Trying a
straightforward sum of all numbers on all lines,

mean = 0
for number in lines:

mean = mean + number
mean = mean/len(lines)

gives an error message:

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The reason is that lines holds each line (number) as a string, not a
float or int that we can add to other numbers. A fix is to convert
each line to a float:

mean = 0
for line in lines:

number = float(line)
mean = mean + number

mean = mean/len(lines)

This code snippet works fine. The complete code can be found in the
file files/mean1.py.

Summing up a list of numbers is often done in numerical programs,
so Python has a special function sum for performing this task. However,
sum must in the present case operate on a list of floats, not strings.
We can use a list comprehension to turn all elements in lines into
corresponding float objects:

mean = sum([float(line) for line in lines])/len(lines)

An alternative implementation is to load the lines into a list of float

objects directly. Using this strategy, the complete program (found in
file mean2.py) takes the form

infile = open(’data1.txt’, ’r’)
numbers = [float(line) for line in infile.readlines()]
infile.close()
mean = sum(numbers)/len(numbers)
print mean

272 6 Files, Strings, and Dictionaries

A newcomer to programming might find it confusing to see that
one problem is solved by many alternative sets of statements, but this
is the very nature of programming. A clever programmer will judge
several alternative solutions to a programming task and choose one
that is either particularly compact, easy to understand, and/or easy to
extend later. We therefore present more examples on how to read the
data1.txt file and compute with the data.

While Loop over Lines. The call infile.readline() returns a string
containing the text at the current line. A new infile.readline() will
read the next line. When infile.readline() returns an empty string,
the end of the file is reached and we must stop further reading. The fol-
lowing while loop reads the file line by line using infile.readline():

while True:
line = infile.readline()
if not line:

break
process line

This is perhaps a somewhat strange loop, but it is a well-established
way of reading a file in Python (especially in older codes). The shown
while loop runs forever since the condition is always True. However,
inside the loop we test if line is False, and it is False when we reach
the end of the file, because line then becomes an empty string, which
in Python evaluates to False. When line is False, the break statement
breaks the loop and makes the program flow jump to the first statement
after the while block.

Computing the average of the numbers in the data1.txt file can now
be done in yet another way:

infile = open(’data1.txt’, ’r’)
mean = 0
n = 0
while True:

line = infile.readline()
if not line:

break
mean += float(line)
n += 1

mean = mean/float(n)

Reading a File into a String. The call infile.read() reads the whole
file and returns the text as a string object. The following interactive
session illustrates the use and result of infile.read():

>>> infile = open(’data1.txt’, ’r’)
>>> filestr = infile.read()
>>> filestr
’21.8\n18.1\n19\n23\n26\n17.8\n’
>>> print filestr
21.8

6.1 Reading Data from File 273

18.1
19
23
26
17.8

Note the difference between just writing filestr and writing print

filestr. The former dumps the string with newlines as “backslash n”
characters, while the latter is a “pretty print” where the string is writ-
ten out without quotes and with the newline characters as visible line
shifts2.

Having the numbers inside a string instead of inside a file does not
look like a major step forward. However, string objects have many
useful functions for extracting information. A very useful feature is
split : filestr.split() will split the string into words (separated by
blanks or any other sequence of characters you have defined). The
“words” in this file are the numbers:

>>> words = filestr.split()
>>> words
[’21.8’, ’18.1’, ’19’, ’23’, ’26’, ’17.8’]
>>> numbers = [float(w) for w in words]
>>> mean = sum(numbers)/len(numbers)
>>> print mean
20.95

A more compact program looks as follows (mean3.py):

infile = open(’data1.txt’, ’r’)
numbers = [float(w) for w in infile.read().split()]
mean = sum(numbers)/len(numbers)

The next section tells you more about splitting strings.

6.1.2 Reading a Mixture of Text and Numbers

The data1.txt file has a very simple structure since it contains numbers
only. Many data files contain a mix of text and numbers. The file
rainfall.dat provides an example3:

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970
Jan 81.2
Feb 63.2
Mar 70.3
Apr 55.7
May 53.0
Jun 36.4
Jul 17.5
Aug 27.5
Sep 60.9
Oct 117.7
Nov 111.0
Dec 97.9
Year 792.9

2 The difference between these two outputs is explained in Chapter 7.3.9.
3 http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

274 6 Files, Strings, and Dictionaries

How can we read the rainfall data in this file and make a plot of the
values?

The most straightforward solution is to read the file line by line, and
for each line split the line into words, pick out the last (second) word
on the line, convert this word to float, and store the float objects in
a list. Having the rainfall values in a list of real numbers, we can make
a plot of the values versus the month number. The complete code,
wrapped in a function, may look like this (file rainfall.py):

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
numbers = []
for line in infile:

words = line.split()
number = float(words[1])
numbers.append(number)

infile.close()
return numbers

values = extract_data(’rainfall.dat’)
from scitools.std import plot
month_indices = range(1, 13)
plot(month_indices, values[:-1], ’o2’)

Note that the first line in the file is just a comment line and of no
interest to us. We therefore read this line by infile.readline(). The
for loop over the lines in the file will then start from the next (second)
line.

Also note that numbers contain data for the 12 months plus the aver-
age annual rainfall. We want to plot the average rainfall for the months
only, i.e., values[0:12] or simply values[:-1] (everything except the
last entry). Along the “x” axis we put the index of a month, starting
with 1. A call to range(1,13) generates these indices.

We can condense the for loop over lines in the file, if desired, by
using a list comprehension:

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
numbers = [float(line.split()[1]) for line in infile]
infile.close()
return numbers

6.1.3 What Is a File, Really?

This section is not mandatory for understanding the rest of the book.
However, we think the information here is fundamental for understand-
ing what files are about.

A file is simply a sequence of characters. In addition to the sequence
of characters, a file has some data associated with it, typically the

6.1 Reading Data from File 275

name of the file, its location on the disk, and the file size. These data
are stored somewhere by the operating system. Without this extra
information beyond the pure file contents as a sequence of characters,
the operating system cannot find a file with a given name on the disk.

Each character in the file is represented as a byte, consisting of eight
bits. Each bit is either 0 or 1. The zeros and ones in a byte can be
combined in 28 = 256 ways. This means that there are 256 different
types of characters. Some of these characters can be recognized from
the keyboard, but there are also characters that do not have a familiar
symbol. The name of such characters looks cryptic when printed.

Pure Text Files. To see that a file is really just a sequence of characters,
invoke an editor for plain text, e.g., the editor you use to write Python
programs. Write the four characters ABCD into the editor, do not press
the Return key, and save the text to a file test1.txt. Use your favorite
tool for file and folder overview and move to the folder containing the
test1.txt file. This tool may be Windows Explorer, My Computer, or a
DOS window on Windows; a terminal window, Konqueror, or Nautilus
on Linux; or a terminal window or Finder on Mac. If you choose a
terminal window, use the cd (change directory) command to move to
the proper folder and write dir (Windows) or ls -l (Linux/Mac) to list
the files and their sizes. In a graphical program like Windows Explorer,
Konqueror, Nautilus, or Finder, select a view that shows the size of
each file4. You will see that the test1.txt file has a size of 4 bytes5.
The 4 bytes are exactly the 4 characters ABCD in the file. Physically,
the file is just a sequence of 4 bytes on your harddisk.

Go back to the editor again and add a newline by pressing the Return
key. Save this new version of the file as test2.txt. When you now check
the size of the file it has grown to five bytes. The reason is that we added
a newline character (symbolically known as “backslash n”).

Instead of examining files via editors and folder viewers we may use
Python interactively:

>>> file1 = open(’test1.txt’, ’r’).read() # read file into string
>>> file1
’ABCD’
>>> len(file1) # length of string in bytes/characters
4
>>> file2 = open(’test2.txt’, ’r’).read()
>>> file2
’ABCD\n’
>>> len(file2)
5

Python has in fact a function that returns the size of a file directly:

4 Choose “view as details” in Windows Explorer, “View as List” in Nautilus, the list
view icon in Finder, or you just point at a file icon in Konqueror and watch the
pop-up text.

5 If you use ls -l, the size measured in bytes is found in column 5, right before the
date.

276 6 Files, Strings, and Dictionaries

>>> import os
>>> size = os.path.getsize(’test1.txt’)
>>> size
4

Word Processor Files. Most computer users write text in a word pro-
cessing program, such as Microsoft Word or OpenOffice. Let us inves-
tigate what happens with our four characters ABCD in such a program.
Start the word processor, open a new document, and type in the four
characters ABCD only. Save the document as a .doc file (Microsoft Word)
or an .odt file (OpenOffice). Load this file into an editor for pure text
and look at the contents. You will see that there are numerous strange
characters that you did not write (!). This additional “text” contains
information on what type of document this is, the font you used, etc.
The OpenOffice version of this file has 5725 bytes! However, if you save
the file as a pure text file, with extention .txt, the size is not more than
four bytes, and the text file contains just the corresponding characters
ABCD.

Instead of loading the OpenOffice file into an editor we can again
read the file contents into a string in Python and examine this string:

>>> infile = open(’test3.odt’, ’r’) # open OpenOffice file
>>> s = infile.read()
>>> len(s) # file size
5725
>>> s
’PK\x03\x04\x14\x00\x00\x00\x00\x00r\x80E6^\xc62\x0c\...
\x00\x00mimetypeapplication/vnd.oasis.opendocument.textPK\x00...
\x00\x00content.xml\xa5VMS\xdb0\x10\xbd\xf7Wx|\xe8\xcd\x11...’

Each backslash followed by x and a number is a code for a special char-
acter not found on the keyboard (recall that there are 256 characters
and only a subset is associated with keyboard symbols). Although we
show just a small portion of all the characters in this file in the above
output6, we can guarantee that you cannot find the pure sequence of
characters ABCD. However, the computer program that generated the
file, OpenOffice in this example, can easily interpret the meaning of
all the characters in the file and translate the information into nice,
readable text on the screen.

Image Files. A digital image – captured by a digital camera or a mobile
phone – is a file. And since it is a file, the image is just a sequence of
characters. Loading some JPEG file into a pure text editor, you can see
all the strange characters in there. On the first line you will (normally)
find some recognizable text in between the strange characters. This
text reflects the type of camera used to capture the image and the
date and time when the picture was taken. The next lines contain

6 Otherwise, the output would have occupied several pages in this book with about
five thousand backslash-x-number symbols...

6.1 Reading Data from File 277

more information about the image. Thereafter, the file contains a set of
numbers representing the image. The basic representation of an image
is a set of m × n pixels, where each pixel has a color represented as
a combination of 256 values of red, green, and blue. A 6 megapixel
camera will then need to store 256 × 3 bytes for each of the 6,000,000
pixels, which results in 4, 608, 000, 000 bytes (or 4.6 gigabytes, written
4.6 Gb). The JPEG file contains only a couple of megabytes. The reason
is that JPEG is a compressed file format, produced by applying a smart
technique that can throw away pixel information in the original picture
such that the human eye hardly can detect the inferior quality.

A video is just a sequence of images, and therefore a video is also a
stream of bytes. If the change from one video frame (image) to the next
is small, one can use smart methods to compress the image information
in time. Such compression is particularly important for videos since the
file sizes soon get too large for being transferred over the Internet. A
small video file occasionally has bad visual quality, caused by too much
compression.

Music Files. An MP3 file is much like a JPEG file: First, there is some
information about the music (artist, title, album, etc.), and then comes
the music itself as a stream of bytes. A typical MP3 file has a size of
something like five million bytes7, i.e., five megabytes (5 Mb). On a 2
Gb MP3 player you can then store roughly 2, 000, 000, 000/5, 000, 000 =
400 MP3 files. MP3 is, like JPEG, a compressed format. The complete
data of a song on a CD (the WAV file) contains about ten times as
many bytes. As for pictures, the idea is that one can throw away a lot
of bytes in an intelligent way, such that the human ear hardly detects
the difference between a compressed and uncompressed version of the
music file.

PDF Files. Looking at a PDF file in a pure text editor shows that the
file contains some readable text mixed with some unreadable charac-
ters. It is not possible for a human to look at the stream of bytes and
deduce the text in the document8. A PDF file reader can easily inter-
pret the contents of the file and display the text in a human-readable
form on the screen.

Remarks. We have repeated many times that a file is just a stream of
bytes. A human can interpret (read) the stream of bytes if it makes
sense in a human language – or a computer language (provided the
human is a programmer). When the series of bytes does not make

7 The exact size depends on the complexity of the music, the length of the track, and
the MP3 resolution.

8 From the assumption that there are always some strange people doing strange
things, there might be somebody out there who – with a lot of training – can
interpret the pure PDF code with the eyes.

278 6 Files, Strings, and Dictionaries

sense to any human, a computer program must be used to interpret
the sequence of characters.

Think of a report. When you write the report as pure text in a text
editor, the resulting file contains just the characters you typed in from
the keyboard. On the other hand, if you applied a word processor like
Microsoft Word or OpenOffice, the report file contains a large number
of extra bytes describing properties of the formatting of the text. This
stream of extra bytes does not make sense to a human, and a computer
program is required to interpret the file content and display it in a form
that a human can understand. Behind the sequence of bytes in the file
there are strict rules telling what the series of bytes means. These
rules reflect the file format. When the rules or file format is publicly
documented, a programmer can use this documentation to make her
own program for interpreting the file contents9. It happens, though,
that secret file formats are used, which require certain programs from
certain companies to interpret the files.

6.2 Dictionaries

So far in the book we have stored information in various types of ob-
jects, such as numbers, strings, list, and arrays. A dictionary is a very
flexible object for storing various kind of information, and in particular
when reading files. It is therefore time to introduce the dictionary type.

A list is a collection of objects indexed by an integer going from 0 to
the number of elements minus one. Instead of looking up an element
through an integer index, it can be more handy to use a text. Roughly
speaking, a list where the index can be a text is called a dictionary
in Python. Other computer languages use other names for the same
thing: HashMap, hash, associative array, or map.

6.2.1 Making Dictionaries

Suppose we need to store the temperatures from three cities: Oslo,
London, and Paris. For this purpose we can use a list,

temps = [13, 15.4, 17.5]

but then we need to remember the sequence of cities, e.g., that index
0 corresponds to Oslo, index 1 to London, and index 2 to Paris. That
is, the London temperature is obtained as temps[1]. A dictionary with
the city name as index is more convenient, because this allows us to

9 Interpreting such files is much more complicated than our examples on reading
human-readable files in this book.

6.2 Dictionaries 279

write temps[’London’] to look up the temperature in London. Such a
dictionary is created by one of the following two statements

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5}
or
temps = dict(Oslo=13, London=15.4, Paris=17.5)

Additional text-value pairs can be added when desired. We can, for
instance, write

temps[’Madrid’] = 26.0

The temps dictionary has now four text-value pairs, and a print temps

yields

{’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5, ’Madrid’: 26.0}

6.2.2 Dictionary Operations

The string “indices” in a dictionary are called keys. To loop over the
keys in a dictionary d, one writes for key in d: and works with key

and the corresponding value d[key] inside the loop. We may apply this
technique to write out the temperatures in the temps dictionary from
the previous paragraph:

>>> for city in temps:
... print ’The temperature in %s is %g’ % (city, temps[city])
...
The temperature in Paris is 17.5
The temperature in Oslo is 13
The temperature in London is 15.4
The temperature in Madrid is 26

We can check if a key is present in a dictionary by the syntax if key

in d:

>>> if ’Berlin’ in temps:
... print ’Berlin:’, temps[’Berlin’]
... else:
... print ’No temperature data for Berlin’
...
No temperature data for Berlin

Writing key in d yields a standard boolean expression, e.g.,

>>> ’Oslo’ in temps
True

The keys and values can be extracted as lists from a dictionary:

>>> temps.keys()
[’Paris’, ’Oslo’, ’London’, ’Madrid’]
>>> temps.values()
[17.5, 13, 15.4, 26.0]

280 6 Files, Strings, and Dictionaries

An important feature of the keys method in dictionaries is that the
order of the returned list of keys is unpredictable. If you need to traverse
the keys in a certain order, you will need to sort the keys. A loop over
the keys in the temps dictionary in alphabetic order is written as

>>> for city in sorted(temps):
... print city
...
London
Madrid
Oslo
Paris

A key-value pair can be removed by del d[key]:

>>> del temps[’Oslo’]
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
>>> len(temps) # no of key-value pairs in dictionary
3

Sometimes we need to take a copy of a dictionary:

>>> temps_copy = temps.copy()
>>> del temps_copy[’Paris’] # this does not affect temps
>>> temps_copy
{’London’: 15.4, ’Madrid’: 26.0}
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

Note that if two variables refer to the same dictionary and we change
the contents of the dictionary through either of the variables, the
change will be seen in both variables:

>>> t1 = temps
>>> t1[’Stockholm’] = 10.0 # change t1
>>> temps # temps is also changed
{’Stockholm’: 10.0, ’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

To avoid that temps is affected by adding a new key-value pair to t1,
t1 must be a copy of temps.

6.2.3 Example: Polynomials as Dictionaries

The keys in a dictionary are not restricted to be strings. In fact, any
Python object whose contents cannot be changed can be used as key10.
For example, we may use integers as keys in a dictionary. This is a
handy way of representing polynomials, as will be explained next.

Consider the polynomial

10 Such objects are known as immutable data types and consist of int, float, complex,
str, and tuple. Lists and dictionaries can change their contents and are called
mutable objects. These cannot be used as keys in dictionaries. If you desire a list
as key, use a tuple instead.

6.2 Dictionaries 281

p(x) = −1 + x2 + 3x7 .

The data associated with this polynomial can be viewed as a set of
power-coefficient pairs, in this case the coefficient −1 belongs to power
0, the coefficient 1 belongs to power 2, and the coefficient 3 belongs to
power 7. A dictionary can be used to map a power to a coefficient:

p = {0: -1, 2: 1, 7: 3}

A list can, of course, also be used, but in this case we must fill in all
the zero coefficients too, since the index must match the power:

p = [-1, 0, 1, 0, 0, 0, 0, 3]

The advantage with a dictionary is that we need to store only the non-
zero coefficients. For the polynomial 1 + x100 the dictionary holds two
elements while the list holds 101 elements (see Exercise 6.16).

The following function can be used to evaluate a polynomial repre-
sented as a dictionary:

def poly1(data, x):
sum = 0.0
for power in data:

sum += data[power]*x**power
return sum

The data argument must be a dictionary where data[power] holds the
coefficient associated with the term x**power. A more compact imple-
mentation can make use of Python’s sum function to sum the elements
of a list:

def poly1(data, x):
return sum([data[p]*x**p for p in data])

That is, we first make a list of the terms in the polynomial using a
list comprehension, and then we feed this list to the sum function. Note
that the name sum is different in the two implementations: In the first,
sum is a float object, and in the second, sum is a function. When we
set sum=0.0 in the first implementation, we bind the name sum to a
new float object, and the built-in Python function associated with
the name sum is then no longer accessible inside the poly1 function11.
Outside the function, nevertheless, sum will be the summation function
(unless we have bound the global name sum to another object some-
where else in the main program – see Chapter 2.4.2 for a discussion of
this issue).

With a list instead of dictionary for representing the polynomial, a
slightly different evaluation function is needed:

11 This is not strictly correct, because sum is a local variable while the summation
function is associated with a global name sum, which can be reached through glob-

als()[’sum’].

282 6 Files, Strings, and Dictionaries

def poly2(data, x):
sum = 0
for power in range(len(data)):

sum += data[power]*x**power
return sum

If there are many zeros in the data list, poly2 must perform all the
multiplications with the zeros, while poly1 computes with the non-zero
coefficients only and is hence more efficient.

Another major advantage of using a dictionary to represent a poly-
nomial rather than a list is that negative powers are easily allowed,
e.g.,

p = {-3: 0.5, 4: 2}

can represent 1
2x−3 + 2x4. With a list representation, negative powers

require much more book-keeping. We may, for example, set

p = [0.5, 0, 0, 0, 0, 0, 0, 2]

and remember that p[i] is the coefficient associated with the power
i-3. In particular, the poly2 function will no longer work for such lists,
while the poly1 function works also for dictionaries with negative keys
(powers).

You are now encouraged to solve Exercise 6.17 on page 327 to become
more familiar with the concept of dictionaries.

6.2.4 Example: File Data in Dictionaries

Problem. The file files/densities.dat contains a table of densities of
various substances measured in g/cm3:

air 0.0012
gasoline 0.67
ice 0.9
pure water 1.0
seawater 1.025
human body 1.03
limestone 2.6
granite 2.7
iron 7.8
silver 10.5
mercury 13.6
gold 18.9
platinium 21.4
Earth mean 5.52
Earth core 13
Moon 3.3
Sun mean 1.4
Sun core 160
proton 2.8E+14

In a program we want to access these density data. A dictionary
with the name of the substance as key and the corresponding density
as value seems well suited for storing the data.

6.2 Dictionaries 283

Solution. We can read the densities.dat file line by line, split each
line into words, use a float conversion of the last word as density value,
and the remaining one or two words as key in the dictionary.

def read_densities(filename):
infile = open(filename, ’r’)
densities = {}
for line in infile:

words = line.split()
density = float(words[-1])

if len(words[:-1]) == 2:
substance = words[0] + ’ ’ + words[1]

else:
substance = words[0]

densities[substance] = density
infile.close()
return densities

densities = read_densities(’densities.dat’)

This code is found in the file density.py. With string operations from
Chapter 6.3.1 we can avoid the special treatment of one or two words
in the name of the substance and achieve simpler and more general
code, see Exercise 6.10.

6.2.5 Example: File Data in Nested Dictionaries

Problem. We are given a data file with measurements of some proper-
ties with given names (here A, B, C ...). Each property is measured a
given number of times. The data are organized as a table where the
rows contain the measurements and the columns represent the mea-
sured properties:

A B C D
1 11.7 0.035 2017 99.1
2 9.2 0.037 2019 101.2
3 12.2 no no 105.2
4 10.1 0.031 no 102.1
5 9.1 0.033 2009 103.3
6 8.7 0.036 2015 101.9

The word “no” stands for no data, i.e., we lack a measurement. We
want to read this table into a dictionary data so that we can look
up measurement no. i of (say) property C as data[’C’][i]. For each
property p, we want to compute the mean of all measurements and
store this as data[p][’mean’].

Algorithm. The algorithm for creating the data dictionary goes as fol-
lows:

284 6 Files, Strings, and Dictionaries

examine the first line: split it into words and
initialize a dictionary with the property names
as keys and empty dictionaries ({}) as values

for each of the remaining lines in the file:
split the line into words
for each word after the first:

if the word is not “no”:
transform the word to a real number and store

the number in the relevant dictionary

Implementation. The solution requires familiarity with dictionaries
and list slices (also called sublists, see Chapter 2.1.9). A new aspect
needed in the solution is nested dictionaries, that is, dictionaries of
dictionaries. The latter topic is first explained, via an example:

>>> d = {’key1’: {’key1’: 2, ’key2’: 3}, ’key2’: 7}

Observe here that the value of d[’key1’] is a dictionary which we can
index with its keyes key1 and key2:

>>> d[’key1’] # this is a dictionary
{’key2’: 3, ’key1’: 2}
>>> type(d[’key1’]) # proof
<type ’dict’>
>>> d[’key1’][’key1’] # index a nested dictionary
2
>>> d[’key1’][’key2’]
3

In other words, repeated indexing works for nested dictionaries as for
nested lists. The repeated indexing does not apply to d[’key2’] since
that value is just an integer:

>>> d[’key2’][’key1’]
...

TypeError: unsubscriptable object
>>> type(d[’key2’])
<type ’int’>

When we have understood the concept of nested dictionaries, we are
in a position to present a complete code that solves our problem of
loading the tabular data in the file table.dat into a nested dictionary
data and computing mean values. First, we list the program, stored in
the file table2dict.py, and display the program’s output. Thereafter,
we dissect the code in detail.

infile = open(’table.dat’, ’r’)
lines = infile.readlines()
infile.close()
data = {} # data[property][measurement_no] = propertyvalue
first_line = lines[0]
properties = first_line.split()
for p in properties:

6.2 Dictionaries 285

data[p] = {}

for line in lines[1:]:
words = line.split()
i = int(words[0]) # measurement number
values = words[1:] # values of properties
for p, v in zip(properties, values):

if v != ’no’:
data[p][i] = float(v)

compute mean values:
for p in data:

values = data[p].values()
data[p][’mean’] = sum(values)/len(values)

for p in sorted(data):
print ’Mean value of property %s = %g’ % (p, data[p][’mean’])

The corresponding output from this program becomes
Mean value of property A = 9.875
Mean value of property B = 0.0279167
Mean value of property C = 1678.42
Mean value of property D = 98.0417

To view the nested data dictionary, we may insert

import scitools.pprint2; scitools.pprint2.pprint(temps)

which produces something like

{’A’: {1: 11.7, 2: 9.2, 3: 12.2, 4: 10.1, 5: 9.1, 6: 8.7,
’mean’: 10.1667},

’B’: {1: 0.035, 2: 0.037, 4: 0.031, 5: 0.033, 6: 0.036,
’mean’: 0.0344},

’C’: {1: 2017, 2: 2019, 5: 2009, 6: 2015, ’mean’: 2015},
’D’: {1: 99.1,

2: 101.2,
3: 105.2,
4: 102.1,
5: 103.3,
6: 101.9,
’mean’: 102.133}}

Dissection. To understand a computer program, you need to under-
stand what the result of every statement is. Let us work through the
code, almost line by line, and see what it does.

First, we load all the lines of the file into a list of strings called lines.
The first_line variable refers to the string

’ A B C D’

We split this line into a list of words, called properties, which then
contains

[’A’, ’B’, ’C’, ’D’]

With each of these property names we associate a dictionary with the
measurement number as key and the property value as value, but first
we must create these “inner” dictionaries as empty before we can add
the measurements:

286 6 Files, Strings, and Dictionaries

for p in properties:
data[p] = {}

The first pass in the for loop picks out the string

’1 11.7 0.035 2017 99.1’

as the line variable. We split this line into words, the first word
(words[0]) is the measurement number, while the rest words[1:] is
a list of property values, here named values. To pair up the right
properties and values, we loop over the properties and values lists
simultaneously:

for p, v in zip(properties, values):
if v != ’no’:

data[p][i] = float(v)

Recall that some values may be missing and we drop to record that
value12. Because the values list contains strings (words) read from the
file, we need to explicitly transform each string to a float number
before we can compute with the values.

After the for line in lines[1:] loop, we have a dictionary data

of dictionaries where all the property values are stored for each mea-
surement number and property name. Figure 6.1 shows a graphical
representation of the data dictionary.

It remains to compute the average values. For each property name
p, i.e., key in the data dictionary, we can extract the recorded values
as the list data[p].values() and simply send this list to Python’s sum

function and divide by the number of measured values for this property,
i.e., the length of the list:

for p in data:
values = data[p].values()
data[p][’mean’] = sum(values)/len(values)

Alternatively, we can write an explicit loop to compute the average:

for p in data:
sum_values = 0
for value in data[p]:

sum_values += value
data[p][’mean’] = sum_values/len(data[p])

When we want to look up a measurement no. n of property B, we
must recall that this particular measurement may be missing so we
must do a test if n is key in the dictionary data[p]:

if n in data[’B’]:
value = data[’B’][n]

alternative:
value = data[’B’][n] if n in data[’B’] else None

12 We could, alternatively, set the value to None.

6.2 Dictionaries 287

data ’A’ 1 11.7

2 9.2

3 12.2

4 10.1

5 9.1

6 8.7

’mean’ 8.71428571429

’C’ 1 2017.0

2 2019.0

3 None

4 None

5 2009.0

6 2015.0

’mean’ 1151.42857143

’B’ 1 0.035

2 0.037

3 None

4 0.031

5 0.033

6 0.036

’mean’ 0.0245714285714

’D’ 1 99.1

2 101.2

3 105.2

4 102.1

5 103.3

6 101.9

’mean’ 87.5428571429

Fig. 6.1 Illustration of the nested dictionary created in the table2dict.py program.

6.2.6 Example: Comparing Stock Prices

Problem. We want to compare the evolution of the stock prices of
three giant companies in the computer industry: Microsoft, Sun Mi-
crosystems, and Google. Relevant data files for stock prices can be
downloaded from finance.yahoo.com. Fill in the comany’s name and
click on “GET QUOTES” in the top bar of this page, then choose “His-
torical Prices”. On the resulting web page we can specify start and end
dates for the historical prices of the stock. We let this be January 1,
1988, for Microsoft and Sun, and January 1, 2005, for Google. The end
dates were set to June 1, 2008, in this example. Ticking off “Monthly”

288 6 Files, Strings, and Dictionaries

values and clicking “Get Prices” result in a table of stock prices. We
can download the data in a tabular format by clicking “Download To
Spreadsheet” below the table. Here is an example of such a file:

Date,Open,High,Low,Close,Volume,Adj Close
2008-06-02,12.91,13.06,10.76,10.88,16945700,10.88
2008-05-01,15.50,16.37,12.37,12.95,26140700,12.95
2008-04-01,15.78,16.23,14.62,15.66,10330100,15.66
2008-03-03,16.35,17.38,15.41,15.53,12238800,15.53
2008-02-01,17.47,18.03,16.06,16.40,12147900,16.40
2008-01-02,17.98,18.14,14.20,17.50,15156100,17.50
2007-12-03,20.61,21.55,17.96,18.13,9869900,18.13
2007-11-01,5.65,21.60,5.10,20.78,17081500,20.78

The file format is simple: columns are separated by comma, the first
line contains column headings, and the data lines have the date in the
first column and various measures of stock prices in the next columns.
Reading about the meaning of the various data on the Yahoo! web
pages reveals that our interest concerns the final column (these prices
are adjusted for splits and dividends). Three relevant data files can
be found in src/files with the names company_monthly.csv, where
company is Microsoft, Sun, or Google.

The task is to plot the evolution of stock prices of the three compa-
nies. It is natural to scale the prices to start at a unit value in January
1988 and let the Google price start at the maximum of the Sun and
Microsoft stock values in January 2005.

Solution. There are two major parts of this problem: (i) reading the file
and (ii) plotting the data. The reading part is quite straightforward,
while the plotting part needs some special considerations since the “x”
values in the plot are dates and not real numbers. In the forthcom-
ing text we solve the individual subproblems one by one, showing the
relevant Python snippets. The complete program is found in the file
stockprices.py.

We start with the reading part. Since the reading will be repeated
for three files, we make a function with the filename as argument. The
result of reading a file should be two lists (or arrays) with the dates
and the stock prices, respectively. We therefore return these two lists
from the function. The algorithm for reading the data goes as follows:

open the file
create two empty lists, dates and prices, for collecting the data
read the first line (of no interest)
for each line in the rest of the file:

split the line wrt. colon
append the first word on the line to the dates list
append the last word on the line to the prices list

close the file

There are a couple of additional points to consider. First, the words
on a line are strings, and at least the prices (last word) should be

6.2 Dictionaries 289

converted to a float. The first word, the date, has the form year-month-
day (e.g., 2008-02-04). Since we asked for monthly data only, the day
part is of no interest. Skipping the day part can be done by extracting
a substring of the date string: date[:-3], which means everything in
the string except the last three characters (see Chapter 6.3.1 for more
on substrings). The remaining date specification is now of the form
year-month (e.g., 2008-02), represented as a string. Turning this into
a number for plotting is not so easy, so we keep this string as it is in
the list of dates.

The second point of consideration in the algorithm above is the
sequence of data in the two lists: the files have the most recent date
at the top and the oldest at the bottom, while it is natural to plot the
evolution of stock prices against increasing time. Therefore, we must
reverse the two lists of data before we return them to the calling code.

The algorithm above, together with the two additional comments,
can now be translated into Python code:

def read_file(filename):
infile = open(filename, ’r’)
infile.readline() # read column headings
dates = []; prices = []
for line in infile:

columns = line.split(’,’)
date = columns[0]
date = date[:-3] # skip day of month
price = columns[-1]
dates.append(date)
prices.append(float(price))

infile.close()
dates.reverse()
prices.reverse()
return dates, prices

The reading of a file is done by a call to this function, e.g.,

dates_Google, prices_Google = read_file(’stockprices_Google.csv’)

Instead of working with separate variables for the file data, we may
collect the data in dictionaries, with the company name as key. One
possibility is to use two dictionaries:

dates = {}; prices = {}
d, p = read_file(’stockprices_Sun.csv’)
dates[’Sun’] = d; prices[’Sun’] = p
d, p = read_file(’stockprices_Microsoft.csv’)
dates[’MS’] = d; prices[’MS’] = p
d, p = read_file(’stockprices_Google.csv’)
dates[’Google’] = d; prices[’Google’] = p

We can also collect the dates and prices dictionaries in a dictionary
data:

290 6 Files, Strings, and Dictionaries

data = {’prices’: prices, ’dates’: dates}

Note that data is a nested dictionary, so that to extract, e.g., the prices
of the Microsoft stock, one writes data[’prices’][’MS’].

The next task is to normalize the stock prices so that we can easily
compare them. The idea is to let Sun and Microsoft start out with
a unit price and let Google start out with the best of the Sun and
Microsoft prices. Normalizing the Sun and Microsoft prices is done by
dividing by the first prices:

norm_price = prices[’Sun’][0]
prices[’Sun’] = [p/norm_price for p in prices[’Sun’]]

with a similar code for the Microsoft prices. Normalizing the Google
prices is more involved as we need to extract the prices of Sun and
Microsoft stocks from January 2005. Since the dates and prices lists
correspond to each other, element by element, we can get the index
corresponding to the date ’2005-01’ in the list of dates and use this
index to extract the corresponding price. The normalization can then
be coded as

jan05_MS = prices[’MS’][dates[’MS’].index(’2005-01’)]
jan05_Sun = prices[’Sun’][dates[’Sun’].index(’2005-01’)]
norm_price = prices[’Google’][0]/max(jan05_MS, jan05_Sun)
prices[’Google’] = [p/norm_price for p in prices[’Google’]]

The purpose of the final plot is to show how the prices evolve in
time. The problem is that our time data consists of strings of the form
year-month. We need to convert this string information to some “x”
coordinate information in the plot. The simplest strategy is to just plot
the prices against the list index, i.e., the “x” coordinates correspond to
counting months. Suitable lists of monthly based indices for Sun and
Microsoft are straightforward to create with the range function:

x = {}
x[’Sun’] = range(len(prices[’Sun’]))
x[’MS’] = range(len(prices[’MS’]))

The “x” coordinates for the Google prices are somewhat more compli-
cated, because the indices must start at the index corresponding to
January 2005 in the Sun and Microsoft data. However, we extracted
that index in the normalization of the Google prices, so we have already
done most of the work:

jan05 = dates[’Sun’].index(’2005-01’)
x[’Google’] = range(jan05, jan05 + len(prices[’Google’]), 1)

The final step is to plot the three set of data:

6.3 Strings 291

from scitools.std import plot
plot(x[’MS’], prices[’MS’], ’r-’,

x[’Sun’], prices[’Sun’], ’b-’,
x[’Google’], prices[’Google’], ’y-’,
legend=(’Microsoft’, ’Sun’, ’Google’))

Figure 6.2 displays the resulting plot. As seen from the plot, the best
investment would be to start with Microsoft stocks in 1988 and switch
all the money to Google stocks in 2005. You can easily modify the
program to explores what would happen if you started out with Sun
stocks and switched to Google in 2005.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

Microsoft
Sun

Google

Fig. 6.2 The evolution of stock prices for three companies in the period January 1998
to June 2008.

Generalization. We can quite easily generalize the program to handle
data from an arbitrary collection of companies, at least if we restrict
the time period to be the same for all stocks. Exercise 6.18 asks you
to do this. As you will realize, the use of dictionaries instead of sepa-
rate variables in our program consitutes one important reason why the
program becomes easy to extend. Avoiding different time periods for
different price data also makes the generalized program simpler than
the one we developed above.

6.3 Strings

Many programs need to manipulate text. For example, when we read
the contents of a file into a string or list of strings (lines), we may want
to change parts of the text in the string(s) – and maybe write out the
modified text to a new file. So far in this chapter we have converted
parts of the text to numbers and computed with the numbers. Now it
is time to learn how to manipulate the text strings themselves.

292 6 Files, Strings, and Dictionaries

6.3.1 Common Operations on Strings

Python has a rich set of operations on string objects. Some of the most
common operations are listed below.

Substring Specification. The expression s[i:j] extracts the substring
starting with character number i and ending with character number
j-1 (similarly to lists, 0 is the index of the first character):

>>> s = ’Berlin: 18.4 C at 4 pm’
>>> s[8:] # from index 8 to the end of the string
’18.4 C at 4 pm’
>>> s[8:12] # index 8, 9, 10 and 11 (not 12!)
’18.4’

A negative upper index counts, as usual, from the right such that s[-1]
is the last element, s[-2] is the next last element, and so on.

>>> s[8:-1]
’18.4 C at 4 p’
>>> s[8:-8]
’18.4 C’

Searching for Substrings. The call s.find(s1) returns the index where
the substring s1 first appears in s. If the substring is not found, -1 is
returned.

>>> s.find(’Berlin’) # where does ’Berlin’ start?
0
>>> s.find(’pm’)
20
>>> s.find(’Oslo’) # not found
-1

Sometimes the aim is to just check if a string is contained in another
string, and then we can use the syntax:

>>> ’Berlin’ in s:
True
>>> ’Oslo’ in s:
False

Here is a typical use of the latter construction in an if test:

>>> if ’C’ in s:
... print ’C found’
... else:
... print ’no C’
...
C found

Two other convenient methods for checking if a string starts with or
ends with a specified string are startswith and endswith:

6.3 Strings 293

>>> s.startswith(’Berlin’)
True
>>> s.endswith(’am’)
False

Substitution. The call s.replace(s1, s2) replaces substring s1 by s2

everywhere in s:

>>> s.replace(’ ’, ’_’)
’Berlin:_18.4_C__at_4_pm’
>>> s.replace(’Berlin’, ’Bonn’)
’Bonn: 18.4 C at 4 pm’

A variant of the last example, where several string operations are put
together, consists of replacing the text before the first colon13:

>>> s.replace(s[:s.find(’:’)], ’Bonn’)
’Bonn: 18.4 C at 4 pm’

String Splitting. The call s.split() splits the string s into words sep-
arated by whitespace (space, tabulator, or newline):

>>> s.split()
[’Berlin:’, ’18.4’, ’C’, ’at’, ’4’, ’pm’]

Splitting a string s into words separated by a text t can be done by
s.split(t). For example, we may split with respect to colon:

>>> s.split(’:’)
[’Berlin’, ’ 18.4 C at 4 pm’]

We know that s contains a city name, a colon, a temperature, and then
C:

>>> s = ’Berlin: 18.4 C at 4 pm’

With s.splitlines(), a multi-line string is split into lines (very useful
when a file has been read into a string and we want a list of lines):

>>> t = ’1st line\n2nd line\n3rd line’
>>> print t
1st line
2nd line
3rd line
>>> t.splitlines()
[’1st line’, ’2nd line’, ’3rd line’]

13 Take a “break” and convince yourself that you understand how we specify the
substring to be replaced.

294 6 Files, Strings, and Dictionaries

Upper and Lower Case. s.lower() transforms all characters to their
lower case equivalents, and s.upper() performs a similar transforma-
tion to upper case letters:

>>> s.lower()
’berlin: 18.4 c at 4 pm’
>>> s.upper()
’BERLIN: 18.4 C AT 4 PM’

Strings Are Constant. A string cannot be changed, i.e., any change
always results in a new string. Replacement of a character is not pos-
sible:

>>> s[18] = 5
...
TypeError: ’str’ object does not support item assignment

If we want to replace s[18], a new string must be constructed, for
example by keeping the substrings on either side of s[18] and inserting
a ’5’ in between:

>>> s[:18] + ’5’ + s[19:]
’Berlin: 18.4 C at 5 pm’

Strings with Digits Only. One can easily test whether a string contains
digits only or not:

>>> ’214’.isdigit()
True
>>> ’ 214 ’.isdigit()
False
>>> ’2.14’.isdigit()
False

Whitespace. We can also check if a string contains spaces only by call-
ing the isspace method. More precisely, isspace tests for whitespace,
which means the space character, newline, or the TAB character:

>>> ’ ’.isspace() # blanks
True
>>> ’ \n’.isspace() # newline
True
>>> ’ \t ’.isspace() # TAB
True
>>> ’’.isspace() # empty string
False

The isspace is handy for testing for blank lines in files. An alternative
is to strip first and then test for an empty string:

>>> line = ’ \n’
>>> empty.strip() == ’’
True

6.3 Strings 295

Stripping off leading and/or trailing spaces in a string is sometimes
useful:

>>> s = ’ text with leading/trailing space \n’
>>> s.strip()
’text with leading/trailing space’
>>> s.lstrip() # left strip
’text with leading/trailing space \n’
>>> s.rstrip() # right strip
’ text with leading/trailing space’

Joining Strings. The opposite of the split method is join, which joins
elements in a list of strings with a specified delimiter in between. That
is, the following two types of statements are inverse operations:

t = delimiter.join(words)
words = t.split(delimiter)

An example on using join may be

>>> strings = [’Newton’, ’Secant’, ’Bisection’]
>>> t = ’, ’.join(strings)
>>> t
’Newton, Secant, Bisection’

As an illustration of the usefulness of split and join, we want to
remove the first two words on a line. This task can be done by first
splitting the line into words and then joining the words of interest:

>>> line = ’This is a line of words separated by space’
>>> words = line.split()
>>> line2 = ’ ’.join(words[2:])
>>> line2
’a line of words separated by space’

There are many more methods in string objects. All methods are
described in the Python Library Reference, see “string methods” in the
index.

6.3.2 Example: Reading Pairs of Numbers

Problem. Suppose we have a file consisting of pairs of real numbers, i.e.,
text of the form (a, b), where a and b are real numbers. This notation
for a pair of numbers is often used for points in the plane, vectors in
the plane, and complex numbers. A sample file may look as follows:

(1.3,0) (-1,2) (3,-1.5)
(0,1) (1,0) (1,1)
(0,-0.01) (10.5,-1) (2.5,-2.5)

The file can be found as read_pairs1.dat. Our task is to read this
text into a nested list pairs such that pairs[i] holds the pair with
index i, and this pair is a tuple of two float objects. We assume that
there are no blanks inside the parentheses of a pair of numbers (we
rely on a split operation which would otherwise not work).

296 6 Files, Strings, and Dictionaries

Solution. To solve this programming problem, we can read in the file
line by line; for each line: split the line into words (i.e., split with
respect to whitespace); for each word: strip off the parentheses, split
with respect to comma, and convert the resulting two words to floats.
Our brief algorithm can be almost directly translated to Python code:

lines = open(’read_pairs1.dat’, ’r’).readlines()

pairs = [] # list of (n1, n2) pairs of numbers
for line in lines:

words = line.split()
for word in words:

word = word[1:-1] # strip off parenthesis
n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair) # add 2-tuple to last row

This code is available in the file read_pairs1.py. Figure 6.3 shows a
snapshot of the state of the variables in the program after having
treated the first line. You should explain each line in the program
to yourself, and compare your understanding with the figure.

lumpy_fig True

words 0 ’(1.3,0)’

1 ’(−1,2)’

2 ’(3,−1.5)’

pair 0 3.0

1 −1.5

line ’(1.3,0) (−1,2) (3,−1.5)’

pairs 0 0 1.3

1 0.0

1 0 −1.0

1 2.0

2

word ’3,−1.5’

n1 3.0

n2 −1.5

Fig. 6.3 Illustration of the variables in the read_pairs.py program after the first pass
in the loop over words in the first line of the data file.

The output from the program becomes

[(1.3, 0.0),
(-1.0, 2.0),
(3.0, -1.5),
(0.0, 1.0),

6.3 Strings 297

(1.0, 0.0),
(1.0, 1.0),
(0.0, -0.01),
(10.5, -1.0),
(2.5, -2.5)]

We remark that our solution to this programming problem relies
heavily on the fact that spaces inside the parentheses are not allowed.
If spaces were allowed, the simple split to obtain the pairs on a line as
words would not work. What can we then do?

We can first strip off all blanks on a line, and then observe that the
pairs are separated by the text ’)(’. The first and last pair on a line
will have an extra parenthesis that we need to remove. The rest of code
is similar to the previous code and can be found in read_pairs2.py:

infile = open(’read_pairs2.dat’, ’r’)
lines = infile.readlines()

pairs = [] # list of (n1, n2) pairs of numbers
for line in lines:

line = line.strip() # remove whitespace such as newline
line = line.replace(’ ’, ’’) # remove all blanks
words = line.split(’)(’)
strip off leading/trailing parenthesis in first/last word:
words[0] = words[0][1:] # (-1,3 -> -1,3
words[-1] = words[-1][:-1] # 8.5,9) -> 8.5,9
for word in words:

n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair)

infile.close()

The program can be tested on the file read_pairs2.dat:

(1.3 , 0) (-1 , 2) (3, -1.5)
(0 , 1) (1, 0) (1 , 1)
(0,-0.01) (10.5,-1) (2.5, -2.5)

A third approach is to notice that if the pairs were separated by
commas,

(1, 3.0), (-1, 2), (3, -1.5)
(0, 1), (1, 0), (1, 1)

the file text is very close to the Python syntax of a list of 2-tuples. By
adding enclosing brackets, plus a comma at the end of each line,

[(1, 3.0), (-1, 2), (3, -1.5),
(0, 1), (1, 0), (1, 1),]

we have a string to which we can apply eval to get the pairs list
directly. Here is the code doing this (program read_pairs3.py):

infile = open(’read_pairs3.dat’, ’r’)
listtext = ’[’
for line in infile:

add line, without newline (line[:-1]), with a trailing comma:
listtext += line[:-1] + ’, ’

infile.close()
listtext = listtext + ’]’
pairs = eval(listtext)

298 6 Files, Strings, and Dictionaries

In general, it is a good idea to construct file formats that are as close
as possible to valid Python syntax such that one can take advantage
of the eval or exec functions to turn text into “live objects”.

6.3.3 Example: Reading Coordinates

Problem. Suppose we have a file with coordinates (x, y, z) in three-
dimensional space. The file format looks as follows:

x=-1.345 y= 0.1112 z= 9.1928
x=-1.231 y=-0.1251 z= 1001.2
x= 0.100 y= 1.4344E+6 z=-1.0100
x= 0.200 y= 0.0012 z=-1.3423E+4
x= 1.5E+5 y=-0.7666 z= 1027

The goal is to read this file and create a list with (x,y,z) 3-tuples,
and thereafter convert the nested list to a two-dimensional array with
which we can compute.

Note that there is sometimes a space between the = signs and the
following number and sometimes not. Splitting with respect to space
and extracting every second word is therefore not an option. We shall
present three solutions.

Solution 1: Substring Extraction. The file format looks very regular
with the x=, y=, and z= texts starting in the same columns at every line.
By counting characters, we realize that the x= text starts in column 2,
the y= text starts in column 16, while the z= text starts in column 31.
Introducing

x_start = 2
y_start = 16
z_start = 31

the three numbers in a line string are obtained as the substrings

x = line[x_start+2:y_start]
y = line[y_start+2:z_start]
z = line[z_start+2:]

The following code, found in file file2coor_v1.py, creates the coor

array with shape (n, 3), where n is the number of (x, y, z) coordinates.

infile = open(’xyz.dat’, ’r’)
coor = [] # list of (x,y,z) tuples
for line in infile:

x_start = 2
y_start = 16
z_start = 31
x = line[x_start+2:y_start]
y = line[y_start+2:z_start]
z = line[z_start+2:]
print ’debug: x="%s", y="%s", z="%s"’ % (x,y,z)
coor.append((float(x), float(y), float(z)))

infile.close()

6.3 Strings 299

from numpy import *
coor = array(coor)
print coor.shape, coor

The print statement inside the loop is always wise to include when
doing string manipulations, simply because counting indices for sub-
string limits quickly leads to errors. Running the program, the output
from the loop looks like this

debug: x="-1.345 ", y=" 0.1112 ", z=" 9.1928
"

for the first line in the file. The double quotes show the exact extent of
the extracted coordinates. Note that the last quote appears on the next
line. This is because line has a newline at the end (this newline must be
there to define the end of the line), and the substring line[z_start:]

contains the newline at the of line. Writing line[z_start:-1] would
leave the newline out of the z coordinate. However, this has no effect
in practice since we transform the substrings to float, and an extra
newline or other blanks make no harm.

The coor object at the end of the program has the value

[[-1.34500000e+00 1.11200000e-01 9.19280000e+00]
[-1.23100000e+00 -1.25100000e-01 1.00120000e+03]
[1.00000000e-01 1.43440000e+06 -1.01000000e+00]
[2.00000000e-01 1.20000000e-03 -1.34230000e+04]
[1.50000000e+05 -7.66600000e-01 1.02700000e+03]]

Solution 2: String Search. One problem with the solution approach
above is that the program will not work if the file format is subject to
a change in the column positions of x=, y=, or z=. Instead of hardcoding
numbers for the column positions, we can use the find method in string
objects to locate these column positions:

x_start = line.find(’x=’)
y_start = line.find(’y=’)
z_start = line.find(’z=’)

The rest of the code is similar to the complete program listed above,
and the complete code is stored in the file file2coor_v2.py.

Solution 3: String Split. String splitting is a powerful tool, also in the
present case. Let us split with respect to the equal sign. The first line
in the file then gives us the words

[’x’, ’-1.345 y’, ’ 0.1112 z’, ’ 9.1928’]

We throw away the first word, and strip off the last character in the
next word. The final word can be used as is. The complete program is
found in the file file2coor_v3.py and looks like

infile = open(’xyz.dat’, ’r’)
coor = [] # list of (x,y,z) tuples
for line in infile:

words = line.split(’=’)

300 6 Files, Strings, and Dictionaries

x = float(words[1][:-1])
y = float(words[2][:-1])
z = float(words[3])
coor.append((x, y, z))

infile.close()

from numpy import *
coor = array(coor)
print coor.shape, coor

More sophisticated examples of string operations appear in Chap-
ter 6.4.4.

6.4 Reading Data from Web Pages

Python has a module urllib which makes it possible to read data from
a web page as easily as we can read data from an ordinary file14. Before
we do this, a few concepts from the Internet world must be touched.

6.4.1 About Web Pages

Web pages are viewed with a web browser. There are many competing
browsers, although most people have only heard of Internet Explorer
from Microsoft. Mac users may prefer Safari, while Firefox and Opera
are browsers that run on different types of computers, including Win-
dows, Linux, and Mac.

Any web page you visit is associated with an address, usually some-
thing like

http://www.some.where.net/some/file.html

This type of web address is called a URL (which stands for Uniform Re-
source Locator15). The graphics you see in a web browser, i.e., the web
page you see with your eyes, is produced by a series of commands that
specifies the text on the page, the images, buttons to be pressed, etc.
Roughly speaking, these commands are like statements in computer
programs. The commands are stored in a text file and follow rules in
a language, exactly as you are used to when writing statements in a
programming language.

A common language for defining web pages is HTML. A web page is
then simply a text file with text containing HTML commands. Instead

14 In principle this is true, but in practice the text in web pages tend to be much more
complicated than the text in the files we have treated so far.

15 Another term is URI (Uniform Resource Identifier), which is replacing URL in
technical documentation. We stick to URL, however, in this book because Python’s
tools for accessing resources on the Internet have url as part of module and function
names.

6.4 Reading Data from Web Pages 301

of a physical file, the web page can also be the output text from a
program. In that case the URL is the name of the program file. The
web browser interprets the text and the commands, and displays the
information visually. Let us demonstrate this for a very simple web
page shown in Figure 6.4. This page was produced by the following

Fig. 6.4 Example of what a very simple HTML file looks like in a web browser.

text with embedded HTML commands:

<html>
<body bgcolor="orange">
<h1>A Very Simple HTML Page</h1> <!-- headline -->
Web pages are written in a language called
HTML.
Ordinary text is written as ordinary text, but when we
need links, headlines, lists,

emphasized words, or
 boldface text,

we need to embed the text inside HTML tags. We can also
insert GIF or PNG images, taken from other Internet sites,
if desired.
<hr> <!-- horizontal line -->

</body>
</html>

A typical HTML command consists of an opening and a closing tag.
For example, emphasized text is specified by enclosing the text inside
em (emphasize) tags:

emphasized words

The opening tag is enclosed in less than and greater than signs, while
the closing tag has an additional forward slash before the tag name.

In the HTML file we see an opening and closing html tag around the
whole text in the file. Similarly, there is a pair of body tags, where the
first one also has a parameter bgcolor which can be used to specify a
background color in the web page. Section headlines are specified by
enclosing the headline text inside h1 tags. Subsection headlines apply h2

tags, which results in a smaller font compared with h1 tags. Comments
appear inside <!- and ->. Links to other web pages are written inside

302 6 Files, Strings, and Dictionaries

a tags, with an argument href for the link’s web address. Lists apply
the ul (unordered list) tag, while each item is written with just an
opening tag li (list item), but no closing tag is necessary. Images are
also specified with just an opening tag having name img, and the image
file is given as a file name or URL of a file, enclosed in double quotes,
as the src parameter.

The ultra-quick HTML course in the previous paragraphs gives a
glimpse of how web pages can be constructed. One can either write the
HTML file by hand in a pure text editor, or one can use programs such
as Dream Weaver to help design the page graphically in a user-friendly
environment, and then the program can automatically generate the
right HTML syntax in files.

6.4.2 How to Access Web Pages in Programs

Why is it useful to know some HTML and how web pages are con-
structed? The reason is that the web is full of information that we can
get access to through programs and use in new contexts. What we can
get access to is not the visual web page you see, but the underlying
HTML file. The information you see on the screen appear in text form
in the HTML file, and by extracting text, we can get hold of the text’s
information in a program.

Given the URL as a string stored in a variable, there are two ways
of accessing the HTML text in a Python program:

1. Download the HTML file and store it as a local file with a given
name, say webpage.html:

import urllib
url = ’http://www.simula.no/research/scientific/cbc’
urllib.urlretrieve(url, filename=’webpage.html’)

2. Open the HTML file as a file-like object:

infile = urllib.urlopen(url)

This f has methods such as read, readline, and readlines.

6.4.3 Example: Reading Pure Text Files

HTML files are often like long and complicated programs. The informa-
tion you are interested in might be buried in lots of HTML tags and
ugly syntax. Extracting data from HTML files in Python programs
is therefore not always an easy task. How to approach this problem
is exemplified in Chapter 6.4.4. Nevertheless, the world of numerical
computing can occasionally be simpler: data that we are interested in

6.4 Reading Data from Web Pages 303

computing with often appear in plain text files which can be accessed
by URLs and viewed in web browsers. One example is temperature
data from cities around the world. The temperatures in Oslo from Jan
1, 1995, until today are found in the URL

ftp://ftp.engr.udayton.edu/jkissock/gsod/NOOSLO.txt

The data reside in an ordinary text file, because the URL ends with
a text file name NOOSLO.txt. This text file can be downloaded via the
URL:

import urllib
url = ’ftp://ftp.engr.udayton.edu/jkissock/gsod/NOOSLO.txt’
urllib.urlretrieve(url, filename=’Oslo.txt’)

By looking at the file Oslo.txt in a text editor, or simply by watch-
ing the web page in a web browser, we see that the file contains four
columns, with the number of the month (1-12), the date, the year, and
the temperature that day (in Fahrenheit). Here is an extract of the file:

1 1 1995 24.0
1 2 1995 22.4
1 3 1995 9.3
1 4 1995 6.1
1 5 1995 26.2
1 6 1995 24.8
1 7 1995 27.9
1 8 1995 33.0
1 9 1995 31.4
1 10 1995 29.4
1 11 1995 23.0

How can we load these file data into a Python program? First, we must
decide on the data structure for storing the data. A nested dictionary
could be handy for this purpose: temp[year][month][date]. That is,
given the year, the number of the month, and the date as keys, the
value of temp yields the corresponding temperature. The process of
loading the file into such a dictionary is then a matter of reading the
file line by line, and for each line, split the line into words, use the
three first words as keys and the last as value.

A first attempt to load the file data into the temps dictionary could
be like

infile = open(’Oslo.txt’, ’r’)
temps = {}
for line in infile:

month, date, year, temperature = line.split()
temps[year][month][date] = temperature

However, running these lines gives a KeyError: ’1995’. One can nor-
mally just assign new keys to a dictionary, but this is a nested dictio-
nary, and each level must be initialized, not just the first level (which
is initialized in the line before the for loop). Recall that for a period
of 15 years, temps will consist of 15 dictionaries, and each of these con-
tains 12 dictionaries for the months. This fact complicates the code:

304 6 Files, Strings, and Dictionaries

We must test if a year or month key is present, and if not, an empty
dictionary must be assigned. We must also transform the strings re-
turned by line.split() into int and float objects (month, date, and
year are integers while the temperature is a real number). The complete
program is listed below and available in the file webtemps.py.

import urllib
url = ’ftp://ftp.engr.udayton.edu/jkissock/gsod/NOOSLO.txt’
urllib.urlretrieve(url, filename=’Oslo.txt’)

infile = open(’Oslo.txt’, ’r’)
temps = {}
for line in infile:

month, date, year, temperature = line.split()
month = int(month)
date = int(date)
year = int(year)
temperature = float(temperature)
if not year in temps:

temps[year] = {}
if not month in temps[year]:

temps[year][month] = {}
temps[year][month][date] = temperature

infile.close()

pick a day to verify that temps is correct:
year = 2003; month = 3; date = 31
T = temps[year][month][date]
print ’%d.%d.%d: %.1f’ % (year, month, date, T)

Running this code results in
2003.3.31: 38.5

We can view the Oslo.txt file and realize that the printed temperature
is correct.

6.4.4 Example: Extracting Data from an HTML Page

The weather forcast on Yahoo! contains a lot of graphics and adver-
tisements along with weather data. Suppose you want to quickly see
today’s weather and temperature in a city. Can we make a program
that finds this information in the web page? The answer is yes if we can
download the page with urllib.urlretrieve (or open the web page as
a file with urllib.urlopen) and if we know some string operations to
help us search for some specific text.

The Yahoo! page for the weather in Oslo is (at the time of this
writing) found at

http://weather.yahoo.com/forecast/NOXX0029_c.html

All the text and images on this weather page are defined in the file
associated with this address. First we download the file,

6.4 Reading Data from Web Pages 305

import urllib
w = ’http://weather.yahoo.com/forecast/NOXX0029_c.html’
urllib.urlretrieve(url=w, filename=’weather.html’)

Since the weather and temperature data are known to reside some-
where inside this file, we take a look at the downloaded file, named
weather.html, in a pure text editor. What we see, is quite complicated
text like

<!-- BEGIN TOP SEARCH -->
<div id="ynneck">
<div id="searchbartop" class="searchbar">
<form action="http://news.search.yahoo.com/news/search" method="get">
Search:
<input type="text" name="p" size="30">
<!-- Include search dropdown box -->

<select name=c>
<option value="">All News & Blogs</option>
<option value=yahoo_news>Yahoo! News Only</option>
<option value=news_photos>News Photos</option>
<option value=av>Video/Audio</option>

The file is written in the HTML format, using a lot of different tag
names. Most of the text is uninteresting to us, but we see in the web
browser that the data we are looking for appear under a text “Current
conditions ...”. Searching for “Current conditions” in the weather.html

file brings us down to the middle of the file. Here, some interesting text
is embedded in some surrounding, uninteresting text:

<div class="forecast-module">
Current conditions as of 2:19 pm CET
<h3>Mostly Cloudy</h3>

<dl>
<dt>Feels Like:</dt>
<dd>2°</dd>
<dt>Barometer:</dt>

<dd>--</dd>
<dt>Humidity:</dt>
<dd>53%</dd>
<dt>Visibility:</dt>
<dd>
9.99 km</dd>

<dt>Dewpoint:</dt>
<dd>-3°</dd>

<dt>Wind:</dt>
<dd>N 24 kph</dd>

<dt>Sunrise:</dt>
<dd>6:19 am</dd>
<dt>Sunset:</dt>
<dd>
6:29 pm</dd>
</dd>
</dl>

<div id="forecast-temperature">
<h3>6°</h3>
<p>High: 4° Low: -2°</p>

We are interested in two pieces of text:

306 6 Files, Strings, and Dictionaries

1. After the line containing the text “Current conditions”, we have a
line stating today’s weather:

Current conditions as of 2:19 pm CET
<h3>Mostly Cloudy</h3>

2. After the line containing“forecast-temperature”, we have a line with
today’s temperature:

<div id="forecast-temperature">
<h3>6°</h3>

The text ° is a special HTML command for the degrees symbol.
We are not interested in this symbol, but the number prior to it.

We can extract the weather description and the temperature by run-
ning through all lines in the file, check if a line contains either “Current
conditions” or “forecast-temperature”, and in both cases extract infor-
mation from the next line. Since we need to go through all lines and
look at the line after the current one, it is a good strategy to load all
lines into a list and traverse the list with a for loop over list indices,
because when we are at a line with index i, we can easily look at the
next one with index i+1:

lines = infile.readlines()
for i in range(len(lines)):

line = lines[i] # short form
if ’Current conditions’ in line:

weather = lines[i+1][4:-6]
if ’forecast-temperature’ in line:

temperature = float(lines[i+1][4:].split(’&’)[0])
break # everything is found, jump out of loop

The lines computing weather and temperature probably need some
comments. Looking at a line containing the text which weather should
be set equal to,

<h3>Mostly Cloudy</h3>

we guess that in the general case we are intersted in the text between
<h3> and </h3>. The text in the middle can be extracted as a substring.
Since we do not know the length of the weather description, we count
from the right when creating the substring. The substring starts from
index 4 and should go to, but not include, index -6 (you might think
it would be index -5, but there is an invisible newline character at the
end of the line string which we must also count). A small test in an
interactive session can be used to control that we are doing the right
thing:

>>> s = "<h3>Mostly Cloudy</h3>\n"
>>> s[4:-6]
’Mostly Cloudy’

The extraction of the temperature is more involved. The actual line
looks like

6.4 Reading Data from Web Pages 307

<h3>6°</h3>

We want to extract the number that comes after <h3> and before the
ampersand sign. One method is to strip off the leading <h3> text by
extracting the substring lines[i+1][4:]. Then we can split this sub-
string with respect to the ampersand character. The first “word” from
this split is the temperature, but the type is a string, so we need to
convert it to float to be ready for calculations with the temperature
number. All these steps can be done separately to better explain the
individual tasks:

next_line = lines[i+1]
substring = next_line[4:]
words = substring.split(’&’)
temperature = words[0]
temperature = float(temperature)

The experienced programmer often prefers to condense the code and
combine the five statements into one:

temperature = float(lines[i+1][4:].split(’&’)[0])

Note that when we have found the temperature, there is no need to
examine more lines in the file. We therefore execute a break statement,
which forces the program control to jump out of the loop.

Finally, we wrap the code extracting the weather and temperature
conditions in a function:

def get_data(url):
urllib.urlretrieve(url=url, filename=’weather.html’)
infile = open(’weather.html’)
lines = infile.readlines()
...
infile.close()
return weather, temperature

We might visit the Yahoo! weather pages and pick out a collection of
cities and corresponding URLs, to be stored in a dictionary:

cities = {
’Sandefjord’:
’http://weather.yahoo.com/forecast/NOXX0032_c.html’,
’Oslo’:
’http://weather.yahoo.com/forecast/NOXX0029_c.html’,
’Gothenburg’:
’http://weather.yahoo.com/forecast/SWXX0007_c.html’,
’Copenhagen’:
’http://weather.yahoo.com/forecast/DAXX0009_c.html’,
}

A simple loop over this dictionary and a call to get_data gives a quick
look at the weather conditions and temperatures in several cities:

308 6 Files, Strings, and Dictionaries

for city in cities:
weather, temperature = get_data(cities[city])
print city, weather, temperature

The complete code is found in the file weather.py. A sample run on a
winter day gave this result:

Oslo Fair 3.0
Copenhagen Partly Cloudy 5.0
Sandefjord Fair 4.0
Gothenburg Fair 0.0

The techniques described above are useful when you need to extract
data from the web and process the data, either for presentation in a
compact format as above or for further calculations. Turning web page
information into compact text can also be useful for constructing SMS
messages to be sent to mobile phones.

Remark. Interpretation of text in files is based on string operations in
this book. A much more powerful and often more convenient approach
is to apply so-called regular expressions. An introduction to regular
expressions of relevance to scientific computations is given in the book
[5]. We strongly recommend to learn about regular expressions if you
end up interpreting a lot of HTML text in web pages. An even more
powerful technique to extract information from web pages is to use
an HTML parser, which comes with standard Python. This technique
requires more programming compared to using string operations or
regular expressions, but can handle cases that are impossible or difficult
to address with the two other techniques. Googling for “HTML parsing
Python” gives a lot of links to what HTML parsing is about and how
it is done.

6.5 Writing Data to File

Writing data to file is easy. There is basically one function to pay
attention to: outfile.write(s), which writes a string s to a file handled
by the file object outfile. Unlike print, outfile.write(s) does not
append a newline character to the written string. It will therefore often
be necessary to add a newline character,

outfile.write(s + ’\n’)

if the string s is meant to appear on a single line in the file and s does
not already contain a trailing newline character. File writing is then a
matter of constructing strings containing the text we want to have in
the file and for each such string call outfile.write.

An alternative syntax to outfile.write(s) is print f, s. This
print statement adds a newline character, as usual.

Writing to a file demands the file object f to be opened for writing:

6.5 Writing Data to File 309

write to new file, or overwrite file:
outfile = open(filename, ’w’)

append to the end of an existing file:
outfile = open(filename, ’a’)

6.5.1 Example: Writing a Table to File

Problem. As a worked example of file writing, we shall write out a
nested list with tabular data to file. A sample list may take look as

[[0.75, 0.29619813, -0.29619813, -0.75],
[0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75]]

Solution. We iterate through the rows (first index) in the list, and for
each row, we iterate through the column values (second index) and
write each value to the file. At the end of each row, we must insert a
newline character in the file to get a linebreak. The code resides in the
file write1.py:

data = [[0.75, 0.29619813, -0.29619813, -0.75],
[0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75]]

outfile = open(’tmp_table.dat’, ’w’)
for row in data:

for column in row:
outfile.write(’%14.8f’ % column)

outfile.write(’\n’)
outfile.close()

The resulting data file becomes
0.75000000 0.29619813 -0.29619813 -0.75000000
0.29619813 0.11697778 -0.11697778 -0.29619813
-0.29619813 -0.11697778 0.11697778 0.29619813
-0.75000000 -0.29619813 0.29619813 0.75000000

An extension of this program consists in adding column and row
headings:

column 1 column 2 column 3 column 4
row 1 0.75000000 0.29619813 -0.29619813 -0.75000000
row 2 0.29619813 0.11697778 -0.11697778 -0.29619813
row 3 -0.29619813 -0.11697778 0.11697778 0.29619813
row 4 -0.75000000 -0.29619813 0.29619813 0.75000000

To obtain this end result, we need to the add some statements to the
program write1.py. For the column headings we need to know the
number of columns, i.e., the length of the rows, and loop from 1 to this
length:

ncolumns = len(data[0])
outfile.write(’ ’)
for i in range(1, ncolumns+1):

outfile.write(’%10s ’ % (’column %2d’ % i))
outfile.write(’\n’)

310 6 Files, Strings, and Dictionaries

Note the use of a nested printf construction: The text we want to insert
is itself a printf string. We could also have written the text as ’column

’ + str(i), but then the length of the resulting string would depend
on the number of digits in i. It is recommended to always use printf
constructions for a tabular output format, because this gives automatic
padding of blanks so that the width of the output strings remain the
same. As always, the tuning of the widths is done in a trial-and-error
process.

To add the row headings, we need a counter over the row numbers:

row_counter = 1
for row in data:

outfile.write(’row %2d’ % row_counter)
for column in row:

outfile.write(’%14.8f’ % column)
outfile.write(’\n’)
row_counter += 1

The complete code is found in the file write2.py. We could, alterna-
tively, iterate over the indices in the list:

for i in range(len(data)):
outfile.write(’row %2d’ % (i+1))
for j in range(len(data[i])):

outfile.write(’%14.8f’ % data[i][j])
outfile.write(’\n’)

6.5.2 Standard Input and Output as File Objects

Reading user input from the keyboard applies the function raw_input as
explained in Chapter 3.1. The keyboard is a medium that the computer
in fact treats as a file, referred to as standard input.

The print command prints text in the terminal window. This
medium is also viewed as a file from the computer’s point of view and
called standard output. All general-purpose programming languages al-
low reading from standard input and writing to standard output. This
reading and writing can be done with two types of tools, either file-like
objects or special tools like raw_input (see Chapter 3.1.1) and print in
Python. We will here describe the file-line objects: sys.stdin for stan-
dard input and sys.stdout for standard output. These objects behave
as file objects, except that they do not need to be opened or closed.
The statement

s = raw_input(’Give s:’)

is equivalent to

6.5 Writing Data to File 311

print ’Give s: ’,
s = sys.stdin.readline()

Recall that the trailing comma in the print statement avoids the new-
line that print by default adds to the output string. Similarly,

s = eval(raw_input(’Give s:’))

is equivalent to

print ’Give s: ’,
s = eval(sys.stdin.readline())

For output to the terminal window, the statement

print s

is equivalent to

sys.stdout.write(s + ’\n’)

Why it is handy to have access to standard input and output as file
objects can be illustrated by an example. Suppose you have a function
that reads data from a file object infile and writes data to a file object
outfile. A sample function may take the form

def x2f(infile, outfile, f):
for line in infile:

x = float(line)
y = f(x)
outfile.write(’%g\n’ % y)

This function works with all types of files, including web pages as
infile (see Chapter 6.4). With sys.stdin as infile and/or sys.stdout
as outfile, the x2f function also works with standard input and/or
standard output. Without sys.stdin and sys.stdout, we would need
different code, employing raw_input and print, to deal with standard
input and output. Now we can write a single function that deals with
all file media in a unified way.

There is also something called standard error. Usually this is the
terminal window, just as standard output, but programs can distin-
guish between writing ordinary output to standard output and error
messages to standard error, and these output media can be redirected
to, e.g., files such that one can separate error messages from ordinary
output. In Python, standard error is the file-like object sys.stderr. A
typical application of sys.stderr is to report errors:

if x < 0:
sys.stderr.write(’Illegal value of x’); sys.exit(1)

This message to sys.stderr is an alternative to print or raising an
exception.

312 6 Files, Strings, and Dictionaries

Redirecting Standard Input, Output, and Error. Standard output from
a program prog can be redirected to a file out using the greater than
sign16:

Terminal

Unix/DOS> prog > output

That is, the program writes to output instead of the terminal window.
Standard error can be redirected by

Terminal

Unix/DOS> prog &> output

When the program reads from standard input, we can equally well
redirect standard input to a file, say with name raw_input, such that
the program reads from this file rather than from the keyboard:

Terminal

Unix/DOS> prog < input

Combinations are also possible:

Terminal

Unix/DOS> prog < input > output

Note. The redirection of standard output, input, and error does not
work for programs run inside IPython, only when run directly in the
operating system in a terminal window.

Inside a Python program we can also let standard input, output,
and error work with ordinary files instead. Here is the technique:

sys_stdout_orig = sys.stdout
sys.stdout = open(’output’, ’w’)
sys_stdin_orig = sys.stdin
sys.stdin = open(’input’, ’r’)

Now, any print statement will write to the output file, and any
raw_input call will read from the input file. (Without storing the orig-
inalsys.stdout and sys.stdin objects in new variables, these objects
would get lost in the redefinition above and we would never be able to
reach the common standard input and output in the program.)

6.5.3 Reading and Writing Spreadsheet Files

From school you are probably used to spreadsheet programs such as
Microsoft Excel or OpenOffice. This type of program is used to rep-
resent a table of numbers and text. Each table entry is known as a

16 prog can be any program, including a Python program run as, e.g., python

myprog.py.

6.5 Writing Data to File 313

cell, and one can easily perform calculations with cells that contain
numbers. The application of spreadsheet programs for mathematical
computations and graphics is steadily growing.

Also Python may be used to do spreadsheet-type calculations on
tabular data. The advantage of using Python is that you can easily
extend the calculations far beyond what a spreadsheet program can do.
However, even if you can view Python as a substitute for a spreadsheet
program, it may be beneficial to combine the two. Suppose you have
some data in a spreadsheet. How can you read these data into a Python
program, perform calculations on the data, and thereafter read the data
back to the spreadsheet program? This is exactly what we will explain
below through an example. With this example, you should understand
how easy it is to combine Excel or OpenOffice with your own Python
programs.

The table of data in a spreadsheet can be saved in so-called CSV
files, where CSV stands for comma separated values. The CSV file for-
mat is very simple: each row in the spreadsheet table is a line in the
file, and each cell in the row is separated by a comma or some other
specified separation character. CSV files can easily be read into Python
programs, and the table of cell data can be stored in a nested list (table,
cf. Chapter 2.1.7), which can be processed as we desire. The modified
table of cell data can be written back to a CSV file and read into the
spreadsheet program for further processing.

Figure 6.5 shows a simple spreadsheet in the OpenOffice program.
The table contains 4 × 4 cells, where the first row contains column
headings and the first column contains row headings. The remaining
3 × 3 subtable contains numbers that we may compute with. Let us

Fig. 6.5 A simple spreadsheet in OpenOffice.

314 6 Files, Strings, and Dictionaries

save this spreadsheet to a file in the CSV format. The complete file
will typically look as follows:

,"year 1","year 2","year 3"
"person 1",651000,651000,651000
"person 2",1100500,950100,340000
"person 3",740000,780000,800000

Reading CSV Files. Our goal is to write a Python code for loading
the spreadsheet data into a table. The table is technically a nested list,
where each list element is a row of the table, and each row is a list of
the table’s column values. CSV files can be read, row by row, using the
csv module from Python’s standard library. The recipe goes like this,
if the data reside in the CSV file budget.csv:

infile = open(’budget.csv’, ’r’)
import csv
table = []
for row in csv.reader(infile):

table.append(row)
infile.close()

The row variable is a list of column values that are read from the file
by the csv module. The three lines computing table can be condensed
to one using a list comprehension:

table = [row for row in csv.reader(infile)]

We can easily print table,

import pprint
pprint.pprint(table)

to see what the spreadsheet looks like when it is represented as a nested
list in a Python program:

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, ’651000’, ’651000’, ’651000’],
[’person 2’, ’1100500’, ’950100’, ’340000’],
[’person 3’, ’740000’, ’780000’, ’800000’]]

Observe now that all entries are surrounded by quotes, which means
that all entries are string (str) objects. This is a general rule: the csv

module reads all cells into string objects. To compute with the num-
bers, we need to transform the string objects to float objects. The
transformation should not be applied to the first row and first column,
since the cells here hold text. The transformation from strings to num-
bers therefore applies to the indices r and c in table (table[r][c]),
such that the row counter r goes from 1 to len(table)-1, and the col-
umn counter c goes from 1 to len(table[0])-1 (len(table[0]) is the
length of the first row, assuming the lengths of all rows are equal to
the length of the first row). The relevant Python code for this trans-
formation task becomes

6.5 Writing Data to File 315

for r in range(1,len(table)):
for c in range(1, len(table[0])):

table[r][c] = float(table[r][c])

A pprint.pprint(table) statement after this transformation yields

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, 651000.0, 651000.0, 651000.0],
[’person 2’, 1100500.0, 950100.0, 340000.0],
[’person 3’, 740000.0, 780000.0, 800000.0]]

The numbers now have a decimal and no quotes, indicating that the
numbers are float objects and hence ready for mathematical calula-
tions.

Processing Data. Let us perform a very simple calculation with table,
namely adding a final row with the sum of the numbers in the columns:

row = [0.0]*len(table[0])
row[0] = ’sum’
for c in range(1, len(row)):

s = 0
for r in range(1, len(table)):

s += table[r][c]
row[c] = s

As seen, we first create a list row consisting of zeros. Then we insert
a text in the first column, before we invoke a loop over the numbers
in the table and compute the sum of each column. The table list now
represents a spreadsheet with four columns and five rows:

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, 651000.0, 651000.0, 651000.0],
[’person 2’, 1100500.0, 950100.0, 340000.0],
[’person 3’, 740000.0, 780000.0, 800000.0],
[’sum’, 2491500.0, 2381100.0, 1791000.0]]

Writing CSV Files. Our final task is to write the modified table list
back to a CSV file so that the data can be loaded in a spreadsheet
program. The write task is done by the code segment

outfile = open(’budget2.csv’, ’w’)
writer = csv.writer(outfile)
for row in table:

writer.writerow(row)
outfile.close()

The budget2.csv looks like this:

,year 1,year 2,year 3
person 1,651000.0,651000.0,651000.0
person 2,1100500.0,950100.0,340000.0
person 3,740000.0,780000.0,800000.0
sum,2491500.0,2381100.0,1791000.0

The final step is to read budget2.csv into a spreadseet. The result is
displayed in Figure 6.6 (in OpenOffice one must specify in the “open”
dialog that the spreadsheet data are separated by commas, i.e., that
the file is in CSV format).

316 6 Files, Strings, and Dictionaries

Fig. 6.6 A spreadsheet processed in a Python program and loaded back into OpenOf-
fice.

The complete program reading the budget.csv file, processing its
data, and writing the budget2.csv file can be found in rw_csv.py. With
this example at hand, you should be in a good position to combine
spreadsheet programs with your own Python programs.

Remark. You may wonder why we used the csv module to read and
write CSV files when such files have comma separated values which
we can extract by splitting lines with respect to the comma (in Chap-
ter 6.2.6 use used this technique to read a CSV file):

infile = open(’budget.csv’, ’r’)
for line in infile:

row = line.split(’,’)

This works well for the present budget.csv file, but the technique
breaks down when a text in a cell contains a comma, for instance
"Aug 8, 2007". The line.split(’,’) will split this cell text, while the
csv.reader functionality is smart enough to avoid splitting text cells
with a comma.

Representing Number Cells with Numerical Python Arrays. Instead of
putting the whole spreadsheet into a single nested list, we can make a
Python data structure more tailored to the data at hand. What we have
are two headers (for rows and columns, respectively) and a subtable
of numbers. The headers can be represented as lists of strings, while
the subtable could be a two-dimensional Numerical Python array. The
latter makes it easier to implement various mathematical operations on
the numbers. A dictionary can hold all the three items: two header lists
and one array. The relevant code for reading, processing, and writing
the data is shown below and can be found in the file rw_csv_numpy.py:

6.6 Summary 317

infile = open(’budget.csv’, ’r’)
import csv
table = [row for row in csv.reader(infile)]
infile.close()

convert subtable of numbers (string to float):
subtable = [[float(c) for c in row[1:]] for row in table[1:]]

data = {’column headings’: table[0][1:],
’row headings’: [row[0] for row in table[1:]],
’array’: array(subtable)}

add a new row with sums:
data[’row headings’].append(’sum’)
a = data[’array’] # short form
data[’column sum’] = [sum(a[:,c]) for c in range(a.shape[1])]

outfile = open(’budget2.csv’, ’w’)
writer = csv.writer(outfile)
turn data dictionary into a nested list first (for easy writing):
table = a.tolist() # transform array to nested list
table.append(data[’column sum’])
table.insert(0, data[’column headings’])
extend table with row headings (a new column):
table = [table[r].insert(0, data[’row headings’][r]) \

for r in range(len(table))]
for row in table:

writer.writerow(row)
outfile.close()

The code makes heavy use of list comprehensions, and the transforma-
tion between a nested list, for file reading and writing, and the data

dictionary, for representing the data in the Python program, is non-
trivial. If you manage to understand every line in this program, you
have digested a lot of topics in Python programming!

6.6 Summary

6.6.1 Chapter Topics

File Operations. This chapter has been concerned with file reading and
file writing. First a file must be openend, either for reading, writing,
or appending:

infile = open(filename, ’r’) # read
outfile = open(filename, ’w’) # write
outfile = open(filename, ’a’) # append

There are four basic reading commands:

line = infile.readline() # read the next line
filestr = infile.read() # read rest of file into string
lines = infile.readlines() # read rest of file into list
for line in infile: # read rest of file line by line

File writing is usually about repeatedly using the command

318 6 Files, Strings, and Dictionaries

outfile.write(s)

where s is a string. Contrary to print s , no newline is added to s in
olitfile.write(s).

When the reading and writing is finished,

somefile.close()

should be called, where somefile is the file object.

Downloading Internet Files. Internet files can be downloaded if we
know their URL:

import urllib
urI = .http://www.some.where.net/path/thing.html.
urllib.urlretrieveCurl. filename='thing.htrnl')

The downloaded information is put in the local file thing. html in the
current working folder. Alternatively, we can open the URL as a file
object:

webpage = urllib.urlopen(url)

HTML files are often messy to interpret by string operations.

Table 6.1 Summary of important funct.ionali ty for dictionary objects.

a = {}

a = {'point': [0,0.1], 'value': 7}
a dict(point=[2,7], value=3)
a L'fidde t I = True
a L'podnt t l
'value' in a
del a l epodnt "I
a.keysO

a. values 0
len(a)

for key in a:
for key in sorted(a):
isinstance(a. diet)

initialize an empty dictionary
initialize a dictionary
initiu.lizo a dictionary w/stt-ing kcys
add new key-value pair to a dictionary
get value corresponding to key point
True if value is a key in a
delete a key-value pair from a
list of keys
list of values
number of key-value pairs in a
loop over keys in unknown order
loop over keys in alphabetic order
is True if a is a dictionary

Dictionaries. Array or list-like objects with text or other (fixed-valued)
Python objects as indices are called dictionaries. They are very useful
for storing general collections of objects in a single data structure.
Table 6.1 displays some of the most important dictionary operations.

Striuqs. Some of the most useful functionalities in a string object s are
listed below.

• Split the string into substrings separated by delimiter:

6.6 Summary

words = s.split(delimiter)

• Join elements in a list of strings:

string = delimiter.join(words[i:j])

• Extract substring:

substring = s[2:n-4]

• Substitute a substring by new a string:

modified_string = s.replace(sub, new)

• Search for the start (first index) of some text:

index = s.find(text)
if index == -1:

print 'Could not find II%Sll in "%Sll (text, s)
else:

substring = s[index:] # strip off chars before text

• Check if a string contains whitespaee only:

if s. isspace 0 :

6.6.2 Summarizing Example: A File Database

Problem. We have a file containing information about the courses that
students have taken. The file format consists of blocks with student
data, where each block starts with the student's name (Name:), followed
by the courses that the student has taken. Each course line starts with
the name of the course, then comes the semester when the exam was
taken, then the size of the course in terms of credit points, and finally
the grade is listed (letters A to F). Here is an example of a file with
three student entries:

319

Name: John Doe
Astronomy
Introductory Physics
Calculus I
Calculus II
Linear Algebra
Quantum Mechanics I
Quantum Mechanics II
Numerical Linear Algebra
Numerical Methods

Name: Jan Modaal
Calculus I
Calculus II
Introductory C++ Programming
Introductory Python Programming
Astronomy

2003
2003
2003
2004
2004
2004
2005
2004
2004

2005
2006
2005
2006
2005

fall 10 A
fall 10 C
fall 10 A
spring 10 B
spring 10 C
fall IO A
spring 10 A
fall 5 E
spring 20 C

fall 10 A
spring 10 A
fall 15 D
spring 5 A
fall 10 A

320 6 Files, Strings, and Dictionaries

Basic Philosophy 2005 fall 10 F

Name: Kari Nordmann
Introductory Python Programming 2006 spring 5 A
Astronomy 2005 fall 10 D

Our problem consists of reading this file into a dictionary data with
the student name as key and a list of courses as value. Each element in
the list of courses is a dictionary holding the course name, the semester,
the credit points, and the grade. A value in the data dictionary may
look as

’Kari Nordmann’: [{’credit’: 5,
’grade’: ’A’,
’semester’: ’2006 spring’,
’title’: ’Introductory Python Programming’},
{’credit’: 10,
’grade’: ’D’,
’semester’: ’2005 fall’,
’title’: ’Astronomy’}],

Having the data dictionary, the next task is to print out the average
grade of each student.

Solution. We divide the problem into two major tasks: loading the file
data into the data dictionary, and computing the average grades. These
two tasks are naturally placed in two functions.

We need to have a strategy for reading the file and interpreting the
contents. It will be natural to read the file line by line, and for each
line check if this is a line containing a new student’s name, a course
information line, or a blank line. In the latter case we jump to the
next pass in the loop. When a new student name is encountered, we
initialize a new entry in the data dictionary to an empty list. In the
case of a line about a course, we must interpret the contents on that
line, which we postpone a bit.

We can now sketch the algorithm described above in terms of some
unfinished Python code, just to get the overview:

def load(studentfile):
infile = open(studentfile, ’r’)
data = {}
for line in infile:

i = line.find(’Name:’)
if i != -1:

line contains ’Name:’, extract the name
...

elif line.isspace(): # blank line?
continue # go to next loop iteration

else:
this must be a course line
interpret the line
...

infile.close()
return data

6.6 Summary 321

If we find ’Name:’ as a substring in line, we must extract the name.
This can be done by the substring line[i+5:]. Alternatively, we can
split the line with respect to colon and strip off the first word:

words = line.split(’:’)
name = ’ ’.join(words[1:])

We have chosen the former strategy of extracting the name as a sub-
string in the final program.

Each course line is naturally split into words for extracting informa-
tion:

words = line.split()

The name of the course consists of a number of words, but we do not
know how many. Nevertheless, we know that the final words contain
the semester, the credit points, and the grade. We can hence count
from the right and extract information, and when we are finished with
the semester information, the rest of the words list holds the words in
the name of the course. The code goes as follows:

grade = words[-1]
credit = int(words[-2])
semester = ’ ’.join(words[-4:-2])
course_name = ’ ’.join(words[:-4])
data[name].append({’title’: course_name,

’semester’: semester,
’credit’: credit,
’grade’: grade})

This code is a good example of the usefulness of split and join opera-
tions when extracting information from a text.

Now to the second task of computing the average grade. Since the
grades are letters we cannot compute with them. A natural way to pro-
ceed is to convert the letters to numbers, compute the average number,
and then convert that number back to a letter. Conversion between let-
ters and numbers is easily represented by a dictionary:

grade2number = {’A’: 5, ’B’: 4, ’C’: 3, ’D’: 2, ’E’: 1, ’F’: 0}

To convert from numbers to grades, we construct the “inverse” dictio-
nary:

number2grade = {}
for grade in grade2number:

number2grade[grade2number[grade]] = grade

In the computation of the average grade we should use a weighted sum
such that larger courses count more than smaller courses. The weighted
mean value of a set of numbers ri with weights wi, i = 0, . . . , n − 1, is
given by

322 6 Files, Strings, and Dictionaries∑n−1
i=0 wiri∑n−1
i=0 wi

.

This weighted mean value must then be rounded to the nearest integer,
which can be used as key in number2grade to find the corresponding
grade expressed as a letter. The weight wi is naturally taken as the
number of credit points in the course with grade ri. The whole process
is performed by the following function:

def average_grade(data, name):
sum = 0; weights = 0
for course in data[name]:

weight = course[’credit’]
grade = course[’grade’]
sum += grade2number[grade]*weight
weights += weight

avg = sum/float(weights)
return number2grade[round(avg)]

The complete code is found in the file students.py. Running this pro-
gram gives the following output of the average grades:

John Doe: B
Kari Nordmann: C
Jan Modaal: C

One feature of the students.py code is that the output of the names
are sorted after the last name. How can we accomplish that? A straight
for name in data loop will visit the keys in an unknown (random)
order. To visit the keys in alphabetic order, we must use

for name in sorted(data):

This default sort will sort with respect to the first character in the
name strings. We want a sort according to the last part of the name.
A tailored sort function can then be written (see Exercise 2.44 for an
introduction to tailored sort functions). In this function we extract the
last word in the names and compare them:

def sort_names(name1, name2):
last_name1 = name1.split()[-1]
last_name2 = name2.split()[-2]
if last_name1 < last_name2:

return -1
elif last_name1 > last_name2:

return 1
else:

return 0

We can now pass on sort_names to the sorted function to get a sequence
that is sorted with respect to the last word in the students’ names:

for name in sorted(data, sort_names):
print ’%s: %s’ % (name, average_grade(data, name))

6.7 Exercises 323

6.7 Exercises

Exercise 6.1. Read a two-column data file.
The file src/files/xy.dat contains two columns of numbers, corre-

sponding to x and y coordinates on a curve. The start of the file looks
as this:

-1.0000 -0.0000
-0.9933 -0.0087
-0.9867 -0.0179
-0.9800 -0.0274
-0.9733 -0.0374

Make a program that reads the first column into a list x and the second
column into a list y. Then convert the lists to arrays, and plot the curve.
Print out the maximum and minimum y coordinates. (Hint: Read the
file line by line, split each line into words, convert to float, and append
to x and y.) Name of program file: read_2columns.py �
Exercise 6.2. Read a data file.

The files density_of_water.dat and density_of_air.dat files in the
folder src/files contain data about the density of water and air (resp.)
for different temperatures. The data files have some comment lines
starting with # and some lines are blank. The rest of the lines contain
density data: the temperature in the first column and the correspond-
ing density in the second column. The goal of this exercise is to read
the density data and plot them. Let the program take the name of
the data file as command-line argument, load the density data into
NumPy arrays, and plot the data using circles for the data points.
Demonstrate that the program can read both files. Name of program
file: read_density_data.py �
Exercise 6.3. Simplify the implementation of Exer. 6.1.

Files with data in a tabular fashion are very common and so is
the operation of the reading the data into arrays. Therefore, the
scitools.filetable module offers easy-to-use functions for load-
ing data files with columns of numbers into NumPy arrays. First
read about scitools.filetable using pydoc in a terminal window
(cf. page 98). Then solve Exercise 6.1 using appropriate func-
tions from the scitools.filetable module. Name of program file:
read_2columns_filetable.py. �
Exercise 6.4. Fit a polynomial to data.

The purpose of this exercise is to find a simple mathematical formula
for the how the density of water or air depends on the temperature.
First, load the density data from file as explained in Exercises 6.2 or
6.3. Then we want to experiment with NumPy utilities that can find a
polynomial that approximate the density curve.

NumPy has a function polyfit(x, y, deg) for finding a “best fit” of
a polynomial of degree deg to a set of data points given by the array

324 6 Files, Strings, and Dictionaries

arguments x and y. The polyfit function returns a list of the coeffi-
cients in the fitted polynomial, where the first element is the coefficient
for the term with the highest degree, and the last element corresponds
to the constant term. For example, given points in x and y, polyfit(x,
y, 1) returns the coefficients a, b in a polynomial a*x + b that fits the
data in the best way17.

NumPy also has a utility poly1d which can take the tuple or list of
coefficients calculated by, e.g., polyfit and return the polynomial as
a Python function that can be evaluated. The following code snippet
demonstrates the use of polyfit and poly1d:

coeff = polyfit(x, y, deg)
p = poly1d(coeff)
print p # prints the polynomial expression
y_fitted = p(x)
plot(x, y, ’r-’, x, y_fitted, ’b-’,

legend=(’data’, ’fitted polynomial of degree %d’ % deg’))

For the density–temperature relationship we want to plot the data
from file and two polynomial approximations, corresponding to a 1st
and 2nd degree polynomial. From a visual inspection of the plot, sug-
gest simple mathematical formulas that relate the density of air to
temperature and the density of water to temperature. Make three sep-
arate plots of the Name of program file: fit_density_data.py �
Exercise 6.5. Read acceleration data and find velocities.

A file src/files/acc.dat contains measurements a0, a1, . . . , an−1 of
the acceleration of an object moving along a straight line. The mea-
surement ak is taken at time point tk = kΔt, where Δt is the time
spacing between the measurements. The purpose of the exercise is to
load the acceleration data into a program and compute the velocity
v(t) of the object at some time t.

In general, the acceleration a(t) is related to the velocity v(t) through
v′(t) = a(t). This means that

v(t) = v(0) +

∫ t

0
a(τ)dτ . (6.1)

If a(t) is only known at some discrete, equally spaced points in time,
a0, . . . , an−1 (which is the case in this exercise), we must compute the
integral (6.1) in numerically, for example by the Trapezoidal rule:

v(tk) ≈ Δt

(
1

2
a0 +

1

2
ak +

k−1∑
i=1

ai

)
, 1 ≤ k ≤ n − 1 . (6.2)

17 More precisely, a line y = ax+b is a“best fit”to the data points (xi, yi), i = 0, . . . , n−1
if a and b are chosen to make the sum of squared errors R =

Pn−1

j=0
(yj − (axj + b))2

as small as possible. This approach is known as least squares approximation to data
and proves to be extremely useful throughout science and technology.

6.7 Exercises 325

We assume v(0) = 0 so that also v0 = 0.
Read the values a0, . . . , an−1 from file into an array, plot the accel-

eration versus time, and use (6.2) to compute one v(tk) value, where
Δt and k ≥ 1 are specified on the command line. Name of program
file: acc2vel_v1.py. �
Exercise 6.6. Read acceleration data and plot velocities.

The task in this exercise is the same as in Exercise 6.5, except that
we now want to compute v(tk) for all time points tk = kΔt and plot
the velocity versus time. Repeated use of (6.2) for all k values is very
inefficient. A more efficient formula arises if we add the area of a new
trapezoid to the previous integral:

v(tk) = v(tk−1) +

tk∫
tk−1

a(τ)dτ ≈ v(tk−1) + Δt
1

2
(ak−1 + ak), (6.3)

for k = 1, 2, ldots, n− 1, while v0 = 0. Use this formula to fill an array
v with velocity values. Now only Δt is given on the command line, and
the a0, . . . , an−1 values must be read from file as in Exercise 6.5. Name
of program file: acc2vel.py. �
Exercise 6.7. Find velocity from GPS coordinates.

Imagine that a GPS device measures your position at every s
seconds. The positions are stored as (x, y) coordinates in a file
src/files/pos.dat with the an x and y number on each line, except
for the first line which contains the value of s.

First, load s into a float variable and the x and y numbers into
two arrays and draw a straight line between the points (i.e., plot the y
coordinates versus the x coordinates).

The next task is to compute and plot the velocity of the movements.
If x(t) and y(t) are the coordinates of the positions as a function of
time, we have that the velocity in x direction is vx(t) = dx/dt, and the
velocity in y direction is vy = dy/dt. Since x and y are only known for
some discrete times, tk = ks, k = 0, . . . , n − 1, we must use numerical
differentation. A simple (forward) formula is

vx(tk) ≈ x(tk+1) − x(tk)

s
, vy(tk) ≈ y(tk+1) − y(tk)

s
, k = 0, . . . , n−2 .

Compute arrays vx and vy with velocities based on the formulas above
for vx(tk) and vy(tk), k = 0, . . . , n−2. Plot vx versus time and vy versus
time. Name of program file: position2velocity.py. �
Exercise 6.8. Make a dictionary from a table.

The file src/files/constants.txt contains a table of the values and
the dimensions of some fundamental constants from physics. We want
to load this table into a dictionary constants, where the keys are

326 6 Files, Strings, and Dictionaries

the names of the constants. For example, constants[’gravitational

constant’] holds the value of the gravitational constant (6.67259 ·
10−11) in Newton’s law of gravitation. You may either initialize
the dictionary by a program that reads and interprets the text in
the file, or you may manually cut and paste text in the file into
a program where you define the dictionary. Name of program file:
fundamental_constants.py. �
Exercise 6.9. Explore syntax differences: lists vs. dictionaries.

Consider this code:

t1 = {}
t1[0] = -5
t1[1] = 10.5

Explain why the lines above work fine while the ones below do not:

t2 = []
t2[0] = -5
t2[1] = 10.5

What must be done in the last code snippet to make it work properly?
Name of program file: list_vs_dict.py. �
Exercise 6.10. Improve the program from Ch. 6.2.4.

Consider the program density.py from Chapter 6.2.4. One problem
we face when implementing this program is that the name of the sub-
stance can contain one or two words, and maybe more words in a more
comprehensive table. The purpose of this exercise is to use string op-
erations to shorten the code and make it more general. Implement the
following two methods in separate functions in the same program, and
control that they give the same result.

1. Let substance consist of all the words but the last, using the join

method in string objects to combine the words.
2. Observe that all the densities start in the same column file and

use substrings to divide line into two parts. (Hint: Remember to
strip the first part such that, e.g., the density of ice is obtained as
densities[’ice’] and not densities[’ice ’].)

Name of program file: density_improved.py. �
Exercise 6.11. Interpret output from a program.

The program src/basic/lnsum.py produces, among other things, this
output:

epsilon: 1e-04, exact error: 8.18e-04, n=55
epsilon: 1e-06, exact error: 9.02e-06, n=97
epsilon: 1e-08, exact error: 8.70e-08, n=142
epsilon: 1e-10, exact error: 9.20e-10, n=187
epsilon: 1e-12, exact error: 9.31e-12, n=233

Redirect the output to a file. Write a Python program that reads the
file and extracts the numbers corresponding to epsilon, exact error,

6.7 Exercises 327

and n. Store the numbers in three arrays and plot epsilon and the
exact error versus n. Use a logarithmic scale on the y axis, which is
enabled by the log=’y’ keyword argument to the plot function. Name
of program file: read_error.py. �
Exercise 6.12. Make a dictionary.

Based on the stars data in Exercise 2.44, make a dictionary where
the keys contain the names of the stars and the values correspond to
the luminosity. Name of program file: stars_data_dict1.py. �
Exercise 6.13. Make a nested dictionary.

Store the data about stars from Exercise 2.44 in a nested dictionary
such that we can look up the distance, the apparent brightness, and
the luminosity of a star with name N by stars[N][’distance’],
stars[N][’apparent brightness’], and stars[N][’luminosity’].
Name of program file: stars_data_dict2.py. �
Exercise 6.14. Make a nested dictionary from a file.

The file src/files/human_evolution.txt holds information about
various human species and their hight, weight, and brain volume. Make
a program that reads this file and stores the tabular data in a nested
dictionary humans. The keys in humans correspond to the specie name
(e.g., “homo erectus”), and the values are dictionaries with keys for
“height”, “weight”, “brain volume”, and “when” (the latter for when the
specie lived). For example, humans[’homo neanderthalensis’][’mass’]

should equal ’55-70’. Let the program write out the humans dictionary
in a nice tabular form similar to that in the file. Name of program file:
humans.py. �
Exercise 6.15. Compute the area of a triangle.

The purpose of this exercise is to write an area function as in Exer-
cise 2.17, but now we assume that the vertices of the triangle is stored
in a dictionary and not a list. The keys in the dictionary correspond
to the vertex number (1, 2, or 3) while the values are 2-tuples with
the x and y coordinates of the vertex. For example, in a triangle with
vertices (0, 0), (1, 0), and (0, 2) the vertices argument becomes

{1: (0,0), 2: (1,0), 3: (0,2)}

Name of program file: area_triangle_dict.py. �
Exercise 6.16. Compare data structures for polynomials.

Write a code snippet that uses both a list and a dictionary to repre-
sent the polynomial −1

2 + 2x100. Print the list and the dictionary, and
use them to evaluate the polynomial for x = 1.05 (you can apply the
poly1 and poly2 functions from Chapter 6.2.3). Name of program file:
poly_repr.py. �

328 6 Files, Strings, and Dictionaries

Exercise 6.17. Compute the derivative of a polynomial.
A polynomial can be represented by a dictionary as explained in

Chapter 6.2.3. Write a function diff for differentiating such a polyno-
mial. The diff function takes the polynomial as a dictionary argument
and returns the dictionary representation of the derivative. Recall the
formula for differentiation of polynomials:

d

dx

n∑
j=0

cjx
j =

n∑
j=1

jcjx
j−1 . (6.4)

This means that the coefficient of the xj−1 term in the derivative equals
j times the coefficient of xj term of the original polynomial. With p

as the polynomial dictionary and dp as the dictionary representing the
derivative, we then have dp[j-1] = k*p[j] for j running over all keys
in p, except when j equals 0.

Here is an example of the use of the function diff:

>>> p = {0: -3, 3: 2, 5: -1} # -3 + 2*x**3 - x**5
>>> diff(p) # should be 6*x**2 - 5*x**4
{2: 6, 4: -5}

Name of program file: poly_diff.py. �
Exercise 6.18. Generalize the program from Ch. 6.2.6.

The program from Chapter 6.2.6 is specialized for three particular
companies. Suppose you download n files from finance.yahoo.com, all
with monthly stock price data for the same period of time. Also suppose
you name these files company.csv, where company reflects the name of
the company. Modify the program from Chapter 6.2.6 such that it
reads a set of filenames from the command line and creates a plot that
compares the evolution of the corresponding stock prices. Normalize all
prices such that they initially start at a unit value. Name of program
file: stockprices3.py. �
Exercise 6.19. Write function data to file.

We want to dump x and f(x) values to a file, where the x values
appear in the first column and the f(x) values appear in the second.
Choose n equally spaced x values in the interval [a, b]. Provide f , a,
b, n, and the filename as input data on the command line. Use the
StringFunction tool (see Chapters 3.1.4 and 4.4.3) to turn the textual
expression for f into a Python function. (Note that the program from
Exercise 6.1 can be used to read the file generated in the present ex-
ercise into arrays again for visualization of the curve y = f(x).) Name
of program files write_cml_function.py. �
Exercise 6.20. Specify functions on the command line.

Explain what the following two code snippets do and give an example
of how they can be used. Snippet 1:

6.7 Exercises 329

import sys
from scitools.StringFunction import StringFunction
parameters = {}
for prm in sys.argv[4:]:

key, value = prm.split(’=’)
parameters[key] = eval(value)

f = StringFunction(sys.argv[1], independent_variables=sys.argv[2],
**parameters)

var = float(sys.argv[3])
print f(var)

Snippet 2:

import sys
from scitools.StringFunction import StringFunction
f = eval(’StringFunction(sys.argv[1], ’ + \

’independent_variables=sys.argv[2], %s)’ % \
(’, ’.join(sys.argv[4:])))

var = float(sys.argv[3])
print f(var)

Hint: Read about the StringFunction tool in Chapter 3.1.4 and about
a variable number of keyword arguments in Appendix E.5. Name of
program file: cml_functions.py. �
Exercise 6.21. Interpret function specifications.

To specify arbitrary functions f(x1, x2, . . . ; p1, p2, . . .) with indepen-
dent variables x1, x2, . . . and a set of parameters p1, p2, . . ., we allow
the following syntax on the command line or in a file:

<expression> is function of <list1> with parameter <list2>

where <expression> denotes the function formula, <list1> is a comma-
separated list of the independent variables, and <list2> is a comma-
separated list of name=value parameters. The part with parameters

<list2> is omitted if there are no parameters. The names of the inde-
pendent variables and the parameters can be chosen freely as long as
the names can be used as Python variables. Here are some examples
of this syntax can be used to specify:

sin(x) is a function of x
sin(a*y) is a function of y with parameter a=2
sin(a*x-phi) is a function of x with parameter a=3, phi=-pi
exp(-a*x)*cos(w*t) is a function of t with parameter a=1,w=pi,x=2

Create a Python function that takes such function specifications as
input and returns an appropriate StringFunction object. This object
must be created from the function expression and the list of indepen-
dent variables and parameters. For example, the last function specifi-
cation above leads to the following StringFunction creation:

f = StringFunction(’exp(-a*x)*sin(k*x-w*t)’,
independent_variables=[’t’],
a=1, w=pi, x=2)

Hint: Use string operations to extract the various parts of the string.
For example, the expression can be split out by calling split(’is a

330 6 Files, Strings, and Dictionaries

function’). Typically, you need to extract <expression>, <list1>, and
<list2>, and create a string like

StringFunction(<expression>, independent_variables=[<list1>],
<list2>)

and sending it to eval to create the object. Name of program file:
text2func.py. �
Exercise 6.22. Compare average temperatures in two cities.

Chapter 6.4 exemplifies how we can extract temperature data from
the web. Similar data for the city of Stockholm is available at

ftp://ftp.engr.udayton.edu/jkissock/gsod/SNSTKHLM.txt

If we inspect the *.txt files containing temperature data from Oslo
and Stockholm, we observe that even though most of the temperatures
seem reasonable, the value -99 keeps appearing as a temperature. This
value indicates a missing observation, and the value must not enter the
computations of the average temperatures.

Make a Python program that computes the average temperature in
Celsius degrees since 1995 in Oslo and Stockholm. Hint: You do not
need to store the data in a dictionary as in Chapter 6.4 – adding up
the numbers in the 4th column is sufficient. Name of program file:
compare_mean_temp.py. �
Exercise 6.23. Compare average temperatures in many cities.

You should do Exercise 6.22 first. The URL
http://www.engr.udayton.edu/weather/citylistWorld.htm

contains links to temperature data for many cities around the world.
The task of this exercise is to make a list of the cities and their average
temperatures since 1995 and until the present date. Your program will
download the files containing the temperature data from all the cities
listed on the web page. This may be a rather long process, so make
sure you have quite some time available. Fortunately, you only need to
download all the files once. Use the test

if os.path.isfile(filename):

to check if a particular file with name filename is already present in
the current folder, so you can avoid a new download.

First, you need to interpret the HTML text in the citylistWorld.htm
file whose complete URL is given above. Download the file, inspect it,
and realize that there are two types of lines of interest, one with the
city name, typically on the form,

mso-list:l6 level1 lfo3;tab-stops:list .5in’>Algiers (<b...

and one with the URL of the temperature data,

href="ftp://ftp.engr.udayton.edu/jkissock/gsod/ALALGIER.txt">ALA...

6.7 Exercises 331

The first one can be detected by a test line.find(" .5in’>"), if line

is a string containing a line from the file. Extracting the city name
can be performed by, for example, a line.split(">") and picking the
right component, and stripping off leading and trailing characters. The
URL for the temperature data appears some lines below the city name.
The line can be found by using line.find("href"). One can extract the
URL by splitting with respect to ’>’ and stripping off the initial href="
text.

Store the city names and the associated URLs in a dictionary. There-
after, go through all the cities and compute their average temperature
values. You can change the values of the dictionary to store both the
temperature value and the URL as a 2-tuple.

Finally, write out the cities and their average temperatures in sorted
sequence, starting with the hottest city and ending with the coolest.
To sort the dictionary, first transform it to a list of 3-tuples (cityname,
URL, temperature), and then write a tailored sort function for this type
of list elements (see Exercise 2.44 for details about a similar tailored
sort function). Make sure that the values -99 for missing data do not
enter any computations.

Organize the program as a module (Chapter 3.5), i.e., a set of
functions for carrying out the main steps and a test block where
the functions are called. Some of the functionality in this module
can be reused in Exercises 6.24 and 6.25. Name of program file:
sort_mean_temp_cities.py. �
Exercise 6.24. Plot the temperature in a city, 1995-today.

The purpose of this exercise is to read the name of a city from the
command line, and thereafter present a plot of the temperature in that
city from 1995 to today. You must first carry out Exercise 6.23 so that
you have a module with a function that returns a dictionary with city
names as keys and the corresponding URL for the temperature data
files as values. The URL must be opened, and the temperature data
must be read into an array. We plot this array against its indices,
not against year, month, and day (that will be too complicated). Note
that the temperature data may contain values -99, indicating missing
recordings, and these values will lead to wrong, sudden jumps in the
plots. If you insert the value NaN (a NumPy type for representing “Not
a Number”) instead of the numerical values -99 in arrays, some plotting
programs will plot the array correctly, i.e., as several curve segments
where the missing data are left out. This is true if you use Easyviz with
Gnuplot as plotting program.

Construct the program as a module, where there are two functions
that can be imported in other programs:

332 6 Files, Strings, and Dictionaries

def get_city_URLs():
"""Return dictionary d[cityname] = URL."""

def get_temperatures(URL):
"""Return array with temperature values read from URL."""

Name of program file: plot_temp.py. �
Exercise 6.25. Plot temperatures in several cities.

This exercise is a continuation of Exercise 6.24. Make a program
that starts with printing out the names of all cities for which we have
temperature data from 1995 to today. Then ask the user for the names
of some cities (separated by blanks). Thereafter load the temperature
data for these cities (use the get_city_URLs and get_temperatures func-
tions from Exercise 6.24) and visualize them in the same plot. Name
of program file: plot_multiple_temps.py. �
Exercise 6.26. Try Word or OpenOffice to write a program.

The purpose of this exercise is to tell you how hard it may be to
write Python programs in the standard programs that most people
use for writing text.

Type the following one-line program in either Microsoft Word or
OpenOffice:

print "Hello, World!"

Both Word and OpenOffice are so“smart” that they automatically edit
“print” to “Print” since a sentence should always start with a capital.
This is just an example that word processors are made for writing
documents, not computer programs.

Save the program as a .doc (Word) or .odt (OpenOffice) file. Now
try to run this file as a Python program. You will get a message

SyntaxError: Non-ASCII character

Explain why you get this error.
Then save the program as a .txt file. Run this file as a Python

program. It may work well if you wrote the program text in Microsoft
Word, but with OpenOffice there may still be strange characters in the
file. Use a text editor to view the exact contents of the file. Name of
program file: office.py. �
Exercise 6.27. Evaluate objects in a boolean context.

Writing if a: or while a: in a program, where a is some object,
requires evaluation of a in a boolean context. To see the value of an
object a in a boolean context, one can call bool(a). Try the following
program to learn what values of what objects that are True or False

in a boolean context:

6.7 Exercises 333

objects = [
’""’, # empty string
’"string"’, # non-empty string
’[]’, # empty list
’[0]’, # list with one element
’()’, # empty tuple
’(0,)’, # tuple with one element
’{}’, # empty dict
’{0:0}’, # dict with one element
’0’, # int zero
’0.0’, # float zero
’0j’, # complex zero
’10’, # int 10
’10.’, # float 10
’10j’ # imaginary 10
’zeros(0)’, # empty array
’zeros(1)’, # array with one element (zero)
’zeros(1)+10’, # array with one element (10)
’zeros(2)’, # array with two elements (watch out!)
]

for element in objects:
object = eval(element)
print ’object = %s; if object: is %s’ % \

(element, bool(object))

Write down a rule for the family of Python objects that evaluate to
False in a boolean context. �
Exercise 6.28. Generate an HTML report.

Extend the program made in Exercise 5.22 with a report containing
all the plots. The report can be written in HTML and displayed by a
web browser. The plots must then be generated in PNG format. The
source of the HTML file will typically look as follows:

<html>
<body>
<p>
<p>
<p>
<p>
...
<p>
</html>
</body>

Let the program write out the HTML text. You can let the func-
tion making the plots return the name of the plotfile, such that
this string can be inserted in the HTML file. Name of program file:
growth_logistic4.py. �
Exercise 6.29. Fit a polynomial to experimental data.

Suppose we have measured the oscillation period T of a simple pen-
dulum with a mass m at the end of a massless rod of length L. We have
varied L and recorded the corresponding T value. The measurements
are found in a file src/files/pendulum.dat, containing two columns.
The first column contains L values and the second column has the
corresponding T values.

Load the L and T values into two arrays. Plot L versus T using
circles for the data points. We shall assume that L as a function of

334 6 Files, Strings, and Dictionaries

T is a polynomial. Use the NumPy utilities polyfit and poly1d, as
explained in Exercise 6.4, and experiment with fitting polynomials of
degree 1, 2, and 3. Visualize the polynomial curves together with the
experimental data. Which polynomial fits the measured data best?
Name of program file: fit_pendulum_data.py. �
Exercise 6.30. Interpret an HTML file with rainfall data.

The file src/files/rainfall.url contains the URL to several web
pages with average rainfall data from major cities in the world. The
goal of this exercise is to download all these web pages, and for each web
page load the rainfall data into an array where the first 12 elements
corresponds to the rainfall in each month of the year, and the 13th
element contains the total rainfall in a year.

Make a function getdata(url) which downloads a web page with
address url and returns the name of the weather station (usually a
city) and an array with 13 elements containing the average rainfall
data found in the web page. Make another function plotdata(data,

location) which plots the array returned from getdata with the
location of the weather station as plot title. Let plotdata make a hard-
copy with location as a part of the filename (some location names in
the web pages contain a slash or other characters that are not appro-
priate in filenames – remove these). Call getdata and plotdata for each
for each of the URLs in the rainfall.url file.

Hint: The rainfall data in the web pages appear in an HTML table.
The relevant line in the file starts like

<tr><td> mm <td align=right>193.0 <td align=right>143.6

Assuming that the line is available as the string line in the program, a
test if line.startswith(’<tr><td> mm’) makes you pick out the right
line. You can then strip off the mm column by line[12:]. Then you
can replace <td align=right> by an empty string. The line ends with

, which must be removed. The result is a line with numbers, the
monthly and annual rainfall, separated by blanks. A split operation
and conversion to float creates a list of the data.

Regarding, the location of the weather station, this is found in a line
which starts out as

<p>Weather station OSLO/BLINDERN

You can, for example, use line.find method to locate the tags
and /strong and thereby extract the location of the weather station.

Name of program file: download_rainfall_data.py. �
Exercise 6.31. Generate an HTML report with figures.

The goal of this exercise is to let a program write a report in HTML
format. The report starts with the Python code for the f(x, t) function
from Exercise 4.17 on page 229. Program code can be placed inside
<pre> and </pre> tags. The report should continue with three plots of

6.7 Exercises 335

the function in Exercise 4.11 for three different t values (find suitable t
values that illustrate the displacement of the wave packet). At the end,
there is an animated GIF file with the movie from Exercise 4.17. Inserte
appropriate headlines (<h1> tags) in the report. Name of program file:
wavepacket_report.py. �

