
Discrete Calculus A

This appendix is authored by Aslak Tveito

In this chapter we will discuss how to differentiate and integrate
functions on a computer. To do that, we have to care about how to
treat mathematical functions on a computer. Handling mathematical
functions on computers is not entirely straightforward: A function f(x)
contains and infinite amount of information (function values at an in-
finite number of x values on an interval), while the computer can only
store a finite1 amount of data. Think about the cos x function. There
are typically two ways we can work with this function on a computer.
One way is to run an algorithm, like that in Exercise 2.38 on page 108,
or we simply call math.cos(x) (which runs a similar type of algorithm),
to compute an approximation to cos x for a given x, using a finite num-
ber of calculations. The other way is to store cos x values in a table
for a finite number of x values2 and use the table in a smart way to
compute cos x values. This latter way, known as a discrete representa-
tion of a function, is in focus in the present chapter. With a discrete
function representation, we can easily integrate and differentiate the
function too. Read on to see how we can do that.

The folder src/discalc contains all the program example files re-
ferred to in this chapter.

A.1 Discrete Functions

Physical quantities, such as temperature, density, and velocity, are usu-
ally defined as continuous functions of space and time. However, as

1 Allow yourself a moment or two to think about the terms “finite” and “infinite”;
inifinity is not an easy term, but it is not infinitely difficult. Or is it?

2 Of course, we need to run an algorithm to populate the table with cos x numbers.
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574 A Discrete Calculus

mentioned in above, discrete versions of the functions are more con-
venient on computers. We will illustrate the concept of discrete func-
tions throught some introductory examples. In fact, we used discrete
functions in Chapter 4 to plot curves: We defined a finite set of co-
ordinates x and stored the corresponding function values f(x) in an
array. A plotting program would then draw straight lines between the
function values. A discrete representation of a continuous function is,
from a programming point of view, nothing but storing a finite set of
coordinates and function values in an array. Nevertheless, we will in
this chapter be more formal and describe discrete functions by precise
mathematical terms.

A.1.1 The Sine Function

Suppose we want to generate a plot of the sine function for values of
x between 0 and π. To this end, we define a set of x-values and an
associated set of values of the sine function. More precisely, we define
n + 1 points by

xi = ih for i = 0, 1, . . . , n (A.1)

where h = π/n and n � 1 is an integer. The associated function values
are defined as

si = sin(xi) for i = 0, 1, . . . , n. (A.2)

Mathematically, we have a sequence of coordinates (xi)
n
i=0 and of func-

tion values (si)
n
i=0 (see the start of Chapter 5 for an explanation of

the notation and the sequence concept). Often we “merge” the two se-
quences to one sequence of points: (xi, si)

n
i=0. Sometimes we also use

a shorter notation, just xi, si, or (xi, si) if the exact limits are not of
importance. The set of coordinates (xi)

n
i=0 constitutes a mesh or a

grid. The individual coordinates xi are known as nodes in the mesh
(or grid). The discrete representation of the sine function on [0, π] con-
sists of the mesh and the corresponding sequence of function values
(si)

n
i=0 at the nodes. The parameter n is often referred to as the mesh

resolution.
In a program, we represent the mesh by a coordinate array, say

x, and the function values by another array, say s. To plot the sine
function we can simply write

from scitools.std import *

n = int(sys.argv[1])

x = linspace(0, pi, n+1)
s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, hardcopy=’tmp.eps’)

Figure A.1 shows the resulting plot for n = 5, 10, 20 and 100. As
pointed out in Chapter 4, the curve looks smoother the more points
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we use, and since sin(x) is a smooth function, the plots in Figures A.1a
and A.1b do not look sufficiently good. However, we can with our eyes
hardly distinguish the plot with 100 points from the one with 20 points,
so 20 points seem sufficient in this example.
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Fig. A.1 Plots of sin(x) with various n.

There are no tests on the validity of the input data (n) in the previous
program. A program including these tests reads3:

#!/usr/bin/env python
from scitools.std import *

try:
n = int(sys.argv[1])

except:
print "usage: %s n" %sys.argv[0]
sys.exit(1)

x = linspace(0, pi, n+1)
s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, hardcopy=’tmp.eps’)

Such tests are important parts of a good programming philosophy.
However, for the programs displayed in this and the next chapter,
we skip such tests in order to make the programs more compact and
readable as part of the rest of the text and to enable focus on the
mathematics in the programs. In the versions of these programs in the

3 For an explanation of the first line of this program, see Appendix E.1
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files that can be downloaded you will, hopefully, always find a test on
input data.

A.1.2 Interpolation

Suppose we have a discrete representation of the sine function:
(xi, si)

n
i=0. At the nodes we have the exact sine values si, but what

about the points in between these nodes? Finding function values be-
tween the nodes is called interpolation, or we can say that we interpolate
a discrete function.

A graphical interpolation procedure could be to look at one of the
plots in Figure A.1 to find the function value corresponding to a point
x between the nodes. Since the plot is a straight line from node value
to node value, this means that a function value between two nodes
is found from a straight line approximation4 to the underlying con-
tinuous function. We formulate this procedure precisely in terms of
mathematics in the next paragraph.

Assume that we know that a given x∗ lies in the interval from x = xk

to xk+1, where the integer k is given. In the interval xk � x < xk+1, we
define the linear function that passes through (xk, sk) and (xk+1, sk+1):

Sk(x) = sk +
sk+1 − sk

xk+1 − xk
(x − xk). (A.3)

That is, Sk(x) coincides with sin(x) at xk and xk+1, and between these
nodes, Sk(x) is linear. We say that Sk(x) interpolates the discrete func-
tion (xi, si)

n
i=0 on the interval [xk, xk+1].

A.1.3 Evaluating the Approximation

Given the values (xi, si)
n
i=0 and the formula (A.3), we want to compute

an approximation of the sine function for any x in the interval from
x = 0 to x = π. In order to do that, we have to compute k for a given
value of x. More precisely, for a given x we have to find k such that
xk � x � xk+1. We can do that by defining

k = �x/h�

where the function �z� denotes the largest integer that is smaller than
z. In Python, �z� is computed by int(z). The program below takes x
and n as input and computes the approximation of sin(x). The program

4 Strictly speaking, we also assume that the function to be interpolated is rather
smooth. It is easy to see that if the function is very wild, i.e., the values of the
function changes very rapidly, this procedure may fail even for very large values of
n. Chapter 4.4.2 provides an example.
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prints the approximation S(x) and the exact5 value of sin(x) so we can
look at the development of the error when n is increased.

from numpy import *
import sys

xp = eval(sys.argv[1])
n = int(sys.argv[2])

def S_k(k):
return s[k] + \

((s[k+1] - s[k])/(x[k+1] - x[k]))*(xp - x[k])
h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
k = int(xp/h)

print ’Approximation of sin(%s): ’ % xp, S_k(k)
print ’Exact value of sin(%s): ’ % xp, sin(xp)
print ’Eror in approximation: ’, sin(xp) - S_k(k)

To study the approximation, we put x =
√

2 and use the program
eval_sine.py for n = 5, 10 and 20.

Terminal

eval_sine.py ’sqrt(2)’ 5
Approximation of sin(1.41421356237): 0.951056516295
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0367094296976

Terminal

eval_sine.py ’sqrt(2)’ 10
Approximation of sin(1.41421356237): 0.975605666221
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0121602797718

Terminal

eval_sine.py ’sqrt(2)’ 20
Approximation of sin(1.41421356237): 0.987727284363
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 3.86616296923e-05

Note that the error is reduced as the n increases.

A.1.4 Generalization

In general, we can create a discrete version of a continuous function as
follows. Suppose a continuous function f(x) is defined on an interval

5 The value is not really exact – it is the value of sin(x) provided by the computer,
math.sin(x), and this value is calculated from an algorithm that only yields an
approximation to sin(x). Exercise 2.38 provides an example of the type of algorithm
in question.
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ranging from x = a to x = b, and let n � 1, be a given integer. Define
the distance between nodes,

h =
b − a

n
,

and the nodes
xi = a + ih for i = 0, 1, . . . , n. (A.4)

The discrete function values are given by

yi = f(xi) for i = 0, 1, . . . , n. (A.5)

Now, (xi, yi)
n
i=0 is the discrete version of the continuous function f(x).

The program discrete_func.py takes f, a, b and n as input, computes
the discrete version of f , and then applies the discrete version to make
a plot of f .

def discrete_func(f, a, b, n):
x = linspace(a, b, n+1)
y = zeros(len(x))
for i in xrange(len(x)):

y[i] = func(x[i])
return x, y

from scitools.std import *

f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])
f = StringFunction(f_formula)

x, y = discrete_func(f, a, b, n)
plot(x, y)

We can equally well make a vectorized version of the discrete_func

function:

def discrete_func(f, a, b, n):
x = linspace(a, b, n+1)
y = f(x)
return x, y

However, for the StringFunction tool to work properly in vectorized
mode, we need to follow the recipe in Chapter 4.4.3:

f = StringFunction(f_formula)
f.vectorize(globals())

The corresponding vectorized program is found in the file
discrete_func_vec.py.
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A.2 Differentiation Becomes Finite Differences

You have heard about derivatives. Probably, the following formulas are
well known to you:

d

dx
sin(x) = cos(x),

d

dx
ln(x) =

1

x
,

d

dx
xm = mxm−1,

But why is differentiation so important? The reason is quite simple:
The derivative is a mathematical expression of change. And change is,
of course, essential in modeling various phenomena. If we know the
state of a system, and we know the laws of change, then we can, in
principle, compute the future of that system. Appendix B treats this
topic in detail. Chapter 5 also computes the future of systems, based
on modeling changes, but without using differentiation. In Appendix B
you will see that reducing the step size in the difference equations in
Chapter 5 results in derivatives instead of pure differences. However,
differentiation of continuous functions is somewhat hard on a computer,
so we often end up replacing the derivatives by differences. This idea
is quite general, and every time we use a discrete representation of a
function, differentiation becomes differences, or finite differences as we
usually say.

The mathematical definition of differentiation reads

f ′(x) = lim
ε→0

f(x + ε) − f(x)

ε
.

You have probably seen this definition many times, but have you un-
derstood what it means and do you think the formula has a great
practical value? Although the definition requires that we pass to the
limit, we obtain quite good approximations of the derivative by using
a fixed positive value of ε. More precisely, for a small ε > 0, we have

f ′(x) ≈ f(x + ε) − f(x)

ε
.

The fraction on the right-hand side is a finite difference approximation
to the derivative of f at the point x. Instead of using ε it is more
common to introduce h = ε in finite differences, i.e., we like to write

f ′(x) ≈ f(x + h) − f(x)

h
. (A.6)
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A.2.1 Differentiating the Sine Function

In order to get a feeling for how good the approximation (A.6) to the
derivative really is, we explore an example. Consider f(x) = sin(x) and
the associated derivative f ′(x) = cos(x). If we put x = 1,we have

f ′(1) = cos(1) ≈ 0.540 ,

and by putting h = 1/100 in (A.6) we get

f ′(1) ≈ f(1 + 1/100) − f(1)

1/100
=

sin(1.01) − sin(1)

0.01
≈ 0.536 .

The program forward_diff.py, shown below, computes the deriva-
tive of f(x) using the approximation (A.6), where x and h are input
parameters.

def diff(f, x, h):
return (f(x+h) - f(x))/float(h)

from math import *
import sys

x = eval(sys.argv[1])
h = eval(sys.argv[2])

approx_deriv = diff(sin, x, h)
exact = cos(x)
print ’The approximated value is: ’, approx_deriv
print ’The correct value is: ’, exact
print ’The error is: ’, exact - approx_deriv

Running the program for x = 1 and h = 1/1000 gives

Terminal

forward_diff.py 1 0.001
The approximated value is: 0.53988148036
The correct value is: 0.540302305868
The error is: 0.000420825507813

A.2.2 Differences on a Mesh

Frequently, we will need finite difference approximations to a discrete
function defined on a mesh. Suppose we have a discrete representation
of the sine function: (xi, si)

n
i=0, as introduced in Chapter A.1.1. We

want to use (A.6) to compute approximations to the derivative of the
sine function at the nodes in the mesh. Since we only have function
values at the nodes, the h in (A.6) must be the difference between
nodes, i.e., h = xi+1 − xi. At node xi we then have the following
approximation of the derivative:

zi =
si+1 − si

h
, (A.7)
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for i = 0, 1, . . . , n − 1. Note that we have not defined an approximate
derivative at the end point x = xn. We cannot apply (A.7) directly
since sn+1 is undefined (outside the mesh). However, the derivative of
a function can also be defined as

f ′(x) = lim
ε→0

f(x) − f(x − ε)

ε
,

which motivates the following approximation for a given h > 0,

f ′(x) ≈ f(x) − f(x − h)

h
. (A.8)

This alternative approximation to the derivative is referred to as a
backward difference formula, whereas the expression (A.6) is known
as a forward difference formula. The names are natural: The forward
formula goes forward, i.e., in the direction of increasing x and i to col-
lect information about the change of the function, while the backward
formula goes backwards, i.e., toward smaller x and i value to fetch
function information.

At the end point we can apply the backward formula and thus define

zn =
sn − sn−1

h
. (A.9)

We now have an approximation to the derivative at all the nodes.
A plain specialized program for computing the derivative of the
sine function on a mesh and comparing this discrete derivative with
the exact derivative is displayed below (the name of the file is
diff_sine_plot1.py).

from scitools.std import *

n = int(sys.argv[1])

h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
z = zeros(len(s))
for i in xrange(len(z)-1):

z[i] = (s[i+1] - s[i])/h
# special formula for end point_
z[-1] = (s[-1] - s[-2])/h
plot(x, z)

xfine = linspace(0, pi, 1001) # for more accurate plot
exact = cos(xfine)
hold()
plot(xfine, exact)
legend(’Approximate function’, ’Correct function’)
title(’Approximate and discrete functions, n=%d’ % n)

In Figure A.2 we see the resulting graphs for n = 5, 10, 20 and 100.
Again, we note that the error is reduced as n increases.
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Fig. A.2 Plots for exact and approximate derivatives of sin(x) with varying values of
the resolution n.

A.2.3 Generalization

The discrete version of a continuous function f(x) defined on an inter-
val [a, b] is given by (xi, yi)

n
i=0 where

xi = a + ih,

and
yi = f(xi)

for i = 0, 1, . . . , n. Here, n � 1 is a given integer, and the spacing
between the nodes is given by

h =
b − a

n
.

A discrete approximation of the derivative of f is given by (xi, zi)
n
i=0

where

zi =
yi+1 − yi

h

i = 0, 1, . . . , n − 1, and

zn =
yn − yn−1

h
.
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The collection (xi, zi)
n
i=0 is the discrete derivative of the discrete version

(xi, fi)
n
i=0 of the continuous function f(x). The program below, found

in the file diff_func.py, takes f, a, b and n as input and computes the
discrete derivative of f on the mesh implied by a, b, and h, and then
a plot of f and the discrete derivative is made.

def diff(f, a, b, n):
x = linspace(a, b, n+1)
y = zeros(len(x))
z = zeros(len(x))
h = (b-a)/float(n)
for i in xrange(len(x)):

y[i] = func(x[i])
for i in xrange(len(x)-1):

z[i] = (y[i+1] - y[i])/h
z[n] = (y[n] - y[n-1])/h
return y, z

from scitools.std import *
f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

f = StringFunction(f_formula)
y, z = diff(f, a, b, n)
plot(x, y, ’r-’, x, z, ’b-’,

legend=(’function’, ’derivative’))

A.3 Integration Becomes Summation

Some functions can be integrated analytically. You may remember6 the
following cases, ∫

xmdx =
1

m + 1
xm+1 for m �= −1,∫

sin(x)dx = − cos(x),∫
x

1 + x2
dx =

1

2
ln
(
x2 + 1

)
.

These are examples of so-called indefinite integrals. If the function can
be integrated analytically, it is straightforward to evaluate an associ-
ated definite integral. For example, we have7

6 Actually, we congratulate you if you remember the third one!
7 Recall, in general, that

[f(x)]ba = f(b) − f(a).
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∫ 1

0
xmdx =

[
1

m + 1
xm+1

]1

0

=
1

m + 1
,∫ π

0
sin(x)dx = [− cos(x)]π0 = 2,

∫ 1

0

x

1 + x2
dx =

[
1

2
ln
(
x2 + 1

)]1

0

=
1

2
ln 2.

But lots of functions cannot be integrated analytically and therefore
definite integrals must be computed using some sort of numerical ap-
proximation. Above, we introduced the discrete version of a function,
and we will now use this construction to compute an approximation of
a definite integral.

A.3.1 Dividing into Subintervals

Let us start by considering the problem of computing the integral of
sin(x) from x = 0 to x = π. This is not the most exciting or challenging
mathematical problem you can think of, but it is good practice to start
with a problem you know well when you want to learn a new method.
In Chapter A.1.1 we introduce a discrete function (xi, si)

n
i=0 where

h = π/n, si = sin(xi) and xi = ih for i = 0, 1, . . . , n. Furthermore, in
the interval xk � x < xk+1, we defined the linear function

Sk(x) = sk +
sk+1 − sk

xk+1 − xk
(x − xk).

We want to compute an approximation of the integral of the function
sin(x) from x = 0 to x = π. The integral∫ π

0
sin(x)dx

can be divided into subintegrals defined on the intervals xk � x < xk+1,
leading to the following sum of integrals:

∫ π

0
sin(x)dx =

n−1∑
k=0

∫ xk+1

xk

sin(x)dx .

To get a feeling for this split of the integral, let us spell the sum out
in the case of only four subintervals. Then n = 4, h = π/4,
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x0 = 0,

x1 = π/4,

x2 = π/2,

x3 = 3π/4

x4 = π.

The interval from 0 to π is divided into four intervals of equal length,
and we can divide the integral similarily,∫ π

0
sin(x)dx =

∫ x1

x0

sin(x)dx +

∫ x2

x1

sin(x)dx +∫ x3

x2

sin(x)dx +

∫ x4

x3

sin(x)dx . (A.10)

So far we have changed nothing – the integral can be split in this way
– with no approximation at all. But we have reduced the problem of
approximating the integral ∫ π

0
sin(x)dx

down to approximating integrals on the subintervals, i.e. we need ap-
proxiamtions of all the following integrals∫ x1

x0

sin(x)dx,

∫ x2

x1

sin(x)dx,

∫ x3

x2

sin(x)dx,

∫ x4

x3

sin(x)dx .

The idea is that the function to be integrated changes less over the
subintervals than over the whole domain [0, π] and it might be rea-
sonable to approximate the sine by a straight line, Sk(x), over each
subinterval. The integration over a subinterval will then be very easy.

A.3.2 Integration on Subintervals

The task now is to approximate integrals on the form∫ xk+1

xk

sin(x)dx.

Since
sin(x) ≈ Sk(x)

on the interval (xk, xk+1), we have∫ xk+1

xk

sin(x)dx ≈
∫ xk+1

xk

Sk(x)dx.
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Fig. A.3 Sk(x) and sin(x) on the interval (xk, xk+1) for k = 1 and n = 4.

In Figure A.3 we have graphed Sk(x) and sin(x) on the interval
(xk, xk+1) for k = 1 in the case of n = 4. We note that the integral of
S1(x) on this interval equals the area of a trapezoid, and thus we have∫ x2

x1

S1(x)dx =
1

2
(S1(x2) + S1(x1)) (x2 − x1),

so ∫ x2

x1

S1(x)dx =
h

2
(s2 + s1) ,

and in general we have∫ xk+1

xk

sin(x)dx ≈ 1

2
(sk+1 + sk) (xk+1 − xk)

=
h

2
(sk+1 + sk) .

A.3.3 Adding the Subintervals

By adding the contributions from each subinterval, we get

∫ π

0
sin(x)dx =

n−1∑
k=0

∫ xk+1

xk

sin(x)dx

≈
n−1∑
k=0

h

2
(sk+1 + sk) ,

so ∫ π

0
sin(x)dx ≈ h

2

n−1∑
k=0

(sk+1 + sk) . (A.11)
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In the case of n = 4, we have∫ π

0
sin(x)dx ≈ h

2
[(s1 + s0) + (s2 + s1) + (s3 + s2) + (s4 + s3)]

=
h

2
[s0 + 2 (s1+s2+s3) + s4] .

One can show that (A.11) can be alternatively expressed as8

∫ π

0
sin(x)dx ≈ h

2

[
s0 + 2

n−1∑
k=1

sk + sn

]
. (A.12)

This approximation formula is referred to as the Trapezoidal rule of nu-
merical integration. Using the more general program trapezoidal.py,
presented in the next section, on integrating

∫ π
0 sin(x)dx with n =

5, 10, 20 and 100 yields the numbers 1.5644, 1.8864, 1.9713, and 1.9998
respectively. These numbers are to be compared to the exact value 2.
As usual, the approximation becomes better the more points (n) we
use.

A.3.4 Generalization

An approximation of the integral∫ b

a
f(x)dx

can be computed using the discrete version of a continuous function
f(x) defined on an interval [a, b]. We recall that the discrete version of
f is given by (xi, yi)

n
i=0 where

xi = a + ih, and yi = f(xi)

for i = 0, 1, . . . , n. Here, n � 1 is a given integer and h = (b − a)/n.
The Trapezoidal rule can now be written as

∫ b

a
f(x)dx ≈ h

2

[
y0 + 2

n−1∑
k=1

yk + yn

]
.

The program trapezoidal.py implements the Trapezoidal rule for a
general function f .

def trapezoidal(f, a, b, n):
h = (b-a)/float(n)
I = f(a) + f(b)
for k in xrange(1, n, 1):

8 There are fewer arithmetic operations associated with (A.12) than with (A.11), so
the former will lead to faster code.
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x = a + k*h
I += 2*f(x)

I *= h/2
return I

from math import *
from scitools.StringFunction import StringFunction
import sys

def test(argv=sys.argv):
f_formula = argv[1]
a = eval(argv[2])
b = eval(argv[3])
n = int(argv[4])

f = StringFunction(f_formula)
I = trapezoidal(f, a, b, n)
print ’Approximation of the integral: ’, I

if __name__ == ’__main__’:
test()

We have made the file as module such that you can easily import the
trapezoidal function in another program. Let us do that: We make a
table of how the approximation and the associated error of an integral
are reduced as n is increased. For this purpose, we want to integrate∫ t2
t1

g(t)dt, where

g(t) = −ae−at sin(πwt) + πwe−at cos(πwt) .

The exact integral G(t) =
∫

g(t)dt equals

G(t) = e−at sin(πwt) .

Here, a and w are real numbers that we set to 1/2 and 1, respectively,
in the program. The integration limits are chosen as t1 = 0 and t2 = 4.
The integral then equals zero. The program and its output appear
below.

from trapezoidal import trapezoidal
from math import exp, sin, cos, pi

def g(t):
return -a*exp(-a*t)*sin(pi*w*t) + pi*w*exp(-a*t)*cos(pi*w*t)

def G(t): # integral of g(t)
return exp(-a*t)*sin(pi*w*t)

a = 0.5
w = 1.0
t1 = 0
t2 = 4
exact = G(t2) - G(t1)
for n in 2, 4, 8, 16, 32, 64, 128, 256, 512:

approx = trapezoidal(g, t1, t2, n)
print ’n=%3d approximation=%12.5e error=%12.5e’ % \

(n, approx, exact-approx)
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n= 2 approximation= 5.87822e+00 error=-5.87822e+00
n= 4 approximation= 3.32652e-01 error=-3.32652e-01
n= 8 approximation= 6.15345e-02 error=-6.15345e-02
n= 16 approximation= 1.44376e-02 error=-1.44376e-02
n= 32 approximation= 3.55482e-03 error=-3.55482e-03
n= 64 approximation= 8.85362e-04 error=-8.85362e-04
n=128 approximation= 2.21132e-04 error=-2.21132e-04
n=256 approximation= 5.52701e-05 error=-5.52701e-05
n=512 approximation= 1.38167e-05 error=-1.38167e-05

We see that the error is reduced as we increase n. In fact, as n is doubled
we realize that the error is roughly reduced by a factor of 4, at least
when n > 8. This is an important property of the Trapezoidal rule,
and checking that a program reproduces this property is an important
check of the validity of the implementation.

A.4 Taylor Series

The single most important mathematical tool in computational science
is the Taylor series. It is used to derive new methods and also for the
analysis of the accuracy of approximations. We will use the series many
times in this text. Right here, we just introduce it and present a few
applications.

A.4.1 Approximating Functions Close to One Point

Suppose you know the value of a function f at some point x0, and you
are interested in the value of f close to x. More precisely, suppose we
know f(x0) and we want an approximation of f(x0 + h) where h is a
small number. If the function is smooth and h is really small, our first
approximation reads

f(x0 + h) ≈ f(x0). (A.13)

That approximation is, of course, not very accurate. In order to derive
a more accurate approximation, we have to know more about f at x0.
Suppose that we know the value of f(x0) and f ′(x0), then we can find
a better approximation of f(x0 + h) by recalling that

f ′(x0) ≈ f(x0 + h) − f(x0)

h
.

Hence, we have
f(x0 + h) ≈ f(x0) + hf ′(x0). (A.14)

A.4.2 Approximating the Exponential Function

Let us be a bit more specific and consider the case of

f(x) = ex
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around
x0 = 0.

Since f ′(x) = ex, we have f ′(0) = 1, and then it follows from (A.14)
that

eh ≈ 1 + h.

The little program below (found in taylor1.py) prints eh and 1+h for
a range of h values.

from math import exp
for h in 1, 0.5, 1/20.0, 1/100.0, 1/1000.0:

print ’h=%8.6f exp(h)=%11.5e 1+h=%g’ % (h, exp(h), 1+h)

h=1.000000 exp(h)=2.71828e+00 1+h=2
h=0.500000 exp(h)=1.64872e+00 1+h=1.5
h=0.050000 exp(h)=1.05127e+00 1+h=1.05
h=0.010000 exp(h)=1.01005e+00 1+h=1.01
h=0.001000 exp(h)=1.00100e+00 1+h=1.001

As expected, 1 + h is a good approximation to eh the smaller h is.

A.4.3 More Accurate Expansions

The approximations given by (A.13) and (A.14) are referred to as Tay-
lor series. You can read much more about Taylor series in any Calculus
book. More specifically, (A.13) and (A.14) are known as the zeroth- and
first-order Taylor series, respectively. The second-order Taylor series is
given by

f(x0 + h) ≈ f(x0) + hf ′(x0) +
h2

2
f ′′(x0), (A.15)

the third-order series is given by

f(x0 + h) ≈ f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0), (A.16)

and the fourth-order series reads

f(x0 + h) ≈ f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) +

h4

24
f ′′′′(x0).

(A.17)
In general, the n-th order Taylor series is given by

f(x0 + h) ≈
n∑

k=0

hk

k!
f (k)(x0), (A.18)

where we recall that f (k) denotes the k−th derivative of f , and
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k! = 1 · 2 · 3 · 4 · · · (k − 1) · k

is the factorial (cf. Exercise 2.33). By again considering f(x) = ex and
x0 = 0, we have

f(x0) = f ′(x0) = f ′′(x0) = f ′′′(x0) = f ′′′′(x0) = 1

which gives the following Taylor series:

eh ≈ 1, zeroth-order,
eh ≈ 1 + h, first-order,
eh ≈ 1 + h + 1

2h2, second-order,
eh ≈ 1 + h + 1

2h2 + 1
6h3, third-order,

eh ≈ 1 + h + 1
2h2 + 1

6h3 + 1
24h4, fourth-order.

The program below, called taylor2.py, prints the error of these ap-
proximations for a given value of h (note that we can easily build up a
Taylor series in a list by adding a new term to the last computed term
in the list).

from math import exp
import sys
h = float(sys.argv[1])

Taylor_series = []
Taylor_series.append(1)
Taylor_series.append(Taylor_series[-1] + h)
Taylor_series.append(Taylor_series[-1] + (1/2.0)*h**2)
Taylor_series.append(Taylor_series[-1] + (1/6.0)*h**3)
Taylor_series.append(Taylor_series[-1] + (1/24.0)*h**4)

print ’h =’, h
for order in range(len(Taylor_series)):

print ’order=%d, error=%g’ % \
(order, exp(h) - Taylor_series[order])

By running the program with h = 0.2, we have the following output:
h = 0.2
order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

We see how much the approximation is improved by adding more terms.
For h = 3 all these approximations are useless:

h = 3.0
order=0, error=19.0855
order=1, error=16.0855
order=2, error=11.5855
order=3, error=7.08554
order=4, error=3.71054

However, by adding more terms we can get accurate results for
any h. The method from Chapter 5.1.7 computes the Taylor series
for ex with n terms in general. Running the associated program
exp_Taylor_series_diffeq.py for various values of h shows how much
is gained by adding more terms to the Taylor series. For h = 3,
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e3 = 20.086 and we have

n + 1 Taylor series

2 4
4 13
8 19.846
16 20.086

For h = 50, e50 =

5.1847 · 1021 and we have

n + 1 Taylor series

2 51
4 2.2134 · 104

8 1.7960 · 108

16 3.2964 · 1013

32 1.3928 · 1019

64 5.0196 · 1021

128 5.1847 · 1021

Here, the evolution of

the series as more terms are added is quite dramatic (and impressive!).

A.4.4 Accuracy of the Approximation

Recall that the Taylor series is given by

f(x0 + h) ≈
n∑

k=0

hk

k!
f (k)(x0). (A.19)

This can be rewritten as an equality by introducing an error term,

f(x0 + h) =
n∑

k=0

hk

k!
f (k)(x0) + O(hn+1). (A.20)

Let’s look a bit closer at this for f(x) = ex. In the case of n = 1, we
have

eh = 1 + h + O(h2). (A.21)

This means that there is a constant c that does not depend on h such
that ∣∣∣eh − (1 + h)

∣∣∣ � ch2, (A.22)

so the error is reduced quadratically in h. This means that if we com-
pute the fraction

q1
h =

∣∣eh − (1 + h)
∣∣

h2
,

we expect it to be bounded as h is reduced. The program
taylor_err1.py prints q1

h for h = 1/10, 1/20, 1/100 and 1/1000.

from numpy import exp, abs

def q_h(h):
return abs(exp(h) - (1+h))/h**2
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print " h q_h"
for h in 0.1, 0.05, 0.01, 0.001:

print "%5.3f %f" %(h, q_h(h))

We can run the program and watch the output:

Terminal

taylor_err1.py
h q_h

0.100 0.517092
0.050 0.508439
0.010 0.501671
0.001 0.500167

We observe that qh ≈ 1/2 and it is definitely bounded independent of
h. We can now rewrite all the approximations of eh defined above in
term of equalities:

eh = 1 + O(h), zeroth-order,
eh = 1 + h + O(h2), first-order,
eh = 1 + h + 1

2h2 + O(h3), second-order,
eh = 1 + h + 1

2h2 + 1
6h3 + O(h4), third-order,

eh = 1 + h + 1
2h2 + 1

6h3 + 1
24h4 + O(h5), fourth-order.

The program taylor_err2.py prints

q0
h =

∣∣eh − 1
∣∣

h
,

q1
h =

∣∣eh − (1 + h)
∣∣

h2
,

q2
h =

∣∣∣eh −
(
1 + h + h2

2

)∣∣∣
h3

,

q3
h =

∣∣∣eh −
(
1 + h + h2

2 + h3

6

)∣∣∣
h4

,

q4
h =

∣∣∣eh −
(
1 + h + h2

2 + h3

6 + h4

24

)∣∣∣
h5

,

for h = 1/5, 1/10, 1/20 and 1/100.

from numpy import exp, abs

def q_0(h):
return abs(exp(h) - 1) / h

def q_1(h):
return abs(exp(h) - (1 + h)) / h**2

def q_2(h):
return abs(exp(h) - (1 + h + (1/2.0)*h**2)) / h**3

def q_3(h):
return abs(exp(h) - (1 + h + (1/2.0)*h**2 + \

(1/6.0)*h**3)) / h**4
def q_4(h):

return abs(exp(h) - (1 + h + (1/2.0)*h**2 + (1/6.0)*h**3 + \
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(1/24.0)*h**4)) / h**5
hlist = [0.2, 0.1, 0.05, 0.01]
print "%-05s %-09s %-09s %-09s %-09s %-09s" \

%("h", "q_0", "q_1", "q_2", "q_3", "q_4")
for h in hlist:

print "%.02f %04f %04f %04f %04f %04f" \
%(h, q_0(h), q_1(h), q_2(h), q_3(h), q_4(h))

By using the program, we get the following table:
h q_0 q_1 q_2 q_3 q_4
0.20 1.107014 0.535069 0.175345 0.043391 0.008619
0.10 1.051709 0.517092 0.170918 0.042514 0.008474
0.05 1.025422 0.508439 0.168771 0.042087 0.008403
0.01 1.005017 0.501671 0.167084 0.041750 0.008344

Again we observe that the error of the approximation behaves as indi-
cated in (A.20).

A.4.5 Derivatives Revisited

We observed aboved that

f ′(x) ≈ f(x + h) − f(x)

h
.

By using the Taylor series, we can obtain this approximation directly,
and also get an indication of the error of the approximation. From
(A.20) it follows that

f(x + h) = f(x) + hf ′(x) + O(h2),

and thus

f ′(x) =
f(x + h) − f(x)

h
+ O(h), (A.23)

so the error is proportional to h. We can investigate if this is the
case through some computer experiments. Take f(x) = ln(x), so that
f ′(x) = 1/x. The program diff_ln_err.py prints h and

1

h

∣∣∣∣f ′(x) − f(x + h) − f(x)

h

∣∣∣∣ (A.24)

at x = 10 for a range of h values.

def error(h):
return (1.0/h)*abs(df(x) - (f(x+h)-f(x))/h)

from math import log as ln

def f(x):
return ln(x)

def df(x):
return 1.0/x

x = 10
hlist = []
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for h in 0.2, 0.1, 0.05, 0.01, 0.001:
print "%.4f %4f" % (h, error(h))

From the output
0.2000 0.004934
0.1000 0.004967
0.0500 0.004983
0.0100 0.004997
0.0010 0.005000

we observe that the quantity in (A.24) is constant (≈ 0.5) independent
of h, which indicates that the error is proportional to h.

A.4.6 More Accurate Difference Approximations

We can also use the Taylor series to derive more accurate approxima-
tions of the derivatives. From (A.20), we have

f(x + h) ≈ f(x) + hf ′(x) +
h2

2
f ′′(x) + O(h3). (A.25)

By using −h insted of h, we get

f(x − h) ≈ f(x) − hf ′(x) +
h2

2
f ′′(x) + O(h3). (A.26)

By subtracting (A.26) from (A.25), we have

f(x + h) − f(x − h) = 2hf ′(x) + O(h3),

and consequently

f ′(x) =
f(x + h) − f(x − h)

2h
+ O(h2). (A.27)

Note that the error is now O(h2) whereas the error term of (A.23) is
O(h). In order to see if the error is actually reduced, let us compare
the following two approximations

f ′(x) ≈ f(x + h) − f(x)

h
and f ′(x) ≈ f(x + h) − f(x − h)

2h

by applying them to the discrete version of sin(x) on the interval (0, π).
As usual, we let n � 1 be a given integer, and define the mesh

xi = ih for i = 0, 1, . . . , n,

where h = π/n. At the nodes, we have the functional values

si = sin(xi) for i = 0, 1, . . . , n,

and at the inner nodes we define the first (F) and second (S) order
approximations of the derivatives given by
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dF
i =

si+1 − si

h
,

and

dS
i =

si+1 − si−1

2h
,

respectively for i = 1, 2, . . . , n − 1. These values should be compared
to the exact derivative given by

di = cos(xi) for i = 1, 2, . . . , n − 1.

The following program, found in diff_1st2nd_order.py, plots the dis-
crete functions (xi, di)

n−1
i=1 , (xi, d

F
i )n−1

i=1 , and (xi, d
S
i )n−1

i=1 for a given n.
Note that the first three functions in this program are completely gen-
eral in that they can be used for any f(x) on any mesh. The special
case of f(x) = sin(x) and comparing first- and second-order formulas
is implemented in the example function. This latter function is called
in the test block of the file. That is, the file is a module and we can
reuse the first three functions in other programs (in particular, we can
use the third function in the next example).

def first_order(f, x, h):
return (f(x+h) - f(x))/h

def second_order(f, x, h):
return (f(x+h) - f(x-h))/(2*h)

def derivative_on_mesh(formula, f, a, b, n):
"""
Differentiate f(x) at all internal points in a mesh
on [a,b] with n+1 equally spaced points.
The differentiation formula is given by formula(f, x, h).
"""
h = (b-a)/float(n)
x = linspace(a, b, n+1)
df = zeros(len(x))
for i in xrange(1, len(x)-1):

df[i] = formula(f, x[i], h)
# return x and values at internal points only
return x[1:-1], df[1:-1]

def example(n):
a = 0; b = pi;
x, dF = derivative_on_mesh(first_order, sin, a, b, n)
x, dS = derivative_on_mesh(second_order, sin, a, b, n)
# accurate plot of the exact derivative at internal points:
h = (b-a)/float(n)
xfine = linspace(a+h, b-h, 1001)
exact = cos(xfine)
plot(x, dF, ’r-’, x, dS, ’b-’, xfine, exact, ’y-’,

legend=(’First-order derivative’,
’Second-order derivative’,
’Correct function’),

title=’Approximate and correct discrete ’\
’functions, n=%d’ % n)

# main program:
from scitools.std import *
try:

n = int(sys.argv[1])
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except:
print "usage: %s n" %sys.argv[0]
sys.exit(1)

example(n)
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(d) n = 100

Fig. A.4 Plots of exact and approximate derivatives with various number of mesh
points n.

The result of running the program with four different n values is
presented in Figure A.4. Observe that dS

i is a better approximation to
di than dF

i , and note that both approximations become very good as
n is getting large.

A.4.7 Second-Order Derivatives

We have seen that the Taylor series can be used to derive approxima-
tions of the derivative. But what about higher order derivatives? Next
we shall look at second order derivatives. From (A.20) we have

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) + O(h4),

and by using −h, we have

f(x0 − h) = f(x0) − hf ′(x0) +
h2

2
f ′′(x0) − h3

6
f ′′′(x0) + O(h4)
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By adding these equations, we have

f(x0 + h) + f(x0 − h) = 2f(x0) + h2f ′′(x0) + O(h4),

and thus

f ′′(x0) =
f(x0 − h) − 2f(x0) + f(x0 + h)

h2
+ O(h2). (A.28)

For a discrete function (xi, yi)
n
i=0, yi = f(xi), we can define the follow-

ing approximation of the second derivative,

di =
yi−1 − 2yi + yi+1

h2
. (A.29)

We can make a function, found in the file diff2nd.py, that evaluates
(A.29) on a mesh. As an example, we apply the function to

f(x) = sin(ex),

where the exact second-order derivative is given by

f ′′(x) = ex cos (ex) − (sin (ex)) e2x .

from diff_1st2nd_order import derivative_on_mesh
from scitools.std import *

def diff2nd(f, x, h):
return (f(x+h) - 2*f(x) + f(x-h))/(h**2)

def example(n):
a = 0; b = pi

def f(x):
return sin(exp(x))

def exact_d2f(x):
e_x = exp(x)
return e_x*cos(e_x) - sin(e_x)*exp(2*x)

x, d2f = derivative_on_mesh(diff2nd, f, a, b, n)
h = (b-a)/float(n)
xfine = linspace(a+h, b-h, 1001) # fine mesh for comparison
exact = exact_d2f(xfine)
plot(x, d2f, ’r-’, xfine, exact, ’b-’,

legend=(’Approximate derivative’,
’Correct function’),

title=’Approximate and correct second order ’\
’derivatives, n=%d’ % n,

hardcopy=’tmp.eps’)

n = int(sys.argv[1])

example(n)

In Figure A.5 we compare the exact and the approximate derivatives for
n = 10, 20, 50, and 100. As usual, the error descreases when n becomes
larger, but note here that the error is very large for small values of n.
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Fig. A.5 Plots of exact and approximate second-order derivatives with various mesh
resolution n.

A.5 Exercises

Exercise A.1. Interpolate a discrete function.
In a Python function, represent the mathematical function

f(x) = exp (−x2) cos(2πx)

on a mesh consisting of q + 1 equally spaced points on [−1, 1], and
return 1) the interpolated function value at x = −0.45 and 2) the error
in the interpolated value. Call the function and write out the error for
q = 2, 4, 8, 16. Name of program file: interpolate_exp_cos.py �
Exercise A.2. Study a function for different parameter values.

Develop a program that creates a plot of the function f(x) =
sin( 1

x+ε) for x in the unit interval, where ε > 0 is a given input param-
eter. Use n + 1 nodes in the plot.

(a)Test the program using n = 10 and ε = 1/5.
(b)Refine the program such that it plots the function for two values of

n; say n and n + 10.
(c)How large do you have to choose n in order for the difference between

these two functions to be less than 0.1? Hint: Each function gives
an array. Create a while loop and use the max function of the arrays
to retrieve the maximum value and compare these.
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(d)Let ε = 1/10, and repeat (c).
(e)Let ε = 1/20, and repeat (c).
(f)Try to find a formula for how large n needs to be for a given value

of ε such that increasing n further does not change the plot so much
that it is visible on the screen. Note that there is no exact answer
to this question.

Name of program file: plot_sin_eps.py �
Exercise A.3. Study a function and its derivative.

Consider the function

f(x) = sin

(
1

x + ε

)

for x ranging from 0 to 1, and the derivative

f ′(x) =
− cos

(
1

x+ε

)
(x + ε)2

.

Here, ε is a given input parameter.

(a)Develop a program that creates a plot of the derivative of f = f(x)
based on a finite difference approximation using n computational
nodes. The program should also graph the exact derivative given by
f ′ = f ′(x) above.

(b)Test the program using n = 10 and ε = 1/5.
(c)How large do you have to choose n in order for the difference between

these two functions to be less than 0.1? Hint: Each function gives
an array. Create a while loop and use the max function of the arrays
to retrieve the maximum value and compare these.

(d)Let ε = 1/10, and repeat (c).
(e)Let ε = 1/20, and repeat (c).
(f)Try determine experimentally how large n needs to be for a given

value of ε such that increasing n further does not change the plot
so much that you can view it on the screen. Note, again, that there
is no exact solution to this problem.

Name of program file: sin_deriv.py �
Exercise A.4. Use the Trapezoidal method.

The purpose of this excercise is to test the program trapezoidal.py.

(a)Let

a =

∫ 1

0
e4xdx =

1

4
e4 − 1

4
.

Compute the integral using the program trapezoidal.py and, for a
given n, let a(n) denote the result. Try to find, experimentally, how
large you have to choose n in order for
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|a − a(n)| � ε

where ε = 1/100.
(b)Repeat (a) with ε = 1/1000.
(c)Repeat (a) with ε = 1/10000.
(d)Try to figure out, in general, how large n has to be in order for

|a − a(n)| � ε

for a given value of ε.

Name of program file: trapezoidal_test_exp.py �
Exercise A.5. Compute a sequence of integrals.

(a)Let

bk =

∫ 1

0
xkdx =

1

k + 1
,

and let bk(n) denote the result of using the program trapezoidal.py

to compute
∫ 1
0 xkdx. For k = 4, 6 and 8, try to figure out, by doing

numerical experiments, how large n needs to be in order for bk(n)
to satisfy ∣∣bk − bk(n)

∣∣ � 0.0001.

Note that n will depend on k. Hint: Run the program for each k,
look at the output, and calculate

∣∣bk − bk(n)
∣∣ manually.

(b)Try to generalize the result in (a) to arbitrary k � 2.
(c)Generate a plot of xk on the unit interval for k = 2, 4, 6, 8, and 10,

and try to figure out if the results obtained in (a) and (b) are rea-
sonable taking into account that the program trapezoidal.py was
developed using a piecewise linear approximation of the function.

Name of program file: trapezoidal_test_power.py �
Exercise A.6. Use the Trapezoidal method.

The purpose of this excercise is to compute an approximation of the
integral9

I =

∫ ∞

−∞
e−x2

dx

using the Trapezoidal method.

(a)Plot the function e−x2

for x ranging from −10 to 10 and use the
plot to argue that ∫ ∞

−∞
e−x2

dx = 2

∫ ∞

0
e−x2

dx.

(b)Let T (n, L) be the approximation of the integral

9 You may consult your Calculus book to verify that the exact solution is
√

π.
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2

∫ L

0
e−x2

dx

computed by the Trapezoidal method using n computational points.
Develop a program that computes the value of T for a given n and
L.

(c)Extend the program developed in (b) to write out values of T (n, L)
in a table with rows corresponding to n = 100, 200, . . . , 500 and
columns corresponding to L = 2, 4, 6, 8, 10.

(d)Extend the program to also print a table of the errors in T (n, L) for
the same n and L values as in (c). The exact value of the integral
is

√
π.

Comment. Numerical integration of integrals with finite limits requires
a choice of n, while with infinite limits we also need to truncate the
domain, i.e., choose L in the present example. The accuracy depends
on both n and L. Name of program file: integrate_exp.py �
Exercise A.7. Trigonometric integrals.

The purpose of this excercise is to demonstrate a property of trigono-
metric functions that you will meet in later courses. In this excercise,
you may compute the integrals using the program trapezoidal.py with
n = 100.

(a)Consider the integrals

Ip,q = 2

∫ 1

0
sin(pπx) sin(qπx)dx

and fill in values of the integral Ip,q in a table with rows correspond-
ing to q = 0, 1, . . . , 4 and columns corresponding to p = 0, 1, . . . , 4.

(b)Repeat (a) for the integrals

Ip,q = 2

∫ 1

0
cos(pπx) cos(qπx)dx.

(c)Repeat (a) for the integrals

Ip,q = 2

∫ 1

0
cos(pπx) sin(qπx)dx.

Name of program file: ortho_trig_funcs.py �
Exercise A.8. Plot functions and their derivatives.

(a)Use the program diff_func.py to plot approximations of the deriva-
tive for the following functions defined on the interval ranging from
x = 1/1000 to x = 1:
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f(x) = ln

(
x +

1

100

)
,

g(x) = cos(e10x),

h(x) = xx.

(b)Extend the program such that both the discrete approximation and
the correct (analytical) derivative can be plotted. The analytical
derivative should be evaluated in the same computational points as
the numerical approximation. Test the program by comparing the
discrete and analytical derivative of x3.

(c)Use the program develped in (b) to compare the analytical and
discrete derivatives of the functions given in (a). How large do you
have to choose n in each case in order for the plots to become
indistinguishable on your screen. Note that the analytical derivatives
are given by:

f ′(x) =
1

x + 1
100

,

g′(x) = −10e10x sin
(
e10x

)
h′(x) = (lnx)xx + xxx−1

Name of program file: diff_functions.py �
Exercise A.9. Use the Trapezoidal method.

Develop an efficient program that creates a plot of the function

f(x) =
1

2
+

1√
π

∫ x

0
e−t2dt

for x ∈ [0, 10]. The integral should be approximated using the Trape-
zoidal method and use as few function evaluations of e−t2 as possible.
Name of program file: plot_integral.py �
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This appendix is authored by Aslak Tveito

Differential equations have proven to be an immensely successful
instrument for modeling phenomena in science and technology. It is
hardly an exaggeration to say that differential equations are used to
define mathematical models in virtually all parts of the natural sci-
ences. In this chapter, we will take the first steps towards learning how
to deal with differential equations on a computer. This is a core issue
in Computational Science and reaches far beyond what we can cover
in this text. However, the ideas you will see here are reused in lots
of advanced applications, so this chapter will hopefully provide useful
introduction to a topic that you will probably encounter many times
later.

We will show you how to build programs for solving differential equa-
tions. More precisely, we will show how a differential equation can be
formulated in a discrete manner suitable for analysis on a computer,
and how to implement programs to compute the discrete solutions. The
simplest differential equations can be solved analytically in the sense
that you can write down an explicit formula for the solutions. How-
ever, differential equations arising in practical applications are usually
rather complicated and thus have to be solved numerically on a com-
puter. Therefore we focus on implementing numerical methods to solve
the equations. Chapters 7.4 and 9.4 describe more advanced implemen-
tation techniques aimed at making an easy-to-use toolbox for solving
differential equations. Exercises in this appendix and the mentioned
chapters aim at solving a variety of differential equations arising in
various disciplines of science.

As with all the other chapters, the source code can be found in src,
in this case in the subdirectory ode (the short form ODE is commonly

605
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used as abbreviation for“Ordinary Differential Equations”, which is the
type of differential equation that we primarily address in this chapter).

B.1 The Simplest Case

Consider the problem of solving the following equation

u′(t) = t3 . (B.1)

The solution can be computed directly by integrating (B.1), which
gives

u(t) =
1

4
t4 + C,

where C is an arbitrary constant. To obtain a unique solution, we need
an extra condition to determine C. Specifying u(t1) for some time point
t1 represents a possible extra condition. It is common to view (B.1) as
an equation for the function u(t) for t ∈ [0, T ], and the extra condition
is usually that the start value u(0) is known. This is called the initial
condition. Say

u(0) = 1 . (B.2)

In general, the solution of the differential equation (B.1) subject to the
initial condition B.2 is1

u(t) = u(0) +

∫ t

0
u′(τ)dτ,

= 1 +

∫ t

0
τ3dτ

= 1 +
1

4
t4 .

Let us go back and check: Does u(t) = 1 + 1
4 t4 really satisfy the

two requirements listed in (B.1) and (B.2)? Obviously, u(0) = 1, and
u′(t) = t3, so the solution is correct.

More generally, we consider the equation

u′(t) = f(t) (B.3)

together with the initial condition

u(0) = u0. (B.4)

Here we assume that f(t) is a given function, and that u0 is a given
number. Then, by reasoning as above, we have

1 If you are confused by the use of t and τ, don’t get too upset; you see: ”In mathemat-
ics you don’t understand things. You just get used to them.” –John von Neumann,
mathematician, 1903-1957.
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u(t) = u0 +

∫ T

0
f(τ)dτ. (B.5)

By using the methods introduced in Appendix A, we can find a discrete
version of u by approximating the integral. Generally, an approxima-
tion of the integral ∫ T

0
f(τ)dτ

can be computed using the discrete version of a continuous function
f(τ) defined on an interval [0, t] . The discrete version of f is given by
(τi, yi)

n
i=0 where

τi = ih, and yi = f(τi)

for i = 0, 1, . . . , n. Here n � 1 is a given integer and h = T/n. The
Trapezoidal rule can now be written as

∫ T

0
f(τ)dτ ≈ h

2

[
y0 + 2

n−1∑
k=1

yk + yn

]
. (B.6)

By using this approximation, we find that an approximate solution of
(B.3)–(B.4) is given by

u(t) ≈ u0 +
h

2

[
y0 + 2

n−1∑
k=1

yk + yn

]
.

The program integrate_ode.py computes a numerical solution of
(B.3)–(B.4), where the function f , the time t, the initial condtion u0,
and the number of time-steps n are inputs to the program.

def integrate(T, n, u0):
h = T/float(n)
t = linspace(0, T, n+1)
I = f(t[0])
for k in iseq(1, n-1, 1):

I += 2*f(t[k])
I += f(t[-1])
I *= (h/2)
I += u0
return I

from scitools.std import *
f_formula = sys.argv[1]
T = eval(sys.argv[2])
u0 = eval(sys.argv[3])
n = int(sys.argv[4])

f = StringFunction(f_formula, independent_variables=’t’)
print "Numerical solution of u’(t)=t**3: ", integrate(T, n, u0)

We apply the program for computing the solution of
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u′(t) = tet2 ,

u(0) = 0,

at time T = 2 using n = 10, 20, 50 and 100:

Terminal

integrate_ode.py ’t*exp(t**2)’ 2 0 10
scitools.easyviz backend is matplotlib
Numerical solution of u’(t)=t**3: 28.4066160877

Terminal

integrate_ode.py ’t*exp(t**2)’ 2 0 20
scitools.easyviz backend is matplotlib
Numerical solution of u’(t)=t**3: 27.2059977451

Terminal

integrate_ode.py ’t*exp(t**2)’ 2 0 50
scitools.easyviz backend is matplotlib
Numerical solution of u’(t)=t**3: 26.86441489

Terminal

integrate_ode.py ’t*exp(t**2)’ 2 0 100
scitools.easyviz backend is matplotlib
Numerical solution of u’(t)=t**3: 26.8154183399

The exact solution is given by 1
2e22 − 1

2 ≈ 26. 799, so we see that the
approximate solution becomes better as n is increased, as expected.

B.2 Exponential Growth

The example above was really not much of a differential equation, be-
cause the solution was obtained by straightforward integration. Equa-
tions of the form

u′(t) = f(t) (B.7)

arise in situations where we can explicitly specify the derivative of
the unknown function u. Usually, the derivative is specified in terms
of the solution itself. Consider, for instance, population growth under
idealized conditions as modeled in Chapter 5.1.4. We introduce the
symbol vi for the number of individuals at time τi (vi corresponds to
xn in Chapter 5.1.4). The basic model for the evolution of vi is (5.9):

vi = (1 + r)vi−1, i = 1, 2, . . . , and v0 known . (B.8)

As mentioned in Chapter 5.1.4, r depends on the time difference Δτ =
τi − τi−1: the larger Δτ is, the larger r is. It is therefore natural to
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introduce a growth rate α that is independent of Δτ : α = r/Δτ . The
number α is then fixed regardless of how long jumps in time we take in
the difference equation for vi. In fact, α equals the growth in percent,
divided by 100, over a time interval of unit length.

The difference equation now reads

vi = vi−1 + αΔτ vi−1 .

Rearring this equation we get

vi − vi−1

Δτ
= αvi−1 . (B.9)

Assume now that we shrink the time step Δτ to a small value. The left-
hand side of (B.9) is then an approximation to the time-derivative of a
function v(τ) expressing the number of individuals in the population at
time τ . In the limit Δτ → 0, the left-hand side becomes the derivative
exactly, and the equation reads

v′(τ) = αv(τ) . (B.10)

As for the underlying difference equation, we need a start value v(0) =
v0. We have seen that reducing the time step in a difference equation
to zero, we get a differential equation.

Many like to scale an equation like (B.10) such that all variables
are without physical dimensions and their maximum absolute value is
typically of the order of unity. In the present model, this means that
we introduce new dimensionless variables

u =
v

v0
, t =

τ

α

and derive an equation for u(t). Inserting v = v0u and τ = αt in (B.10)
gives the prototype equation for population growth:

u′(t) = u(t) (B.11)

with the intial condition
u(0) = 1 . (B.12)

When we have computed the dimensionless u(t, we can find the func-
tion v(τ) as

v(τ) = v0u(τ/α) .

We shall consider practical applications of population growth equations
later, but let’s start by looking at the idealized case (B.11).

Analytical Solution. Our differential equation can be written in the
form

du

dt
= u,
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which can be rewritten as
du

u
= dt,

and then integration on both sides yields

ln(u) = t + c,

where c is a constant that has to be determined by using the initial
condition. Putting t = 0, we have

ln(u(0)) = c,

hence
c = ln(1) = 0,

and then
ln(u) = t,

so we have the solution
u(t) = et. (B.13)

Let us now check that this function really solves (B.7, B.11). Obviously,
u(0) = e0 = 1, so (B.11) is fine. Furthermore

u′(t) = et = u(t),

thus (B.7) also holds.

Numerical Solution. We have seen that we can find a formula for the so-
lution of the equation of exponential growth. So the problem is solved,
and it is trivial to write a program to graph the solution. We will,
however, go one step further and develop a numerical solution strategy
for this problem. We don’t really need such a method for this problem
since the solution is available in terms of a formula, but as mentioned
earlier, it is good practice to develop methods for problems where we
know the solution; then we are more confident when we are confronted
with more challenging problems.

Suppose we want to compute a numerical approximation of the so-
lution of

u′(t) = u(t) (B.14)

equipped with the intial condition

u(0) = 1. (B.15)

We want to compute approximations from time t = 0 to time t = 1.
Let n � 1 be a given integer, and define

Δt = 1/n . (B.16)
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Furthermore, let uk denote an approximation of u(tk) where

tk = kΔt (B.17)

for k = 0, 1, . . . , n. The key step in developing a numerical method for
this differential equation is to invoke the Taylor series as applied to the
exact solution,

u(tk+1) = u(tk) + Δtu′(tk) + O(Δt2), (B.18)

which implies that

u′(tk) ≈ u(tk+1) − u(tk)

Δt
. (B.19)

By using (B.14) , we get

u(tk+1) − u(tk)

Δt
≈ u(tk). (B.20)

Recall now that u(tk) is the exact solution at time tk, and that uk is
the approximate solution at the same point in time. We now want to
determine uk for all k � 0. Obviously, we start by defining

u0 = u(0) = 1.

Since we want uk ≈ u(tk), we require that uk satisfy the following
equality

uk+1 − uk

Δt
= uk (B.21)

motivated by (B.20) . It follows that

uk+1 = (1 + Δt)uk . (B.22)

Since u0 is known, we can compute u1, u2 and so on by using
the formula above. The formula is implemented2 in the program
exp_growth.py.

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
u = u0
dt = T/float(n)
for k in range(0, n, 1):

u = (1+dt)*u
return u # u(T)

2 Actually, we do not need the method and we do not need the program. It follows
from (B.22) that

uk = (1 + Δt)ku0

for k = 0, 1, . . . , n which can be evaluated on a pocket calculator or even on your
cellular phone. But again, we show examples where everything is as simple as pos-
sible (but not simpler!) in order to prepare your mind for more complex matters
ahead.
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import sys
n = int(sys.argv[1])

# special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
print ’u(1) =’, compute_u(u0, T, n)

Observe that we do not store the u values: We just overwrite a float

object u by its new value. This saves a lot of storage if n is large.
Running the program for n = 5, 10, 20 and 100, we get the approxi-

mations 2.4883, 2.5937, 2.6533, and 2.7048. The exact solution at time
t = 1 is given by u(1) = e1 ≈ 2.7183, so again the approximations
become better as n is increased.

An alternative program, where we plot u(t) and therefore store all
the uk and tk = kΔt values, is shown below.

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
t = linspace(0, T, n+1)
t[0] = 0
u = zeros(n+1)
u[0] = u0
dt = T/float(n)
for k in range(0, n, 1):

u[k+1] = (1+dt)*u[k]
t[k+1] = t[k] + dt

return u, t

from scitools.std import *
n = int(sys.argv[1])

# special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
u, t = compute_u(u0, T, n)
plot(t, u)
tfine = linspace(0, T, 1001) # for accurate plot
v = exp(tfine) # correct solution
hold(’on’)
plot(tfine, v)
legend([’Approximate solution’, ’Correct function’])
title(’Approximate and correct discrete functions, n=%d’ % n)
hardcopy(’tmp.eps’)

Using the program for n = 5, 10, 20, and 100, results in the plots in Fig-
ure B.1. The convergence towards the exponential function is evident
from these plots.

B.3 Logistic Growth

Exponential growth can be modelled by the following equation

u′(t) = αu(t)

where a > 0 is a given constant. If the initial condition is given by

u(0) = u0
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Fig. B.1 Plots of exact and approximate solutions of u′(t) = u(t) with varying number
of time steps in [0, 1]..

the solution is given by
u(t) = u0e

αt.

Since a > 0, the solution becomes very large as t increases. For a short
time, such growth of a population may be realistic, but over a longer
time, the growth of a population is restricted due to limitations of
the environment, as discussed in Chapter 5.1.5. Introducing a logistic
growth term as in (5.12) we get the differential equation

u′(t) = αu(t)

(
1 − u(t)

R

)
, (B.23)

where α is the growth-rate, and R is the carrying capacity (which
corresponds to M in Chapter 5.1.5). Note that R is typically very
large, so if u(0) is small, we have

u(t)

R
≈ 0

for small values of t, and thus we have exponential growth for small t;

u′(t) ≈ au(t).

But as t increases, and u grows, the term u(t)/R will become important
and limit the growth.
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A numerical scheme for the logistic equation (B.23) is given by

uk+1 − uk

Δt
= αuk

(
1 − uk

R

)
,

which we can solve with respect to the unknown uk+1:

uk+1 = uk + Δtαuk

(
1 − uk

R

)
. (B.24)

This is the form of the equation that is suited for implementation.

B.4 A General Ordinary Differential Equation

Let us briefly consider a general ordinary3 differential equations on the
form

u′(t) = f(u(t)) (B.25)

subject to the initial condition

u(0) = u0

where f(u) is a given function and the initial state u0 is given. Suppose
we want to compute an approximate solution of (B.25) for t ranging
from t = 0 to t = T where T > 0 is given. As above we start by
introducing the time step

Δt = T/n.

where n � 1 is a given integer, and we let uk denote an approximation
of the exact solution u(tk). Also as above, we replace the derivative of
u with a finite difference and obtain the scheme

uk+1 − uk

Δt
= f(uk).

The scheme can be rewritten in a form that is more suitable for com-
putations;

3 Differential equations are divided into two groups: ordinary differential equations
and partial differential equations. Ordinary differential equations contain derivatives
with respect to one variable (usually t in our examples), whereas partial differential
equations contain derivatives with respect to more than one variable, typically with
respect to space and time. A typical ordinary differential equation is

u′(t) = u(t),

and a typical partial differential equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
,

The latter is known as the heat or diffusion equation.
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uk+1 = uk + Δtf(uk). (B.26)

We note that since u0 is known, we can compute u1, u2 and so on.
This scheme is commonly referred to as the Explicit Euler4 scheme,
or the Forward Euler scheme, or the Forward Euler method. We will
later derive the Implicit Euler scheme, also called the Backward Euler
scheme (or method). That scheme is sligtly harder to use but it has
some nice properties that will be discussed later.

The Explicit Euler scheme is implemented in the function
Explicit_Euler in the module Euler. The test block in the mod-
ule file allows input from the command line: the formula for f(u), the
number of time steps n, the final time T , and the initial condition u0.

from numpy import linspace, zeros

def Explicit_Euler(f, u0, T, n):
dt = T/float(n)
t = linspace(0, T, n+1)
u = zeros(n+1)
u[0] = u0
for k in range(n):

u[k+1] = u[k] + dt*f(u[k])
return u, t

if __name__ == ’__main__’:
f_formula = sys.argv[1]
n = int(sys.argv[2])
T = eval(sys.argv[3])
u0 = eval(sys.argv[4])

f = StringFunction(f_formula, independent_variables=’u’)
u, t = Explicit_Euler(f, u0, T, n)
plot(t, u)

In Figure B.2 we see the results of the program as applied to the
problem

u′ = eu

with u0 = 0, T = 1. The numerical results are provided for n = 5, 10, 20
and 100. Convergence is not as obvious anymore, so let us also try the
program for n = 100, 200, 300 and 400. The results are given in Figure
B.3 and we see that the approximations seem to tend to a common
limiting function.

B.5 A Simple Pendulum

So far we have considered scalar ordinary differential equations, i.e.,
equations with one single function u(t) as unknown. Now we shall deal

4 Leonhard Paul Euler, 1707–1783. A pioneering Swiss mathematician and physicist
who spent most of his life in Russia and Germany. Euler is one of the greatest
scientists of all time, and made important contributions to calculus, mechanics,
optics, and astronomy. He also introduced much of the modern terminology and
notation in mathematics.
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Fig. B.2 Explicit Euler for the differential equation u′ = eu using different values for
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Fig. B.3 Explicit Euler for the differential equation u′ = eu using different values for
n.

with systems of ordinary differential equations, where in general n un-
known functions are coupled in a system of n equations. Our introduc-
tory example will be a system of two equations having two unknown
functions u(t) and v(t). The example concerns the motion of a pendu-
lum, see Figure B.4. A sphere with mass m is attached to a massless
rod of length L and oscillates back and forth due to gravity. Newton’s
second law of motion applied to this physical system gives rise the
differential equation

θ′′(t) + α sin(θ) = 0 (B.27)

where θ = θ(t) is the angle the rod makes with the vertical, measured
in radians, and α = g/L (g is the acceleration of gravity). The un-
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Fig. B.4 A pendulum with m = mass, L = length of massless rod and θ = θ(t) =

angle.

known function to solve for is θ, and knowing θ, we can quite easily
compute the position of the sphere, its velocity, and its acceleration,
as well as the tension force in the rod. Since the highest derivative
in (B.27) is of second order, we refer to (B.27) as a second-order dif-
ferential equations. Our previous examples in this chapter involved
only first-order derivatives, and therefore they are known as first-order
differential equations.

Equation (B.27) can be solved by the same numerical method as we
use in Appendix C.1.2, because (B.27) is very similar to Equation C.8,
which is the topic of Appendix C. The only difference is that C.8 has
extra terms, which can be skipped, while the kS term in C.8 must be
extended to α sin(S) to make C.8 identical to (B.27). This extension
is easily performed. However, here we shall not solve the second-order
equation (B.27) as it stands. We shall instead rewrite it as a system
of two first-order equations so that we can use numerical methods for
first-order equations to solve it.

To transform a second-order equation to a system of two first-order
equations, we introduce a new variable for the first-order derivative
(the angular velocity of the sphere): v(t) = θ′(t). Using v and θ in
(B.27) yields

v′(t) + α sin(θ) = 0 .

In addition, we have the relation

v = θ′(t)

between v and θ. This means that (B.27) is equivalent to the following
system of two coupled first-order differential equations:

θ′(t) = v(t), (B.28)

v′(t) = −α sin(θ) . (B.29)

As for scalar differential equations, we need initial conditions, now two
conditions because we have two unknown functions:
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θ(0) = θ0,

v(0) = v0,

Here we assume the initial angle θ0 and the initial angular velocity v0

to be given.
It is common to group the unknowns and the initial conditions in

2-vectors: (θ(t), v(t)) and (θ0, v0). One may then view (B.28)–(B.29)
as a vector equation, whose first component equation is (B.28), and
the second component equation is (B.29). In Python software, this
vector notation makes solution methods for scalar equations (almost)
immediately available for vector equations, i.e., systems of ordinary
differential equations.

In order to derive a numerical method for the system (B.28)–(B.29),
we proceed as we did above for one equation with one unknown func-
tion. Say we want to compute the solution from t = 0 to t = T where
T > 0 is given. Let n � 1 be a given integer and define the time step

Δt = T/n.

Furthermore, we let (θk, vk) denote approximations of the exact solu-
tion (θ(tk), v(tk)) for k = 0, 1, . . . , n. A Forward Euler type of method
will now read

θk+1 − θk

Δt
= vk, (B.30)

vk+1 − vk

Δt
= −α sin(θk). (B.31)

This scheme can be rewritten in a form more suitable for implementa-
tion:

θk+1 = θk + Δt vk, (B.32)

vk+1 = vk − αΔt sin(θk) . (B.33)

The next program, pendulum.py, implements this method in the func-
tion pendulum. The input parameters to the model, θ0, v0,, the final time
T , and the number of time-steps n, must be given on the command
line.

def pendulum(T, n, theta0, v0, alpha):
"""Return the motion (theta, v, t) of a pendulum."""
dt = T/float(n)
t = linspace(0, T, n+1)
v = zeros(n+1)
theta = zeros(n+1)
v[0] = v0
theta[0] = theta0
for k in range(n):

theta[k+1] = theta[k] + dt*v[k]
v[k+1] = v[k] - alpha*dt*sin(theta[k+1])

return theta, v, t
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from scitools.std import *
n = int(sys.argv[1])
T = eval(sys.argv[2])
v0 = eval(sys.argv[3])
theta0 = eval(sys.argv[4])
alpha = eval(sys.argv[5])

theta, v, t = pendulum(T, n, theta0, v0)
plot(t, v, xlabel=’t’, ylabel=’velocity’)
figure()
plot(t, theta, xlabel=’t’, ylabel=’velocity’)

By running the program with the input data θ0 = π/6, v0 = 0, α = 5,
T = 10 and n = 1000, we get the results shown in Figure B.5. The
angle θ = θ(t) is displayed in the left panel and the velocity is given in
the right panel.

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0  2  4  6  8  10

an
gl

e

t

(a)

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10

ve
lo

ci
ty

t

(b)

Fig. B.5 Motion of a pendulum: (a) the angle θ(t), and (b) the angular velocity θ′.

B.6 A Model for the Spread of a Disease

Mathematical models are used intensively to analyze the spread of in-
fectious diseases5. In the simplest case, we may consider a population,
that is supposed to be constant, consisting of two groups; the suscepti-
bles (S) who can catch the disease, and the infectives (I) who have the
disease and are able to transmit it. A system of differential equations
modelling the evolution of S and I is given by

S′ = −rSI,

I ′ = rSI − aI.

Here r and a are given constants reflecting the characteristics of the
epidemic. The initial conditions are given by

5 The interested reader may consult the excellent book [10] on Mathematical Biology
by J.D. Murray for an introduction to such models.
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S(0) = S0,

I(0) = I0,

where the initial state (S0, I0) is assumed to be known.
Suppose we want to compute numerical solutions of this system from

time t = 0 to t = T. Then, by reasoning as above, we introduce the
time step

Δt = T/n

and the approximations (Sk, Ik) of the solution (S(tk), I(tk)). An ex-
plicit Forward Euler method for the system takes the following form,

Sk+1 − Sk

Δt
= −rSkIk,

Ik+1 − Ik

Δt
= rSkIk − aIk,

which can be rewritten on computational form

Sk+1 = Sk − ΔtrSkIk,

Ik+1 = Ik + Δt (rSkIk − aIk) .

This scheme is implemented in the program exp_epidemic.py where
r, a, S0, I0, n and T are input data given on the command line. The
function epidemic computes the solution (S, I) to the differential equa-
tion system. This pair of time-dependent functions is then plotted in
two separate plots.

def epidemic(T, n, S0, I0, r, a):
dt = T/float(n)
t = linspace(0, T, n+1)
S = zeros(n+1)
I = zeros(n+1)
S[0] = S0
I[0] = I0
for k in range(n):

S[k+1] = S[k] - dt*r*S[k]*I[k]
I[k+1] = I[k] + dt*(r*S[k]*I[k] - a*I[k])

return S, I, t

from scitools.std import *
n = int(sys.argv[1])
T = eval(sys.argv[2])
S0 = eval(sys.argv[3])
I0 = eval(sys.argv[4])
r = eval(sys.argv[5])
a = eval(sys.argv[6])

plot(t, S, xlabel=’t’, ylabel=’Susceptibles’)
plot(t, I, xlabel=’t’, ylabel=’Infectives’)

We want to apply the program to a specific case where an influenza
epidemic hit a British boarding school with a total of 763 boys6. The

6 The data are from Murray [10], and Murray found the data in the British Medical
Journal, March 4, 1978.
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epidemic lasted from 21st January to 4th February in 1978. We let
t = 0 denote 21st of January and we define T = 14 days. We put
S0 = 762 and I0 = 1 which means that one person was ill at t = 0. In
the Figure B.6 we se the numerical results using r = 2.18 × 10−3, a =
0.44, n = 1000. Also, we have plotted actual the measurements, and
we note that the simulations fit the real data quite well.
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Fig. B.6 Graphs of (a) susceptibles and (b) infectives for an influenza in a British
boarding school in 1978.

B.7 Exercises

Exercise B.1. Solve a nonhomogeneous linear ODE.
Solve the ODE problem

u′ = 2u − 1, u(0) = 2, t ∈ [0, 6]

using the Forward Euler method. Choose Δt = 0.25. Plot the numerical
solution together with the exact solution u(t) = 1

2 + 2e2t. Name of
program file: nonhomogeneous_linear_ODE.py. �
Exercise B.2. Solve a nonlinear ODE.

Solve the ODE problem

u′ = uq, u(0) = 1, t ∈ [0, T ]

using the Forward Euler method. The exact solution reads u(t) = et

for q = 1 and u(t) = (t(1 − q) + 1)1/(1−q) for q > 1 and t(1−q)+1 > 0.
Read q, Δt, and T from the command line, solve the ODE, and plot
the numerical and exact solution. Run the program for different cases:
q = 2 and q = 3, with Δt = 0.01 and Δt = 0.1. Set T = 6 if q = 1 and
T = 1/(q−1)−0.1 otherwise. Name of program file: nonlinear_ODE.py.
�
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Exercise B.3. Solve an ODE for y(x).
We have given the following ODE problem:

dy

dx
=

1

2(y − 1)
, y(0) = 1 +

√
ε, x ∈ [0, 4], (B.34)

where ε > 0 is a small number. Formulate a Forward Euler method for
this ODE problem and compute the solution for varying step size in x:
Δx = 1, Δx = 0.25, Δx = 0.01. Plot the numerical solutions together
with the exact solution y(x) = 1 +

√
x + ε, using 1001 x coordinates

for accurate resolution of the latter. Set ε to 10−3. Study the numerical
solution with Δx = 1, and use that insight to explain why this problem
is hard to solve numerically. Name of program file: yx_ODE.py. �
Exercise B.4. Experience instability of an ODE.

Consider the ODE problem

u′ = αu, u(0) = u0,

solved by the Forward Euler method. Show by repeatedly applying the
scheme that

uk = (1 + αΔt)ku0 .

We now turn to the case α < 0. Show that the numerical solution will
oscillate if Δt > −1/α. Make a program for computing uk, set α = −1,
and demonstrate oscillatory solutions for Δt = 1.1, 1.5, 1.9. Recall that
that the exact solution, u(t) = eαt, never oscillates.

What happens if Δt > −2/α? Try it out in the program and explain
then mathematically why not uk → 0 as k → ∞. Name of program
file: unstable_ODE.py. �
Exercise B.5. Solve an ODE for the arc length.

Given a curve y = f(x), the length of the curve from x = x0 to some
point x is given by the function s(x), which fulls the problem

ds

dx
=
√

1 + [f ′(x)]2, s(x0) = 0 . (B.35)

Since s does not enter the right-hand side, (B.35) can immediately be
integrated from x0 to x. However, we shall solve (B.35) as an ODE.
Use the Forward Euler method and compute the length of a straight
line (for verification) and a sine curve: f(x) = 1

2x + 1, x ∈ [0, 2];
f(x) = sin(πx), x ∈ [0, 2]. Name of program file: arclength_ODE.py. �
Exercise B.6. Solve an ODE with time-varying growth.

Consider the ODE for exponential growth,

u′ = αu, u(0) = 1, t ∈ [0, T ] .
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Now we introduce a time-dependent α such that the growth decreases
with time: α(t) = a− bt. Solve the problem for a = 1, b = 0.1, and T =
10. Plot the solution and compare with the corresponding exponential
growth using the mean value of α(t) as growth factor: e(a−bT/2)t. Name
of program file: time_dep_growth.py. �
Exercise B.7. Solve an ODE for emptying a tank.

A cylindrical tank of radius R is filled with water to a height h(t).
By opening a valve of radius r at the bottom of the tank, water flows
out, and h(t) decreases with time. We can derive an ODE that governs
the height function h(t).

Mass conservation of water requires that the reduction in height
balances the outflow. In a time interval Δt, the height is reduced by
Δh, which corresponds to a water volume of πR2Δh. The water leaving
the tank in the same interval of time equals πr2vΔt, where v is the
outflow velocity. It can be shown (from what is known as Bernoulli’s
equation) that

v(t) =
√

2gh(t) − h′(t)2,

g being the acceleration of gravity [6, 11]. Letting Δh > 0 correspond
to an increase in h, we have that the −πR2Δh must balance πr2vΔt,
which in the limit Δt → 0 leads to the ODE

dh

dt
= −

( r

R

)2
(

1 +
( r

R

)4
)−1/2√

2gh . (B.36)

A proper initial condition follows from the initial height of water, h0,
in the tank: h(0) = h0.

Solve (B.36) in a program using the Forward Euler scheme. Set r =
1 cm, R = 20 cm, g = 9.81 m/s2, and h0 = 1 m. Use a time step of 10
seconds. Plot the solution, and experiment to see what a proper time
interval for the simulation is. Can you find an analytical solution of the
problem to compare the numerical solution with? Name of program file:
tank_ODE.py. �
Exercise B.8. Solve an ODE system for an electric circuit.

An electric circuit with a resistor, a capacitor, an inductor, and a
voltage source can be described by the ODE

L
dI

dt
+ RI +

Q

C
= E(t), (B.37)

where LdI/dt is the voltage drop across the inductor, I is the current
(measured in amperes, A), L is the inductance (measured in henrys,
H), R is the resistance (measured in ohms, Ω), Q is the charge on the
capacitor (measured in coulombs, C), C is the capacitance (measured
in farads, F), E(t) is the time-variable voltage source (measured in
volts, V), and t is time (measured in seconds, s). There is a relation
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betwen I and Q:
dQ

dt
= I . (B.38)

Equations (B.37)–(B.38) is a system two ODEs. Solve these for L = 1
H, E(t) = 2 sinωt V, ω2 = 3.5 s−2, C = 0.25 C, R = 0.2 Ω, I(0) = 1 A,
and Q(0) = 1C. Use the Forward Euler scheme with Δt = 2π/(60ω).
The solution will, after some time, oscillate with the same period as
E(t), a period of 2π/ω. Simulate 10 periods. (Actually, it turns out
that the Forward Euler scheme overestimates the amplitudes of the
oscillations. Exercise 9.33 compares the Forward Euler scheme with
the more accurate 4th-order Runge-Kutta method.) Name of program
file: electric_circuit.py. �
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The examples in the ordinary chapters of this book are quite compact
and composed to convey programming constructs in a gentle pedagog-
ical way. In this appendix the idea is to solve a more comprehensive
real-world problem by programming. The problem solving process gets
quite advanced because we bring together elements from physics, math-
ematics, and programming, in a way that a scientific programmer must
master. Each individual element is quite forward in the sense that you
have probably met the element already, either in high school physics
or mathematics, or in this book. The challenge is to understand the
problem, and analyze it by breaking it into a set of simpler elements.
It is not necessary to understand this problem solving process in de-
tail. As a computer programmer, all you need to understand is how
you translate the given algorithm into a working program and how to
test the program. We anticipate that this task should be doable with-
out a thorough understanding of the physics and mathematics of the
problem.

You can read the present appendix after the material in the first four
chapters are digested. More specifically, you can read Appendices C.1
and C.2 after Chapter 3, while Appendix C.3 requires knowledge about
curve plotting from Chapter 4.

Appendix C.1–C.2 can be read after the first three chapters of the
book is digested. Appendix C.3 requires the plotting knowledge of
Chapter 4.

All Python files associated with this appendix are found in
src/box_spring.

625
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C.1 About the Problem: Motion and Forces in Physics

C.1.1 The Physical Problem

We shall study a simple device which models oscillating systems. A
box with mass m and height b is attached to a spring of length L as
shown in Figure C.1. The end of the spring is attached to a plate which

Fig. C.1 An oscillating system with a box attached to a spring.

we can move up and down with a displacement w(t), where t denotes
time. There are two ways the box can be set in motion: we can either
stretch or compress the string initially by moving the box up or down,
or we can move the plate. If w = 0 the box oscillates freely, otherwise
we have what is called driven oscillations.

Why will such a system oscillate? When the box moves downward,
the spring is stretched, which results in a force that tries to move
the box upward. The more we stretch the spring, the bigger the force
against the movement becomes. The box eventually stops and starts
moving upward with an upward acceleration. At some point the spring
is not stretched anymore and there is no spring force on the box, but
because of inertia, the box continues its motion upward. This causes
the spring to get compressed, causing a force from the spring on the
box that acts downward, against the upward movement. The downward
force increases in intensity and manages to stop the upward motion.
The process repeats itself and results in an oscillatory motion of the
box. Since the spring tries to restore the position of the box, we refer
to the spring force as a restoring force.

You have probably experienced that oscillations in such springs tend
to die out with time. There is always a damping force that works
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against the motion. This damping force may be due to a not per-
fectly elastic string, and the force can be quite small, but we can
also explicitly attach the spring to a damping mechanism to obtain
a stronger, controllable damping of the oscillations (as one wants in a
car or a mountain bike). We will assume that there is some damping
force present in our system, and this can well be a damping mechanism
although this is not explicitly included in Figure C.1.

Oscillating systems of the type depicted in Figure C.1 have a huge
number of applications throughout science and technology. One simple
example is the spring system in a car or bicycle, which you have proba-
bly experienced on a bumpy road (the bumps lead to a w(t) function).
When your washing machine jumps up and down, it acts as a highly
damped oscillating system (and the w(t) function is related to uneven
distribution of the mass of the clothes). The pendulum in a wall clock is
another oscillating system, not with a spring, but physically the system
can (for small oscillations) be modeled as a box attached to a spring
because gravity makes a spring-like force on a pendulum (in this case,
w(t) = 0). Other examples on oscillating systems where this type of
equation arise are briefly mentioned in Exercise 9.45. The bottom line
is that understanding the dynamics of Figure C.1 is the starting point
for understanding the behavior of a wide range of oscillating phenom-
ena in nature and technical devices.

Goal of the Compuations. Our aim is to compute the position of the
box as a function of time. If we know the position, we can compute the
velocity, the acceleration, the spring force, and the damping force. The
mathematically difficult thing is to calculate the position – everything
else is much easier1.

We assume that the box moves in the vertical direction only, so we
introduce Y (t) as the vertical position of the center point of the box.
We shall derive a mathematical equation that has Y (t) as solution. This
equation can be solved by an algorithm which can be implemented in
a program. Our focus is on the implementation, since this is a book
about programming, but for the reader interested in how computers
play together with physics and mathematics in science and technology,
we also outline how the equation and algorithm arise.

The Key Quantities. Let S be the stretch of the spring, where S > 0
means stretch and S < 0 implies compression. The length of the spring
when it is unstretched is L, so at a given point of time t the actual
length is L + S(t). Given the position of the plate, w(t), the length of

1 More precisely, to compute the position we must solve a differential equation while
the other quantities can be computed by differentiation and simple arithmetics.
Solving differential equations is historically considered very difficult, but computers
have simplified this task dramatically. Appendix B and Chapters 7.4 and 9.4 are
devoted to this topic.
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the spring, L + S(t), and the height of the box, b, the position Y (t) is
then, according to Figure C.1,

Y (t) = w(t) − (L + S(t)) − b

2
. (C.1)

You can think as follows: We first “go up” to the plate at y = w(t),
then down L + S(t) along the spring and then down b/2 to the center
of the box. While L, w, and b must be known as input data, S(t) is
unknown and will be output data from the program.

C.1.2 The Computational Algorithm

Let us now go straight to the programming target and present the
recipe for computing Y (t). The algorithm below actually computes
S(t), but at any point of time we can easily find Y (t) from (C.1) if we
know S(t). The S(t) function is computed at discrete points of time,
t = ti = iΔt, for i = 0, 1, . . . , N . We introduce the notation Si for
S(ti). The Si values can be computed by the following algorithm.

1. Set initial stretch S0 from input data
2. Compute S1 by

Si+1 =
1

2m

(
2mSi − Δt2 kSi + m (wi+1 − 2wi + wi−1) + Δt2 mg

)
,

(C.2)
with i = 0.

3. For i = 1, 2, . . . , N − 1, compute Si+1 by

Si+1 = (m + γ)−1
(
2mSi − mSi−1 + γΔt Si−1 − Δt2 kSi +

m(wi+1 − 2wi + wi−1) + Δt2 mg
)
. (C.3)

The parameter γ equals 1
2βΔt. The input data to the algorithm are

the mass of the box m, a coefficient k characterizing the spring, a
coefficient β characterizing the amount of damping in the system, the
acceleration of gravity g, the movement of the plate w(t), the initial
stretch of the spring S0, the number of time steps N , and the time Δt
between each computation of S values. The smaller we choose Δt, the
more accurate the computations become.

Now you have two options, either read the derivation of this algo-
rithm in Appendix C.1.3–C.1.4 or jump right to implementation in
Appendix C.2.

C.1.3 Derivation of the Mathematical Model

To derive the algorithm we need to make a mathematical model of
the oscillating system. This model is based on physical laws. The most
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important physical law for a moving body is Newton’s second law of
motion:

F = ma, (C.4)

where F is the sum of all forces on the body, m is the mass of the body,
and a is the acceleration of the body. The body here is our box.

Let us first find all the forces on the box. Gravity acts downward
with magnitude mg. We introduce Fg = −mg as the gravity force,
with a minus sign because a negative force acts downward, in negative
y direction.

The spring force on the box acts upward if the spring is stretched,
i.e., if S > 0 we have a positive spring force Fs. The size of the force is
proportional to the amount of stretching, so we write2 Fs = kS, where
k is commonly known as the spring constant. We also assume that we
have a damping force that is always directed toward the motion and
proportional with the “velocity of the stretch”, −dS/dt. Naming the
porportionaly constant β, we can write the damping force as Fd =
βdS/dt. Note that when dS/dt > 0, S increases in time and the box
moves downward, the Fd force then acts upward, against the motion,
and must be positive. This is the way we can check that the damping
force expression has the right sign.

The sum of all forces is now

F = Fg + Fs + Fd,

= −mg + kS + β
dS

dt
. (C.5)

We now know the left-hand side of (C.4), but S is unknown to us.
The acceleration a on the right-hand side of (C.4) is also unknown.
However, acceleration is related to movement and the S quantity, and
through this relation we can eliminate a as a second unknown. From
physics, it is known that the acceleration of a body is the second deriva-
tive in time of the position of the body, so in our case,

a =
d2Y

dt2
,

=
d2w

dt2
− d2S

dt2
, (C.6)

(remember that L and b are constant).
Equation (C.4) now reads

−mg + kS + β
dS

dt
= m

(
d2w

dt2
− d2S

dt2

)
. (C.7)

2 Spring forces are often written in the canonical form “F = −kx”, where x is the
stretch. The reason that we have no minus sign is that our stretch S is positive in
the downward (negative) direction.



630 C A Complete Project

It is common to collect the unknown terms on the left-hand side and the
known quantities on the right-hand side, and let higher-order deriva-
tives appear before lower-order derivatives. With such a reordering of
terms we get

m
d2S

dt2
+ β

dS

dt
+ kS = m

d2w

dt2
+ mg . (C.8)

This is the equation governing our physical system. If we solve the
equation for S(t), we have the position of the box according to (C.1),
the velocity v as

v(t) =
dY

dt
=

dw

dt
− dS

dt
, (C.9)

the acceleration as (C.6), and the various forces can be easily obtained
from the formulas in (C.5).

A key question is if we can solve (C.8). If w = 0, there is in fact a
well-known solution which can be written

S(t) =
m

k
g +

⎧⎪⎪⎨
⎪⎪⎩

e−ζt
(
c1e

t
√

β2−1 + c2e
−t

√
ζ2−1

)
, ζ > 1,

e−ζt(c1 + c2t), ζ = 1,

e−ζt
[
c1 cos

(√
1 − ζ2t

)
+ c2 sin

(√
1 − ζ2t

)]
, ζ < 1 .

(C.10)
Here, ζ is a short form for β/2, and c1 and c2 are arbitrary constants.
That is, the solution (C.10) is not unique.

To make the solution unique, we must determine c1 and c2. This is
done by specifying the state of the system at some point of time, say
t = 0. In the present type of mathematical problem we must specify S
and dS/dt. We allow the spring to be stretched an amount S0 at t = 0.
Moreover, we assume that there is no ongoing increase or decrease in
the stretch at t = 0, which means that dS/dt = 0. In view of (C.9), this
condition implies that the velocity of the box is that of the plate, and
if the latter is at rest, the box is also at rest initially. The conditions
at t = 0 are called initial conditions:

S(0) = S0,
dS

dt
(0) = 0 . (C.11)

These two conditions provide two equations for the two unknown con-
stants c1 and c2. Without the initial conditions two things happen: (i)
there are infinitely many solutions to the problem, and (ii) the compu-
tational algorithm in a program cannot start.

Also when w �= 0 one can find solutions S(t) of (C.8) in terms of
mathematical expressions, but only for some very specific choices of
w(t) functions. With a program we can compute the solution S(t) for
any “reasonable” w(t) by a quite simple method. The method gives
only an approximate solution, but the approximation can usually be
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made as good as desired. This powerful solution method is described
below.

C.1.4 Derivation of the Algorithm

To solve (C.8) on a computer, we do two things:

1. We calculate the solution at some discrete time points t = ti = iΔt,
i = 0, 1, 2, . . . , N .

2. We replace the derivatives by finite differences, which are approxi-
mate expressions for the derivatives.

The first and second derivatives can be approximated by3

dS

dt
(ti) ≈ S(ti+1) − S(ti−1)

2Δt
, (C.12)

d2S

dt2
(ti) ≈ S(ti+1) − 2S(ti) + S(ti−1)

Δt2
. (C.13)

It is common to save some writing by introducing Si as a short form
for S(ti). The formulas then read

dS

dt
(ti) ≈ Si+1 − Si−1

2Δt
, (C.14)

d2S

dt2
(ti) ≈ Si+1 − 2Si + Si−1

Δt2
. (C.15)

Let (C.8) be valid at a point of time ti:

m
d2S

dt2
(ti) + β

dS

dt
(ti) + kS(ti) = m

d2w

dt2
(ti) + mg . (C.16)

We now insert (C.14) and (C.15) in (C.16) (observe that we can ap-
proximate d2w/dt2 in the same way as we approximate d2S/dt2):

m
Si+1 − 2Si + Si−1

Δt2
+β

Si+1 − Si−1

2Δt
+kSi = m

wi+1 − 2wi + wi−1

Δt2
+mg .

(C.17)
The computational algorithm starts with knowing S0, then S1 is com-
puted, then S2, and so on. Therefore, in (C.17) we can assume that Si

and Si−1 are already computed, and that Si+1 is the new unknown to
calculate. Let us as usual put the unknown terms on the left-hand side
(and multiply by Δt2):

mSi+1 + γSi+1 = 2mSi − mSi−1 + γSi−1 − Δt2 kSi +

m (wi+1 − 2wi + wi−1) + Δt2 mg, (C.18)

3 See Appendices A and B for derivations of such formulas.
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where we have introduced the short form ~I = ~!3.1t to save space.
Equation (C.18) can easily be solved for Si+I:

8 i+1 = ('III + ,) -] ( ZrnS, ~m8;-1 + "l.1t 8;-1 ~ .1t2 k S; +

rn(wi+1 - 2Wi + Wi-I) + .1t2mg)(C.19)

One fundamental problem arises when we try to start the compu-
tations. We know So and want to apply (C.19) for i = 0 to calculate
S\. However, (C.El) involves Si:«, that is, 8_ 1, which is an unknown
value at a point of time before we compute the motion. The initial
conditions come to rescue here. Since dS/dt = 0 at t = 0 (or i = 0),
we can approximate this condition as

(C.20)

Inserting this relation in (C.19) when i = 0 gives a special formula for
S\ (or 8 i +l with i = 0, if we want):

1 ( 2... 2 )Si+l = -2. 2mS; ~ .1t kSi + m (Wi+l ~ 2Wi + 1lJi-Il +.1t mg
m

(C.21)
Remember that i = 0 in this formula. The overall algorithm is sum-
marized below:

1. Initialize 8 0 from initial condition
2. Use (C.21) to compute 8i+1 for 'i = 0
3. Forz = 0,1. 2, ... , N - 1. use (C.19) to compute Si+1

C.2 Program Development and Testing

C.2.1 Implementation

The aim now is to implement the algorithm on page 628 in a Python
program. There are naturally two parts of the program, one where we
read input data such as L , m, and w(t), and one part where we run
the computational algorithm. Let us write a function for each part.

The set of input data to the program consists of the mathematical
symbols

• m (the mass of the box)
• b (the height of the box)
• L (the length of the unstretched spring)
• /3 (coefficient for the damping force)
• k (coefficient for the spring force)
• .1t (the time step between each S, calculation)
• N (the number of computed time steps)
• So (the initial stretch of the spring)
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• w(t) (the vertical displacement of the plate)
• 9 (acceleration of gravity)

We make a function init_prrns for initializing these input parameters
from option-value pairs on the command line. That is, the user pro-
vides pairs like -m 2 and -dt 0.1 (for Lit). The get opt module from
Chapter 3.2.4 can be used for this purpose. We supply default values
for all parameters as arguments to the init_prms function. The func-
tion returns all these parameters with the changes that the user has
specified on the command line. The w parameter is given as a string
expression (called w_formula below), and the StringFunction tool from
Chapter :3.1.4 can be used to turn the formula into a working Python
function. An algorithmic sketch of tho tasks in thc init_prms function
can be expressed by some pseudo Python code:

def init_prms(m, b, L, k, beta, SO, dt, g, w_formula, N):
import getopt, sys
try:

options, args = getopt.getopt(
sys.argv[1:], ",
<list of legal command-line options»

except getopt.GetoptError, e:
<handle error in command-line options>

for option, value in options:
if option in (, -t--m", ' -v-mass ") :

m = float(value)
elif option in ('--b', '--boxheight'):

b = float(value)
elif ... # treat all other parameters

from scitools.StringFunction import StringFunction
w = StringFunction(w_formula, independent_variables='t')
return m. b, L, k, beta, SO, dt, g, w, N

With such a sketch as a start, we can complete the indicated code
and arrive at a working function for specifying input parameters to the
mathematical model:

def init_prms(m, b, L, k, beta, SO, dt, g, w_formula, N):
import getopt, sys
try:

options, args = getopt.getopt(
sys.argv[1:J, ",
L'n> ", "maes> ",

"b> ", 'boxheight=',
'L=', 'spring-length=',
'k=', 'spring-stiffness='.
'beta=', 'spring-damping=',
'SO=', 'initial-position=',
'dt=' ,'timestep=',
'g=', 'gravity=',
'w=' ,
'N='] )

except getopt.GetoptError, e:
print 'Error in command-line option:\n', e
sys.exit(i)

for option, value in options:
if option in (, --m', ' -r-maaa ") :

633
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m = float(value)
elif option in (’--b’, ’--boxheight’):

b = float(value)
elif option in (’--L’, ’--spring-length’):

L = float(value)
elif option in (’--k’, ’--spring-stiffness’):

k = float(value)
elif option in (’--beta’, ’--spring-damping’):

beta = float(value)
elif option in (’--S0’, ’--initial-position’):

S0 = float(value)
elif option in (’--dt’, ’--timestep’):

dt = float(value)
elif option in (’--g’, ’--gravity’):

g = float(value)
elif option in (’--w’,):

w_formula = value # string
elif option == ’--N’:

N = int(value)

from scitools.StringFunction import StringFunction
w = StringFunction(w_formula, independent_variables=’t’)
return m, b, L, k, beta, S0, dt, g, w, N

You may wonder why we specify g (gravity) since this is a known con-
stant, but it is useful to turn off the gravity force to test the program.
Just imagine the oscillations take place in the horizontal direction –
the mathematical model is the same, but Fg = 0, which we can obtain
in our program by setting the input parameter g to zero.

The computational algorithm is quite easy to implement, as there
is a quite direct translation of the mathematical algorithm in Ap-
pendix C.1.2 to valid Python code. The Si values can be stored in
a list or array with indices going from 0 to N . To allow readers to
follow the code here without yet having digested Chapter 4, we use a
plain list. The function for computing Si reads

def solve(m, k, beta, S0, dt, g, w, N):
S = [0.0]*(N+1) # output list
gamma = beta*dt/2.0 # short form
t = 0
S[0] = S0
# special formula for first time step:
i = 0
S[i+1] = (1/(2.0*m))*(2*m*S[i] - dt**2*k*S[i] +

m*(w(t+dt) - 2*w(t) + w(t-dt)) + dt**2*m*g)
t = dt

for i in range(1,N):
S[i+1] = (1/(m + gamma))*(2*m*S[i] - m*S[i-1] +

gamma*dt*S[i-1] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt))
+ dt**2*m*g)

t += dt
return S

The primary challenge in coding the algorithm is to set the index t

and the time t right. Recall that in the updating formula for S[i+1]

at time t+dt, the time on the right-hand side shall be the time at time



C.2 Program Development and Testing 635

step i, so the t+=dt update must come after S[i+1] is computed. The
same is important in the special formula for the first time step as well.

A main program will typically first set some default values of the 10
input parameters, then call init_prms to let the user adjust the default
values, and then call solve to compute the Si values:

# default values:
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 80;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

S = solve(m, k, beta, S0, dt, g, w, N)

So, what shall we do with the solution S? We can write out the values
of this list, but the numbers do not give an immediate feeling for how
the box moves. It will be better to graphically illustrate the S(t) func-
tion, or even better, the Y (t) function. This is straightforward with the
techniques from Chapter 4 and is treated in Appendix C.3. In Chap-
ter 9.5, we develop a drawing tool for drawing figures like Figure C.1.
By drawing the box, string, and plate at every time level we compute
Si, we can use this tool to make a moving figure that illustrates the
dynamics of the oscillations. Already now you can play around with a
program doing that (box_spring_figure_anim.py).

C.2.2 Callback Functionality

It would be nice to make some graphics of the system while the com-
putations take place, not only after the S list is ready. The user must
then put some relevant statements in between the statements in the
algorithm. However, such modifications will depend on what type of
analysis the user wants to do. It is a bad idea to mix user-specific
statements with general statements in a general algorithm. We there-
fore let the user provide a function that the algorithm can call after
each Si value is computed. This is commonly called a callback function
(because a general function calls back to the user’s program to do a
user-specific task). To this callback function we send three key quanti-
ties: the S list, the point of time (t), and the time step number (i + 1),
so that the user’s code gets access to these important data.

If we just want to print the solution to the screen, the callback
function can be as simple as

def print_S(S, t, step):
print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

In the solve function we take the callback function as a keyword argu-
ment user_action. The default value can be an empty function, which
we can define separately:
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def empty_func(S, time, time_step_no):
return None

def solve(m, k, beta, S0, dt, g, w, N,
user_action=empty_func):

...

However, it is quicker to just use a lambda function (see Chap-
ter 2.2.11):

def solve(m, k, beta, S0, dt, g, w, N,
user_action=lambda S, time, time_step_no: None):

The new solve function has a call to user_action each time a new S
value has been computed:

def solve(m, k, beta, S0, dt, g, w, N,
user_action=lambda S, time, time_step_no: None):

"""Calculate N steps forward. Return list S."""
S = [0.0]*(N+1) # output list
gamma = beta*dt/2.0 # short form
t = 0
S[0] = S0
user_action(S, t, 0)
# special formula for first time step:
i = 0
S[i+1] = (1/(2.0*m))*(2*m*S[i] - dt**2*k*S[i] +

m*(w(t+dt) - 2*w(t) + w(t-dt)) + dt**2*m*g)
t = dt
user_action(S, t, i+1)

# time loop:
for i in range(1,N):

S[i+1] = (1/(m + gamma))*(2*m*S[i] - m*S[i-1] +
gamma*dt*S[i-1] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt))
+ dt**2*m*g)

t += dt
user_action(S, t, i+1)

return S

The two last arguments to user_action must be carefully set: these
should be time value and index for the most recently computed S value.

C.2.3 Making a Module

The init_prms and solve functions can now be combined with many
different types of main programs and user_action functions. It is there-
fore preferable to have the general init_prms and solve functions in
a module box_spring and import these functions in more user-specific
programs. Making a module out of init_prms and solve is, according
to Chapter 3.5, quite trivial as we just need to put the functions in a
file box_spring.py.

It is always a good habit to include a test block in module files.
To make the test block small, we place the statements in a separate
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function _test and just call _test in the test block. The initial under-
score in the name _test prevents this function from being imported
by a from box_spring import * statement. Our test here simply prints
solution at each time level. The following code snippet is then added
to the module file to include a test block:

def _test():
def print_S(S, t, step):

print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

# default values:
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 80;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

S = solve(m, k, beta, S0, dt, g, w, N,
user_action=print_S)

if __name__ == ’__main__’:
_test()

C.2.4 Verification

To check that the program works correctly, we need a series of problems
where the solution is known. These test cases must be specified by
someone with a good physical and mathematical understanding of the
problem being solved. We already have a solution formula (C.10) that
we can compare the computations with, and more tests can be made
in the case w �= 0 as well.

However, before we even think of checking the program against the
formula (C.10), we should perform some much simpler tests. The sim-
plest test is to see what happens if we do nothing with the system.
This solution is of course not very exciting – the box is at rest, but
it is in fact exciting to see if our program reproduces the boring so-
lution. Many bugs in the program can be found this way! So, let us
run the program box_spring.py with -S0 0 as the only command-line
argument. The output reads

t=0.00 S[0]=+0
t=0.16 S[1]=+0.121026
t=0.31 S[2]=+0.481118
t=0.47 S[3]=+1.07139
t=0.63 S[4]=+1.87728
t=0.79 S[5]=+2.8789
t=0.94 S[6]=+4.05154
t=1.10 S[7]=+5.36626
...

Something happens! All S[1], S[2], and so forth should be zero. What
is the error?

There are two directions to follow now: we can either visualize the
solution to understand more of what the computed S(t) function looks
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like (perhaps this explains what is wrong), or we can dive into the
algorithm and compute S[1] by hand to understand why it does not
become zero. Let us follow both paths.

First we print out all terms on the right-hand side of the statement
that computes S[1]. All terms except the last one (Δt2 mg) are zero.
The gravity term causes the spring to be stretched downward, which
causes oscillations. We can see this from the governing equation (C.8)
too: If there is no motion, S(t) = 0, the derivatives are zero (and w = 0
is default in the program), and then we are left with

kS = mg : S =
m

k
g . (C.22)

This result means that if the box is at rest, the spring is stretched
(which is reasonable!). Either we have to start with S(0) = m

k g in the
equilibrium position, or we have to turn off the gravity force by setting
-g 0 on the command line. Setting either -S0 0 -g 0 or -S0 9.81 shows
that the whole S list contains either zeros or 9.81 values (recall that
m = k = 1 so S0 = g). This constant solution is correct, and the coding
looks promising.

We can also plot the solution using the program box_spring_plot:

Terminal

box_spring_plot.py --S0 0 --N 200

Figure C.2 shows the function Y (t) for this case where the initial stretch
is zero, but gravity is causing a motion. With some mathematical anal-
ysis of this problem we can establish that the solution is correct. We
have that m = k = 1 and w = β = 0, which implies that the governing
equation is

d2S

dt2
+ S = g, S(0) = 0, dS/dt(0) = 0 .

Without the g term this equation is simple enough to be solved by
basic techniques you can find in most introductory books on differential
equations. Let us therefore get rid of the g term by a little trick: we
introduce a new variable T = S − g, and by inserting S = T + g in the
equation, the g is gone:

d2T

dt2
+ T = 0, T (0) = −g,

dT

dt
(0) = 0 . (C.23)

This equation is of a very well-known type and the solution reads
T (t) = −g cos t, which means that S(t) = g(1 − cos t) and

Y (t) = −L − g(1 − cos t) − b

2
.
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With L = 10, g ≈ 10, and b = 2 we get oscillations around y ≈ 21 with
a period of 2π and a start value Y (0) = −L− b/2 = 11. A rough visual
inspection of the plot shows that this looks right. A more thorough
analysis would be to make a test of the numerical values in a new
callback function (the program is found in box_spring_test1.py):

from box_spring import init_prms, solve
from math import cos

def exact_S_solution(t):
return g*(1 - cos(t))

def check_S(S, t, step):
error = exact_S_solution(t) - S[step]
print ’t=%.2f S[%d]=%+g error=%g’ % (t, step, S[step], error)

# fixed values for a test:
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 0
dt = 2*pi/40; g = 9.81; N = 200

def w(t):
return 0

S = solve(m, k, beta, S0, dt, g, w, N, user_action=check_S)

The output from this program shows increasing errors with time,
up as large values as 0.3. The difficulty is to judge whether this is the
error one must expect because the program computes an approximate
solution, or if this error points to a bug in the program – or a wrong
mathematical formula.

From these sessions on program testing you will probably realize that
verification of mathematical software is challenging. In particular, the
design of the test problems and the interpretation of the numerical out-
put require quite some experience with the interplay between physics
(or another application discipline), mathematics, and programming.

C.3 Visualization

The purpose of this section is to add graphics to the oscillating system
application developed in Appendix C.2. Recall that the function solve

solves the problem and returns a list S with indices from 0 to N. Our
aim is to plot this list and various physical quantities computed from
it.

C.3.1 Simultaneous Computation and Plotting

The solve function makes a call back to the user’s code through a
callback function (the user_action argument to solve) at each time
level. The callback function has three arguments: S, the time, and the
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Fig. C.2 Positions Y (t) of an oscillating box with m = k = 1, w = β = 0, g = 9.81,
L = 10, and b = 2.

current time step number. Now we want the callback function to plot
the position Y (t) of the box during the computations. In principle this
is easy, but S is longer than we want to plot, because S is allocated
for the whole time simulation while the user_action function is called
at time levels where only the indices in S up to the current time level
have been computed (the rest of the elements in S are zero). We must
therefore use a sublist of S, from time zero and up to the current time.
The callback function we send to solve as the user_action argument
can then be written like this:

def plot_S(S, t, step):
if step == 0: # nothing to plot yet

return None

tcoor = linspace(0, t, step+1)
S = array(S[:len(tcoor)])
Y = w(tcoor) - L - S - b/2.
plot(tcoor, Y)

Note that L, dt, b, and w must be global variables in the user’s main
program.

The major problem with the plot_S function shown is that the
w(tcoor) evaluation does not work. The reason is that w is a
StringFunction object, and according to Chapter 4.4.3, StringFunction
objects do not work with array arguments unless we call their vectorize
function once. We therefore need to do a

w.vectorize(globals())

before calling solve (which calls plot_S repeatedly). Here is the main
program with this important statement:
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from box_spring import init_prms, solve
from scitools.std import *

# default values:
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 200;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

w.vectorize(globals())

S = solve(m, k, beta, S0, dt, g, w, N, user_action=plot_S)

Now the plot_S function works fine. You can try the program out by
running

Terminal

box_spring_plot_v1.py

Fixing Axes. Both the t and the y axes adapt to the solution array in
every plot. The adaptation of the y is okay since it is difficult to predict
the future minimum and maximum values of the solution, and hence it
is most natural to just adapt the y axis to the computed Y points so
far in the simulation. However, the t axis should be fixed throughout
the simulation, and this is easy since we know the start and end times.
The relevant plot call now becomes4

plot(tcoor, Y,
axis=[0, N*dt, min(Y), max(Y)],
xlabel=’time’, ylabel=’Y’)

At the end of the simulation it can be nice to make a hardcopy of the
last plot command performed in the plot_S function. We then just
call

hardcopy(’tmp_Y.eps’)

after the solve function is finished.
In the beginning of the simulation it is convenient to skip plotting for

a number of steps until there are some interesting points to visualize
and to use for computing the axis extent. We also suggest to apply
the recipe at the end of Chapter 4.4.3 to vectorize w. More precisely,
we use w.vectorize in general, but turn to NumPy’s vectorize feature
only if the string formula contains an inline if-else test (to avoid
requiring users to use where to vectorize the string expressions). One
reason for paying attention to if-else tests in the w formula is that
sudden movements of the plate are of interest, and this gives rise to step
functions and strings like ’1 if t>0 else 0’. A main program with all
these features is listed next.

4 Note that the final time is T = NΔt.
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from box_spring import init_prms, solve
from scitools.std import *

def plot_S(S, t, step):
first_plot_step = 10 # skip the first steps
if step < first_plot_step:

return

tcoor = linspace(0, t, step+1) # t = dt*step
S = array(S[:len(tcoor)])
Y = w(tcoor) - L - S - b/2.0 # (w, L, b are global vars.)

plot(tcoor, Y,
axis=[0, N*dt, min(Y), max(Y)],
xlabel=’time’, ylabel=’Y’)

# default values:
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 200

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

# vectorize the StringFunction w:
w_formula = str(w) # keep this to see if w=0 later
if ’ else ’ in w_formula:

w = vectorize(w) # general vectorization
else:

w.vectorize(globals()) # more efficient (when no if)

S = solve(m, k, beta, S0, dt, g, w, N, user_action=plot_S)

# first make a hardcopy of the the last plot of Y:
hardcopy(’tmp_Y.eps’)

C.3.2 Some Applications

What if we suddenly, right after t = 0, move the plate upward from
y = 0 to y = 1? This will set the system in motion, and the task is to
find out what the motion looks like.

There is no initial stretch in the spring, so the initial condition be-
comes S0 = 0. We turn off gravity for simplicity and try a w = 1
function since the plate has the position y = w = 1 for t > 0:

Terminal

box_spring_plot.py --w ’1’ --S 0 --g 0

Nothing happens. The reason is that we specify w(t) = 1, but in the
equation only d2w/dt2 has an effect and this quantity is zero. What we
need to specify is a step function: w = 0 for t ≤ 0 and w = 1 for t > 0.
In Python such a function can be specified as a string expression ’1 if

t>0 else 0’. With a step function we obtain the right initial jump of
the plate:

Terminal



C.3 Visualization 643

box_spring_plot.py --w ’1 if t > 0 else 0’ \
--S0 0 --g 0 --N 1000 --beta 0.1

Figure C.3 displays the solution. We see that the damping parameter
has the effect of reducing the amplitude of Y (t), and the reduction
looks exponential, which is in accordance with the exact solution (C.10)
(although this formula is not valid in the present case because w �= 0
– but one gets the same exponential reduction even in this case). The
box is initially located in Y = 0−(10+0)−2/2 = −11. During the first
time step we get a stretch S = 0.5 and the plate jumps up to y = 1 so
the box jumps to Y = 1− (10 + 0.5)− 2/2 = −10.5. In Figure C.3b we
that the box starts correctly out and jumps upwards, as expected.
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Fig. C.3 Plot of the position of an oscillating box where the end point of the spring
(w(t)) is given a sudden movement at t = 0. Other parameters are m = k = 1, β = 0.1,
g = 0, S0 = 0. (a) 1000 time steps; (b) 100 steps for magnifying the first oscillation
cycles.

More exciting motions of the box can be obtained by moving the
plate back and forth in time, see for instance Figure C.4 on page 645.

C.3.3 Remark on Choosing Δt

If you run the box_spring_plot.py program with a large -dt argument
(for Δt), strange things may happen. Try -dt 2 -N 20 as command-
line arguments and observe that Y jumps up and down in a saw tooth
fashion so we clearly have too large time steps. Then try -dt 2.1 -N

20 and observe that Y takes on very large values (105). This highly
non-physical result points to an error in the program. However, the
problem is not in the program, but in the numerical method used
to solve (C.8). This method becomes unstable and hence useless if
Δt is larger than a critical value. We shall not dig further into such
problems, but just notice that mathematical models on a computer
must be used with care, and that a serious user of simulation programs
must understand how the mathematical methods work in detail and
what their limitations are.
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C.3.4 Comparing Several Quantities in Subplots

So far we have plotted Y , but there are other interesting quantities to
look at, e.g., S, w, the spring force, and the damping force. The spring
force and S are proportional, so only one of these is necessary to plot.
Also, the damping force is relevant only if β �= 0, and w is only relevant
if the string formula is different from the default value ’0’.

All the mentioned additional plots can be placed in the same fig-
ure for comparison. To this end, we apply the subfigure command in
Easyviz and create a row of individual plots. How many plots we have
depends on the values of str(w) and beta. The relevant code snippet
for creating the additional plots is given below and appears after the
part of the main program shown above.

# make plots of several additional interesting quantities:
tcoor = linspace(0, tstop, N+1)
S = array(S)

plots = 2 # number of rows of plots
if beta != 0:

plots += 1
if w_formula != ’0’:

plots += 1

# position Y(t):
plot_row = 1
subplot(plots, 1, plot_row)
Y = w(tcoor) - L - S - b/2.0
plot(tcoor, Y, xlabel=’time’, ylabel=’Y’)

# spring force (and S):
plot_row += 1
subplot(plots, 1, plot_row)
Fs = k*S
plot(tcoor, Fs, xlabel=’time’, ylabel=’spring force’)

if beta != 0:
plot_row += 1
subplot(plots, 1, plot_row)
Fd = beta*diff(S) # diff is in numpy
# len(diff(S)) = len(S)-1 so we use tcoor[:-1]:
plot(tcoor[:-1], Fd, xlabel=’time’, ylabel=’damping force’)

if w_formula != ’0’:
plot_row += 1
subplot(plots, 1, plot_row)
w_array = w(tcoor)
plot(tcoor, w_array, xlabel=’time’, ylabel=’w(t)’)

# save this multi-axis plot in a file:
hardcopy(’tmp.eps’)

Figure C.4 displays what the resulting plot looks like for a test case
with an oscillating plate (w). The command for this run is

Terminal

box_spring_plot.py --S0 0 --w ’2*(cos(8*t)-1)’ \
--N 600 --dt 0.05236
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The rapid oscillations of the plate require us to use a smaller Δt and
more steps (larger N).
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Fig. C.4 Plot of the plate position w(t), the spring force (proportional to S(t)), and
the position Y (t) for a test problem where w(t) = 2(cos(8t) − 1), β = g = 0, m = k = 1,
S0 = 0, Δt = 0.5236, and N = 600.

C.3.5 Comparing Approximate and Exact Solutions

To illustrate multiple curves in the same plot and animations we turn
to a slightly different program. The task now is to visually investigate
how the accuracy of the computations depends on the Δt parameter.
The smaller Δt is, the more accurate the solution S is. To look into
this topic, we need a test problem with known solution. Setting m =
k = 1 and w = 0 = β = 0 implies the exact solution S(t) = g(1 −
cos t) (see Appendix C.2.4). The box_spring_test1.py program from
Appendix C.2.4 can easily be extended to plot the calculated solution
together with the exact solution. We drop the user_action callback
function and just make the plot after having the complete solution S

returned from the solve function:

tcoor = linspace(0, N*dt, len(S))
exact = exact_S_solution(tcoor)
plot(tcoor, S, ’r’, tcoor, exact, ’b’,

xlabel=’time’, ylabel=’S’,
legend=(’computed S(t)’, ’exact S(t)’),
hardcopy=’tmp_S.eps’)
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The two curves tend to lie upon each other, so to get some more insight
into the details of the error, we plot the error itself, in a separate plot
window:

figure() # new plot window
S = array(S) # turn list into NumPy array for computations
error = exact - S
plot(tcoor, error, xlabel=’time’, ylabel=’error’,

hardcopy=’tmp_error.eps’)

The error increases in time as the plot in Figure C.5a clearly shows.

C.3.6 Evolution of the Error as Δt Decreases

Finally, we want to investigate how the error curve evolves as the time
step Δt decreases. In a loop we halve Δt in each pass, solve the problem,
compute the error, and plot the error curve. From the finite difference
formulas involved in the computational algorithm, we can expect that
the error is of order Δt2. That is, if Δt is halved, the error should be
reduced by 1/4.

The resulting plot of error curves is not very informative because the
error reduces too quickly (by several orders of magnitude). A better
plot is obtained by taking the logarithm of the error. Since an error
curve may contain positive and negative elements, we take the absolute
value of the error before taking the logarithm. We also note that S0 is
always correct, so it is necessary to leave out the initial value of the
error array to avoid the logarithm of zero.

The ideas of the previous two paragraphs can be summarized in a
Python code snippet:

figure() # new plot window
dt = 2*pi/10
tstop = 8*pi # 4 periods
N = int(tstop/dt)
for i in range(6):

dt /= 2.0
N *= 2
S = solve(m, k, beta, S0, dt, g, w, N)
S = array(S)
tcoor = linspace(0, tstop, len(S))
exact = exact_S_solution(tcoor)
abserror = abs(exact - S)
# drop abserror[0] since it is always zero and causes
# problems for the log function:
logerror = log10(abserror[1:])
plot(tcoor[1:], logerror, ’r’, xlabel=’time’,

ylabel=’log10(abs(error))’)
hold(’on’)

hardcopy(’tmp_errors.eps’)

The resulting plot is shown in Figure C.5b.
Visually, it seems to be a constant distance between the curves in

Figure C.5b. Let d denote this difference and let Ei be the absolute
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Fig. C.5 Error plots for a test problem involving an oscillating system: (a) the error
as a function of time; (b) the logarithm of the absolute value of the error as a function
of time, where Δt is reduced by one half from one curve to the next one below.

error curve associated with Δt in the i-th pass in the loop. What we
plot is log10 Ei. The difference between two curves is then Di+1 =
log10 Ei − log10 Ei+1 = log10(Ei/Ei+1). If this difference is roughly 0.5
as we see from Figure C.5b, we have

log10

Ei

Ei+1
= d = 0.5 : Ei+1 =

1

3.16
Ei .

That is, the error is reduced, but not by the theoretically expected
factor 4. Let us investigate this topic in more detail by plotting Di+1.

We make a loop as in the last code snippet, but store the logerror ar-
ray from the previous pass in the loop (Ei) in a variable logerror_prev

such that we can compute the difference Di+1 as

logerror_diff = logerror_prev - logerror

There are two problems to be aware of now in this array subtraction:
(i) the logerror_prev array is not defined before the second pass in the
loop (when i is one or greater), and (ii) logerror_prev and logerror

have different lengths since logerror has twice as many time intervals
as logerror_prev. Numerical Python does not know how to compute
this difference unless the arrays have the same length. We therefore
need to use every two elements in logerror:

logerror_diff = logerror_prev - logerror[::2]

An additional problem now arises because the set of time coordinates,
tcoor, in the current pass of the loop also has twice as many intervals
so we need to plot logerror_diff against tcoor[::2].

The complete code snippet for plotting differences between the log-
arithm of the absolute value of the errors now becomes

figure()
dt = 2*pi/10
tstop = 8*pi # 4 periods
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N = int(tstop/dt)
for i in range(6):

dt /= 2.0
N *= 2
S = solve(m, k, beta, S0, dt, g, w, N)
S = array(S)
tcoor = linspace(0, tstop, len(S))
exact = exact_S_solution(tcoor)
abserror = abs(exact - S)
logerror = log10(abserror[1:])
if i > 0:

logerror_diff = logerror_prev - logerror[::2]
plot(tcoor[1::2], logerror_diff, ’r’, xlabel=’time’,

ylabel=’difference in log10(abs(error))’)
hold(’on’)
meandiff = mean(logerror_diff)
print ’average log10(abs(error)) difference:’, meandiff

logerror_prev = logerror
hardcopy(’tmp_errors_diff.eps’)

Figure C.6 shows the result. We clearly see that the differences between
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Fig. C.6 Differences between the curves in Figure C.5b.

the curves in Figure C.5b are almost the same even if Δt is reduced by
several orders of magnitude.

In the loop we also print out the average value of the difference
curves in Figure C.6:

average log10(abs(error)) difference: 0.558702094666
average log10(abs(error)) difference: 0.56541814902
average log10(abs(error)) difference: 0.576489014172
average log10(abs(error)) difference: 0.585704362507
average log10(abs(error)) difference: 0.592109360025

These values are “quite constant”. Let us use 0.57 as an representative
value and see what it implies. Roughly speaking, we can then say that

log10 Ei − log10 Ei+1 = 0.57 .
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Collecting the two first terms and applying the exponential function
10x on both sides we get that

Ei+1 =
1

3.7
Ei .

This error reduction when Δt is decreased is not quite as good as
we would theoretically expect (1/4), but it is close. The purpose of
this brief analysis is primarily to show how errors can be explored
by plotting, and how we can take advantage of array computing to
produce various quantites of interest in a problem. A more thorough
investigation of how the error depends on Δt would use time integrals
of the error instead of the complete error curves.

Again we mention that the complete problem analyzed in this ap-
pendix is challenging to understand because of its mix of physics, math-
ematics, and programming. In real life, however, problem solving in
science and industry involve multi-disciplinary projects where people
with different competence work together. As a scientific programmer
you must then be able to fully understand what to program and how
to verify the results. This is a requirement in the current summarizing
example too. You have to accept that your programming problem is
buried in a lot of physical and mathematical details.

Having said this, we expect that most readers of this book also
gain a background in physics and mathematics so that the present
summarizing example can be understood in complete detail, at least
at some later stage.

C.4 Exercises

Exercise C.1. Use a w function with a step.
Set up a problem with the box_spring_plot.py program where the

initial stretch in the spring is 1 and there is no gravity force. Between
t = 20 and t = 30 we move the plate suddenly from 0 to 2 and back
again:

w(t) =

{
2, 20 < t < 30,
0, otherwise

Run this problem and view the solution. �
Exercise C.2. Make a callback function in Exercise C.1.

Doing Exercise C.1 shows that the Y position increases significantly
in magnutude when the “jump” the plate upward and back again at
t = 20 and t = 30, respectively. Make a program where you im-
port from the box_spring module and provide a callback function that
checks if Y < 9 and then aborts the program. Name of program file:
box_spring_Ycrit.py. �
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Exercise C.3. Improve input to the simulation program.
The oscillating system in Appendix C.1 has an equilibrium position

S = mg/k, see (C.22) on page 638. A natural case is to let the box
start at rest in this position and move the plate to induce osciallations.
We must then prescribe S0 = mg/k on the command line, but the
numerical value depends on the values of m and g that we might also
give in the command line. However, it is possible to specify -S0 m*g/k

on the command line if we in the init_prms function first let S0 be
a string in the elif test and then, after the for loop, execute S0 =

eval(S0). At that point, m and k are read from the command line so
that eval will work on ’m*g/k’, or any other expression involving data
from the command. Implement this idea.

A first test problem is to start from rest in the equilibrium position
S(0) = mg/k and give the plate a sudden upward change in position
from y = 0 to y = 1. That is,

w(t) =

{
0, t ≤ 0,
1, t > 0

You should get oscillations around the displaced equilibrium position
Y = w − L − S0 = −9 − 2g. Name of program file: box_spring2.py. �
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D.1 Using a Debugger

A debugger is a program that can help you to find out what is going on
in a computer program. You can stop the execution at any prescribed
line number, print out variables, continue execution, stop again, exe-
cute statements one by one, and repeat such actions until you track
down abnormal behavior and find bugs.

Here we shall use the debugger to demonstrate the program flow of
the ball_table.py code from Chapter 2.4.2. You are strongly encour-
aged to carry out the steps below on your computer to get a glimpse
of what a debugger can do.

1. Go to the folder src/basic associated with Chapter 2.
2. Start IPython:

Terminal

Unix/DOS> ipython

3. Run the program ball_table.py with the debugger on (-d):

In [1]: run -d ball_table.py

Instead of running the program as usual, we now enter the debugger
and get a prompt

ipdb>

After this prompt we can issue various debugger commands. The most
important ones will be described as we go along.

4. Type continue or just c to go to the first statement in the file.
Now you can see a printout of where we are in the program:

651
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1---> 1 g = 9.81; v0 = 5
2 dt = 0.05
3

Each program line is numbered and the arrow points to the next line
to be executed. This is called the current line.

5. Type step or just s to execute the current line, which here initial-
izes g and v0. Afterwards, we can print out their values by just writing
the variable names at the ipdb> prompt:

ipdb>g
Out[1]: 9.8100000000000005
ipdb>v0
Out[1]: 5

We can explicitly demonstrate that dt is not yet initialized as a vari-
able:

ipdb>dt
*** NameError: name ’dt’ is not defined

6. Type list or just l to get a listing of the program lines around
the current line:

ipdb>list
1 1 g = 9.81; v0 = 5
----> 2 dt = 0.05

3
4 def y(t):
5 return v0*t - 0.5*g*t**2
6
7 def table():
8 data = [] # store [t, y] pairs in a nested list
9 t = 0
10 while y(t) >= 0:
11 data.append([t, y(t)])

To see the lines between line number 11 and 30, type list 11,30. Writ-
ing help list results in a short description of the list command.

7. Let us set a break point at the line with the call data = table().
From the listing we see that this line has number 15. A break point
means that the program execution will halt at this point to let us
examine variables and perform step-wise execution with the step (s)
command. Write

ipdb>break 15

to set the break point at line 15. To run the program up to this point,
type continue or c. Alternatively, we could have issued some step com-
mands to reach line 15.

8. Type repeated step (s) commands and see that we jump to the
table function. Continue with step commands and observe that when
we reach the while loop, we jump to the y function. After the return

statement in the y function the debugger writes out the return value.
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More step commands show how we jump between the table and y

functions every time the y(t) expression appears in the loop (either in
the append call or in the loop condition).

Inside the y or table function we may examine variables by just
typing their names. One can, for instance, monitor how the data list
develops. Inside the y function, data does not exist (since data is a local
variable in the table not visible outside this function).

Stepwise execution with the s command is tedious. We may set a
break point at line 11 when there are more elements in the data list,
say when it has more than four elements:

ipdb>break 11, len(data)>4

Continue execution with the continue or c command and observe that
the program stops at line 11 as soon as the condition on the length is
fulfilled. Writing out the data list shows that it now has five elements.

9. The next or n command executes the current line, in the same way
as the step or s command, but contrary to the latter, the n command
does not enter functions being called. To demonstrate this point, type
n a few times. You will experience that the statements involving y(t)

calls are executed without stopping inside the y function. That is, n

commands lead to stops inside the table function only. This is a quick
way to examine how the while loop is executed.

10. Typing c continues execution until the next break point, but
there are no more break points so the execution is continued until the
end or until a Python error occurs. The latter action takes place in our
program:

8 data = [] # store [t, y] pairs in a nested list
9 t = 0

---> 10 while y(t) >= 0:
11 data.append([t, y(t)])
12 t += dt

<type ’exceptions.TypeError’>: ’list’ object is not callable

We can now check what y is by typing its name, and we quickly realize
that y is a list, not a function anymore.

At this point, I hope you realize that a debugger is a very handy
tool for monitoring the program flow, checking variables, and thereby
understanding why errors occur, as we have demonstrated in the step-
wise exploration above.

D.2 How to Debug

Most programmers will claim that writing code consumes a small por-
tion of the time it takes to develop a program – the major portion of
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the work concerns testing the program and finding errors1. Newcom-
ers to programming often panic when their program runs for the first
time and aborts with a seemingly cryptic error message. How do you
approach the art of debugging? This appendix summarizes some im-
portant working habits in this respect. Some of the tips are useful for
problem solving in general, not only when writing and testing Python
programs.

D.2.1 A Recipe for Program Writing and Debugging

1. Make sure that you understand the problem the program is supposed
to solve. We can make a general claim: If you do not understand the
problem and the solution method, you will never be able to make a
correct program2. It may be necessary to read a problem description
or exercise many times and study relevant background material.

2. Work out some examples on input and output of the program. Such
examples are important for controlling the understanding of the
purpose of the program, and for verifying the implementation.

3. Decide on a user interface, i.e., how you want to get data into the
program (command-line input, file input, questions and answers,
etc.).

4. Sketch rough algorithms for various parts of the program. Some
programmers prefer to do this on a piece of paper, others prefer to
start directly in Python and write Python-like code with comments
to sketch the program (this is easily developed into real Python code
later).

5. Look up information on how to program different parts of the prob-
lem. Few programmers can write the whole program without con-
sulting manuals, books, and the Internet. You need to know and
understand the basic constructs in a language and some fundamen-
tal problem solving techniques, but technical details can be looked
up.
The more program examples you have studied (in this book, for
instance), the easier it is to adapt ideas from an existing example
to solve a new problem3. Remember that exercises in this book are
often closely linked to examples in the text.

1 “Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to
debug it.” –Brian W. Kernighan, computer scientist, 1942-.

2 This is not entirely true. Sometimes students with limited understanding of the
problem are able to grab a similar program and guess at a few modifications –
and get a program that works. But this technique is based on luck and not on
understanding. The famous Norwegian computer scientist Kristen Nygaard (1926-
2002) phrased it precisely: “Programming is understanding”.

3 “The secret to creativity is knowing how to hide your sources.” –Albert Einstein,
physicist, 1879-1955.
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6. Write the program. Be extremely careful with what you write. In
particular, compare all mathematical statements and algorithms
with the original mathematical expressions on paper.
In longer programs, do not wait until the program is complete before
you start testing it – test parts while you write.

7. Run the program.
If the program aborts with an error message from Python, these
messages are fortunately quite precise and helpful. First, locate the
line number where the error occurs and read the statement, then
carefully read the error message. The most common errors (excep-
tions) are listed below.
SyntaxError: Illegal Python code.

File "somefile.py", line 5
x = . 5

^
SyntaxError: invalid syntax

Often the error is precisely indicated, as above, but sometimes you
have to search for the error on the previous line.
NameError: A name (variable, function, module) is not defined.

File "somefile.py", line 20, in <module>
table(10)

File "somefile.py", line 16, in table
value, next, error = L(x, n)

File "somefile.py", line 8, in L
exact_error = log(1+x) - value_of_sum

NameError: global name ’value_of_sum’ is not defined

Look at the last of the lines starting with File to see where in the
program the error occurs. The most common reasons for a NameError

are

–a misspelled name,
–a variable that is not initialized,
–a function that you have forgotten to define,
–a module that is not imported.

TypeError: An object of wrong type is used in an operation.

File "somefile.py", line 17, in table
value, next, error = L(x, n)

File "somefile.py", line 7, in L
first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)

TypeError: unsupported operand type(s) for +: ’float’ and ’str’

Print out objects and their types (here: print x, type(x), n,

type(n)), and you will most likely get a surprise. The reason for
a TypeError is often far away from the line where the TypeError

occurs.
ValueError: An object has an illegal value.

File "somefile.py", line 8, in L
y = sqrt(x)

ValueError: math domain error
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Print out the value of objects that can be involved in the error (here:
print x).
IndexError: An index in a list, tuple, string, or array is too large.

File "somefile.py", line 21
n = sys.argv[i+1]

IndexError: list index out of range

Print out the length of the list, and the index if it involves a variable
(here: print len(sys.argv), i).

8. Verify the implementation. Assume now that we have a program
that runs without error messages from Python. Before judging the
results of the program, set precisely up a test case where you know
the exact solution4. Insert print statements for all key results in the
program so that you can easily compare calculations in the program
with those done by hand.
If your program produces wrong answers, start to examine inter-
mediate results. Also remember that your hand calculations may be
wrong!

9. If you need a lot of print statements in the program, you may use
a debugger as explained in Appendix D.1.

Some may think that this list is very comprehensive. However, it just
contains the items that you should always address when developing
programs. Never forget that computer programming is a difficult task5!

D.2.2 Application of the Recipe

Let us illustrate the points above in a specific programming problem.

Problem. Implement the Midpoint rule for numerical integration. The
Midpoint rule for approximating an integral

∫ b
a f(x)dx reads

I = h

n∑
i=1

f(a + (i − 1

2
)h), h =

b − a

n
. (D.1)

Solution. We just follow the individual steps in the recipe.
1. Understand the problem. In this problem we must understand

how to program the formula (D.1). Observe that we do not need to
understand how the formula is derived, because we do not apply the

4 This is in general quite difficult. In complicated mathematical problems it is an
art to construct good test problems and procedures for providing evidence that the
program works.

5 “Program writing is substantially more demanding than book writing.”“Why is it
so? I think the main reason is that a larger attention span is needed when working
on a large computer program than when doing other intellectual tasks.” –Donald
Knuth [4, p. 18], computer scientist, 1938-.
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derivation in the program6. What is important, is to notice that the
formula is an approximation of an integral. If we try to integrate a
function f(x), we will probably not get an exact answer. Whether we
have an approximation error or a programming error is always difficult
to judge. We will meet this difficulty below.

2. Work out examples. As a test case we choose to integrate

f(x) = sin−1(x) . (D.2)

between 0 and π. From a table of integrals we find that this integral
equals [

x sin−1(x) +
√

1 − x2
]π

0
. (D.3)

The formula (D.1) gives an approximation to this integral, so the pro-
gram will (most likely) print out a result different from (D.3). It would
therefore be very helpful to construct a calculation where there are
no approximation errors. Numerical integration rules usually integrate
some polynomial of low order exactly. For the Midpoint rule it is ob-
vious, if you understand the derivation of this rule, that a constant
function will be integrated exactly. We therefore also introduce a test
problem where we integrate g(x) = 1 from 0 to 10. The answer should
be exactly 10.

Input and output : The input to the calculations is the function to
integrate, the integration limits a and b, and the n parameter (number
of intervals) in the formula (D.1). The output from the calculations is
the approximation to the integral.

3. User interface. We decide to program the two functions f(x) and
g(x) directly in the program. We also specify the corresponding inte-
gration limits a and b in the program, but we read a common n for
both integrals from the command line. Note that this is not a flexible
user interface, but it suffices as a start for creating a working program.
A much better user interface is to read f , a, b, and n from the com-
mand line, which will be done later in a more complete solution to the
present problem.

4. Algorithm. Like most mathematical programming problems, also
this one has a generic part and an application part. The generic part
is the formula (D.1), which is applicable to an arbitrary function f(x).
The implementation should reflect that we can specify any Python
function f(x) and get it integrated. This principle calls for calculating
(D.1) in a Python function where the input to the computation (f , a,
b, n) are arguments. The function heading can look as integrate(f,

a, b, n), and the value of (D.1) is returned.

6 You often need to understand the background for and the derivation of a mathemat-
ical formula in order to work out sensible test problems for verification. Sometimes
this must be done by experts on the particular problem at hand.
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The test part of the program consists of defining the test functions
f(x) and g(x) and writing out the calculated approximations to the
corresponding integrals.

A first rough sketch of the program can then be

def integrate(f, a, b, n):
# compute integral, store in I
return I

def f(x):
...

def g(x):
...

# test/application part:
n = sys.argv[1]
I = integrate(g, 0, 10, n)
print "Integral of g equals %g" % I
I = integrate(f, 0, pi, n)
# calculate and print out the exact integral of f

The next step is to make a detailed implementation of the integrate

function. Inside this function we need to compute the sum (D.1). In
general, sums are computed by a for loop over the summation index,
and inside the loop we calculate a term in the sum and add it to an
accumulation variable. Here is the algorithm:

s = 0
for i from 1 to n:

s = s + f(a + (i − 1
2)h)

I = sh

5. Look up information. Our test function f(x) = sin−1(x) must be
evaluated in the program. How can we do this? We know that many
common mathematical functions are offered by the math module. It is
therefore natural to check if this module has an inverse sine function.
The best place to look for Python modules is the Python Library Ref-
erence (see Chapter 2.4.3). We go to the index of this manual, find the
“math” entry, and click on it. Alternatively, you can write pydoc math

on the command line. Browsing the manual for the math module shows
that there is an inverse sine function, with the name asin.

In this simple problem, where we use very basic constructs from the
first three chapters of this book, there is hardly any need for look-
ing at similar examples. Nevertheless, if you are uncertain about pro-
gramming a mathematical sum, you may look at examples from, e.g.,
Chapter 2.2.4.

6. Write the program. Here is our first attempt to write the program.
You can find the whole code in the file appendix/integrate_v1.py.
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def integrate(f, a, b, n):
s = 0
for i in range(1, n):

s += f(a + i*h)
return s

def f(x):
return asin(x)

def g(x):
return 1

# test/application part:
n = sys.argv[1]
I = integrate(g, 0, 10, n)
print "Integral of g equals %g" % I
I = integrate(f, 0, pi, n)
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1
print "Integral of f equals %g (exact value is %g)’ % \
(I, I_exact)

7. Run the program. We try a first execution from IPython

In [1]: run integrate_v1.py

Unfortunately, the program aborts with an error:
File "integrate_v1.py", line 8
return asin(x)

^
IndentationError: expected an indented block

We go to line 8 and look at that line and the surrounding code:

def f(x):
return asin(x)

Python expects that the return line is indented, because the function
body must always be indented. By the way, we realize that there is a
similar error in the g(x) function as well. We correct these errors:

def f(x):
return asin(x)

def g(x):
return 1

Running the program again makes Python respond with
File "integrate_v1.py", line 24
(I, I_exact)

^
SyntaxError: EOL while scanning single-quoted string

There is nothing wrong with line 24, but line 24 is a part of the state-
ment starting on line 23:

print "Integral of f equals %g (exact value is %g)’ % \
(I, I_exact)

A SyntaxError implies that we have written illegal Python code. In-
specting line 23 reveals that the string to be printed starts with a
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double quote, but ends with a single quote. We must be consistent and
use the same enclosing quotes in a string. Correcting the statement,

print "Integral of f equals %g (exact value is %g)" % \
(I, I_exact)

and rerunning the program yields the output

Traceback (most recent call last):
File "integrate_v1.py", line 18, in <module>
n = sys.argv[1]

NameError: name ’sys’ is not defined

Obviously, we need to import sys before using it. We add import sys

and run again:

Traceback (most recent call last):
File "integrate_v1.py", line 19, in <module>
n = sys.argv[1]

IndexError: list index out of range

This is a very common error: We index the list sys.argv out of range
because we have not provided enough command-line arguments. Let
us use n = 10 in the test and provide that number on the command
line:

In [5]: run integrate_v1.py 10

We still have problems:

Traceback (most recent call last):
File "integrate_v1.py", line 20, in <module>
I = integrate(g, 0, 10, n)

File "integrate_v1.py", line 7, in integrate
for i in range(1, n):

TypeError: range() integer end argument expected, got str.

It is the final File line that counts (the previous ones describe the
nested functions calls up to the point where the error occured). The
error message for line 7 is very precise: The end argument to range, n,
should be an integer, but it is a string. We need to convert the string
sys.argv[1] to int before sending it to the integrate function:

n = int(sys.argv[1])

After a new edit-and-run cycle we have other error messages waiting:

Traceback (most recent call last):
File "integrate_v1.py", line 20, in <module>
I = integrate(g, 0, 10, n)

File "integrate_v1.py", line 8, in integrate
s += f(a + i*h)

NameError: global name ’h’ is not defined

The h variable is used without being assigned a value. From the formula
(D.1) we see that h = (b − a)/n, so we insert this assignment at the
top of the integrate function:



D.2 How to Debug 661

def integrate(f, a, b, n):
h = (b-a)/n
...

A new run results in a new error:
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 23, in <module>
I = integrate(f, 0, pi, n)

NameError: name ’pi’ is not defined

Looking carefully at all output, we see that the program managed to
call the integrate function with g as input and write out the inte-
gral. However, in the call to integrate with f as argument, we get a
NameError, saying that pi is undefined. When we wrote the program
we took it for granted that pi was π, but we need to import pi from
math to get this variable defined, before we call integrate:

from math import pi
I = integrate(f, 0, pi, n)

The output of a new run is now
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 24, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 13, in f
return asin(x)

NameError: global name ’asin’ is not defined

A similar error occured: asin is not defined as a function, and we need
to import it from math. We can either do a

from math import pi, asin

or just do the rough

from math import *

to avoid any further errors with undefined names from the math module
(we will get one for the sqrt function later, so we simply use the last
“import all” kind of statement).

There are still more errors:
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 24, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 13, in f
return asin(x)

ValueError: math domain error

Now the error concerns a wrong x value in the f function. Let us print
out x:
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def f(x):
print x
return asin(x)

The output becomes
Integral of g equals 9
0.314159265359
0.628318530718
0.942477796077
1.25663706144
Traceback (most recent call last):
File "integrate_v1.py", line 25, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 14, in f
return asin(x)

ValueError: math domain error

We see that all the asin(x) computations are successful up to and
including x = 0.942477796077, but for x = 1.25663706144 we get an
error. A“math domain error”may point to a wrong x value for sin−1(x)
(recall that the domain of a function specifies the legal x values for that
function).

To proceed, we need to think about the mathematics of our problem:
Since sin(x) is always between −1 and 1, the inverse sine function
cannot take x values outside the interval [−1, 1]. The problem is that we
try to integrate sin−1(x) from 0 to π, but only integration limits within
[−1, 1] make sense (unless we allow for complex-valued trigonometric
functions). Our test problem is hence wrong from a mathematical point
of view. We need to adjust the limits, say 0 to 1 instead of 0 to π. The
corresponding program modification reads

I = integrate(f, 0, 1, n)

We run again and get
Integral of g equals 9
0
0
0
0
0
0
0
0
0
Traceback (most recent call last):
File "integrate_v1.py", line 26, in <module>
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1

ValueError: math domain error

It is easy to go directly to the ValueError now, but one should always
examine the output from top to bottom. If there is strange output
before Python reports an error, there may be an error indicated by our
print statements which causes Python to abort the program. This is
not the case in the present example, but it is a good habit to start at
the top of the output anyway. We see that all our print x statements
inside the f function say that x is zero. This must be wrong – the idea
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of the integration rule is to pick n different points in the integration
interval [0, 1].

Our f(x) function is called from the integrate function. The ar-
gument to f, a + i*h, is seemingly always 0. Why? We print out the
argument and the values of the variables that make up the argument:

def integrate(f, a, b, n):
h = (b-a)/n
s = 0
for i in range(1, n):

print a, i, h, a+i*h
s += f(a + i*h)

return s

Running the program shows that h is zero and therefore a+i*h is zero.
Why is h zero? We need a new print statement in the computation

of h:

def integrate(f, a, b, n):
h = (b-a)/n
print b, a, n, h
...

The output shows that a, b, and n are correct. Now we have encoun-
tered an error that we often discuss in this book: integer division (see
Chapter 1.3.1). The formula (1− 0)/10 = 1/10 is zero according to in-
teger division. The reason is that a and b are specified as 0 and 1 in the
call to integrate, and 0 and 1 imply int objects. Then b-a becomes an
int, and n is an int, causing an int/int division. We must ensure that
b-a is float to get the right mathematical division in the computation
of h:

def integrate(f, a, b, n):
h = float(b-a)/n
...

Thinking that the problem with wrong x values in the inverse sine
function is resolved, we may remove all the print statements in the
program, and run again.

The output now reads
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 25, in <module>
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1

ValueError: math domain error

That is, we are back to the ValueError we have seen before. The rea-
son is that asin(pi) does not make sense, and the argument to sqrt

is negative. The error is simply that we forgot to adjust the upper in-
tegration limit in the computation of the exact result. This is another
very common error. The correct line is
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I_exact = 1*asin(1) - sqrt(1 - 1**2) - 1

We could avoided the error by introducing variables for the integration
limits, and a function for

∫
f(x)dx would make the code cleaner:

a = 0; b = 1
def int_f_exact(x):

return x*asin(x) - sqrt(1 - x**2)
I_exact = int_f_exact(b) - int_f_exact(a)

Although this is more work than what we initially aimed at, it usually
saves time in the debugging phase to do things this proper way.

Eventually, the program seems to work! The output is just the result
of our two print statements:

Integral of g equals 9
Integral of f equals 5.0073 (exact value is 0.570796)

8. Verify the results. Now it is time to check if the numerical results
are correct. We start with the simple integral of 1 from 0 to 10: The
answer should be 10, not 9. Recall that for this particular choice of in-
tegration function, there is no approximation error involved (but there
could be a small round-off error). Hence, there must be a programming
error.

To proceed, we need to calculate some intermediate mathematical
results by hand and compare these with the corresponding statements
in the program. We choose a very simple test problem with n = 2 and
h = (10 − 0)/2 = 5. The formula (D.1) becomes

I = 5 · (1 + 1) = 10 .

Running the program with n = 2 gives
Integral of g equals 1

We insert some print statements inside the integrate function:

def integrate(f, a, b, n):
h = float(b-a)/n
s = 0
for i in range(1, n):

print ’i=%d, a+i*h=%g’ % (i, a+i*h)
s += f(a + i*h)

return s

Here is the output:
i=1, a+i*h=5
Integral of g equals 1
i=1, a+i*h=0.5
Integral of f equals 0.523599 (exact value is 0.570796)

There was only one pass in the i loop in integrate. According to the
formula, there should be n passes, i.e., two in this test case. The limits
of i must be wrong. The limits are produced by the call range(1,n).
We recall that such a call results in integers going from 1 up to n, but
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not including n. We need to include n as value of i, so the right call to
range is range(1,n+1).

We make this correction and rerun the program. The output is now
i=1, a+i*h=5
i=2, a+i*h=10
Integral of g equals 2
i=1, a+i*h=0.5
i=2, a+i*h=1
Integral of f equals 2.0944 (exact value is 0.570796)

The integral of 1 is still not correct. We need more intermediate results!
In our quick hand calculation we knew that g(x) = 1 so all the

f(a + (i − 1
2)h) evaluations were rapidly replaced by ones. Let us now

compute all the x coordinates a+(i− 1
2)h that are used in the formula:

i = 1 : a + (i − 1

2
)h = 2.5, i = 2 : a + (i − 1

2
)h = 7.5 .

Looking at the output from the program, we see that the argument to
g has a different value – and fortunately we realize that the formula
we have coded is wrong. It should be a+(i-0.5)*h.

We correct this error and run the program:

i=1, a+(i-0.5)*h=2.5
i=2, a+(i-0.5)*h=7.5
Integral of g equals 2
...

Still the integral is wrong7.
Now we read the code more carefully and compare expressions with

those in the mathematical formula. We should, of course, have done
this already when writing the program, but it is easy to get excited
when writing code and hurry for the end. This ongoing story of de-
bugging probably shows that reading the code carefully can save much
debugging time8. We clearly add up all the f evaluations correctly, but
then this sum must be multiplied by h, and we forgot that in the code.
The return statement in integrate must therefore be modified to

return s*h

Eventually, the output is
Integral of g equals 10
Integral of f equals 0.568484 (exact value is 0.570796)

and we have managed to integrate a constant function in our program!
Even the second integral looks promising!

To judge the result of integrating the inverse sine function, we need
to run several increasing n values and see that the approximation gets

7 At this point you may give up programming, but the more skills you pick up in
debugging, the more fun it is to hunt for errors! Debugging is like reading an exciting
criminal novel: the detective follows different ideas and tracks, but never gives up
before the culprit is caught.

8 Actually, being extremely careful with what you write, and comparing all formulas
with the mathematics, may be the best way to get more spare time when taking a
programming course!



666 D Debugging

better. For n = 2, 10, 100, 1000 we get 0.550371, 0.568484, 0.570714,
0.570794, to be compared to the exact9 value 0.570796. The decreasing
error provides evidence for a correct program, but it is not a strong
proof. We should try out more functions. In particular, linear functions
are integrated exactly by the Midpoint rule. We can also measure the
speed of the decrease of the error and check that the speed is consistent
with the properties of the Midpoint rule, but this is a mathematically
more advanced topic.

The very important lesson learned from these debugging sessions is
that you should start with a simple test problem where all formulas
can be computed by hand. If you start out with n = 100 and try to
integrate the inverse sine function, you will have a much harder job
with tracking down all the errors.

9. Use a debugger. Another lesson learned from these sessions is that
we needed many print statements to see intermediate results. It is an
open question if it would be more efficient to run a debugger and stop
the code at relevant lines. In an edit-and-run cycle of the type we met
here, we frequently need to examine many numerical results, correct
something, and look at all the intermediate results again. Plain print

statements are often better suited for this massive output than the
pure manual operation of a debugger, unless one writes a program to
automate the interaction with the debugger.

The correct code for the implementation of the Midpoint rule is
found in integrate_v2.py. Some readers might be frightened by all
the energy it took to debug this code, but this is just the nature of
programming. The experience of developing programs that finally work
is very awarding10.

Refining the User Interface. We briefly mentioned that the chosen
user interface, where the user can only specify n, is not particularly
user friendly. We should allow f , a, b, and n to be specified on the
command line. Since f is a function and the command line can only
provide strings to the program, we may use the StringFunction object
from scitools.std to convert a string expression for the function to
be integrated to an ordinary Python function (see Chapter 3.1.4). The
other parameters should be easy to retrieve from the command line if
Chapter 3.2 is understood. As suggested in Chapter 3.3, we enclose the
input statements in a try-except block, here with a specific exception
type IndexError (because an index in sys.argv out of bounds is the
only type of error we expect to handle):

9 This is not the mathematically exact value, because it involves computations of
sin−1(x), which is only approximately calculated by the asin function in the math

module. However, the approximation error is very small (∼ 10−16).
10 “People only become computer programmers if they’re obsessive about details, crave

power over machines, and can bear to be told day after day exactly how stupid they
are.” –Gregory J. E. Rawlins, computer scientist. Quote from the book “Slaves of
the Machine: The Quickening of Computer Technology”, MIT Press, 1997.
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try:
f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

except IndexError:
print ’Usage: %s f-formula a b n’ % sys.argv[0]
sys.exit(1)

Note that the use of eval allows us to specify a and b as pi or exp(5)

or another mathematical expression.
With the input above we can perform the general task of the pro-

gram:

from scitools.std import StringFunction
f = StringFunction(f_formula)
I = integrate(f, a, b, n)
print I

Instead of having these test statements as a main program we follow the
good habits of Chapter 3.5 and make a module with (i) the integrate

function, (ii) a verify function for testing the integrate function’s
ability to exactly integrate linear functions, and (iii) a main function
for reading data from the command line and calling integrate for the
user’s problem at hand. Any module should also have a test block, and
doc strings for the module itself and all functions.

The verify function performs a loop over some specified n values and
checks that the Midpoint rule integrates a linear function exactly11.
In the test block we can either run the verify function or the main

function.
The final solution to the problem of implementing the Midpoint

rule for numerical integration is now the following complete module
file integrate.py:

"""Module for integrating functions by the Midpoint rule."""
from math import *
import sys

def integrate(f, a, b, n):
"""Return the integral of f from a to b with n intervals."""
h = float(b-a)/n
s = 0
for i in range(1, n+1):

s += f(a + (i-0.5)*h)
return s*h

def verify():
"""Check that linear functions are integrated exactly."""

def g(x):
return p*x + q # general linear function

def int_g_exact(x): # integral of g(x)
return 0.5*p*x**2 + q*x

11 We must be prepared for round-off errors, so “exactly” means errors less than (say)
10−14.
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a = -1.2; b = 2.8 # "arbitrary" integration limits
p = -2; q = 10
passed = True # True if all tests below are passed
for n in 1, 10, 100:

I = integrate(g, a, b, n)
I_exact = int_g_exact(b) - int_g_exact(a)
error = abs(I_exact - I)
if error > 1E-14:

print ’Error=%g for n=%d’ % (error, n)
passed = False

if passed: print ’All tests are passed.’

def main():
"""
Read f-formula, a, b, n from the command line.
Print the result of integrate(f, a, b, n).
"""
try:

f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

except IndexError:
print ’Usage: %s f-formula a b n’ % sys.argv[0]
sys.exit(1)

from scitools.std import StringFunction
f = StringFunction(f_formula)
I = integrate(f, a, b, n)
print I

if __name__ == ’__main__’:
if sys.argv[1] == ’verify’:

verify()
else:

# compute the integral specified on the command line:
main()

Here is a short demo computing
∫ 2π
0 (cos(x) + sin(x))dx:

Terminal

integrate.py ’cos(x)+sin(x)’ 0 2*pi 10
-3.48786849801e-16
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E.1 Different Ways of Running Python Programs

Python programs are compiled and interpreted by another program
called python. To run a Python program, you need to tell the operating
system that your program is to be interpreted by the python program.
This section explains various ways of doing this.

E.1.1 Executing Python Programs in IPython

The simplest and most flexible way of executing a Python program is
to run it inside IPython. See Chapter 1.5.3 for a quick introduction
to IPython. You start IPython either by the command ipython in a
terminal window, or by double-clicking the IPython program icon (on
Windows). Then, inside IPython, you can run a program prog.py by

In [1]: run prog.py arg1 arg2

where arg1 and arg2 are command-line arguments.
This method of running Python programs works the same way on

all platforms. One additional advantage of running programs under
IPython is that you can automatically enter the Python debugger if an
exception is raised (see Appendix D.1. Although we advocate running
Python programs under IPython in this book, you can also run them
directly under specific operating systems. This is explained next for
Unix, Windows, and Mac OS X.

E.1.2 Executing Python Programs on Unix

There are two ways of executing a Python program prog.py on Unix.
The first explicitly tells which Python interpreter to use:

669
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Terminal

Unix> python prog.py arg1 arg2

Here, arg1 and arg2 are command-line arguments.
There may be many Python interpreters on your computer system,

usually corresponding to different versions of Python or different sets
of additional packages and modules. The Python interpreter (python)
used in the command above is the first program with the name python

appearing in the folders listed in your PATH environment variable. A
specific python interpreter, say in /home/hpl/local/bin, can easily be
used to run a program prog.py in the current working folder by speci-
fying the interpreter’s complete filepath:

Terminal

Unix> /home/hpl/bin/python prog.py arg1 arg2

The other way of executing Python programs on Unix consists of
just writing the name of the file:

Terminal

Unix> ./prog.py arg1 arg2

The leading ./ is needed to tell that the program is located in the
current folder. You can also just write

Terminal

Unix> prog.py arg1 arg2

but then you need to have the dot1 in the PATH variable, and this is
not recommended of security reasons.

In the two latter commands there is no information on which Python
interpreter to use. This information must be provided in the first line
of the program, normally as

#!/usr/bin/env python

This looks like a comment line, and behaves indeed as a comment line
when we run the program as python prog.py. However, when we run
the program as ./prog.py, the first line beginning with #! tells the
operating system to use the program specified in the rest of the first
line to interpret the program. In this example, we use the first python

program encountered in the folders in your PATH variable. Alternatively,
a specific python program can be specified as

1 The dot acts as the name of the current folder (usually known as the current working
directory). A double dot is the name of the parent folder.
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#!/home/hpl/special/tricks/python

It is a good habit to always include such a first line (also called she-
bang line) in all Python programs and modules, but we have not done
that in this book.

E.1.3 Executing Python Programs on Windows

In a DOS window you can always run a Python program by

Terminal

DOS> python prog.py arg1 arg2

if prog.py is the name of the program, and arg1 and arg2 are command-
line arguments. The extension .py can be dropped:

Terminal

DOS> python prog arg1 arg2

If there are several Python installations on your system, a particular
installation can be specified:

Terminal

DOS> E:\hpl\myprogs\Python2.5.3\python prog arg1 arg2

Files with a certain extension can on Windows be associated with a
file type, and a file type can be associated with a particular program to
handle the file. For example, it is natural to associate the extension .py

with Python programs. The corresponding program needed to interpret
.py files is then python.exe. When we write just the name of the Python
program file, as in

Terminal

DOS> prog arg1 arg2

the file is always interpreted by the specified python.exe program. The
details of getting .py files to be interpreted by python.exe go as follows:

Terminal

DOS> assoc .py=PyProg
DOS> ftype PyProg=python.exe "%1" %*

Depending on your Python installation, such file extension bindings
may already be done. You can check this with

Terminal

DOS> assoc | find "py"
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To see the programs associated with a file type, write ftype name where
name is the name of the file type as specified by the assoc command.
Writing help ftype and help assoc prints out more information about
these commands along with examples.

One can also run Python programs by writing just the basename of
the program file, i.e., prog.py instead of prog.py, if the file extension
is registered in the PATHEXT environment variable.

Double-Clicking Python Files. The usual way of running programs on
Windows is to double click on the file icon. This does not work well with
Python programs without a graphical user interface. When you double
click on the icon for a file prog.py, a DOS window is opened, prog.py
is interpreted by some python.exe program, and when the program
terminates, the DOS window is closed. There is usually too little time
for the user to observe the output in this short-lived DOS window.

One can always insert a final statement that pauses the program by
waiting for input from the user:

raw_input(’Type CR:’)

or

sys.stdout.write(’Type CR:’); sys.stdin.readline()

The program will “hang” until the user presses the Return key. During
this pause the DOS window is visible and you can watch the output
from previous statements in the program.

The downside of including a final input statement is that you must
always hit Return before the program terminates. This is inconvenient
if the program is moved to a Unix-type machine. One possibility is to
let this final input statement be active only when the program is run
on Windows:

if sys.platform[:3] == ’win’:
raw_input(’Type CR:’)

Python programs that have a graphical user interface can be double-
clicked in the usual way if the file extension is .pyw.

Gnuplot Plots on Windows. Programs that call plot to visualize a
graph with the aid of Gnuplot suffer from the same problem as de-
scribed above: the plot window disappears quickly. Again, the recipe
is to insert a raw_input call at the end of the program.



E.2 Integer and Float Division 673

E.1.4 Executing Python Programs on Macintosh

Since a variant of Unix is used as core in the Mac OS X operating
system, you can always launch a Unix terminal and use the techniques
from Appendix E.1.2 to run Python programs.

E.1.5 Making a Complete Stand-Alone Executable

Python programs need a Python interpreter and usually a set of mod-
ules to be installed on the computer system. Sometimes this is incon-
venient, for instance when you want to give your program to somebody
who does not necessarily have Python or the required set of modules
installed.

Fortunately, there are tools that can create a stand-alone executable
program out of a Python program. This stand-alone executable can be
run on every computer that has the same type of operating system
and the same chip type. Such a stand-alone executable is a bundling
of the Python interpreter and the required modules, along with your
program, in a single file. Details of producing this single file are given
in the book [9].

E.2 Integer and Float Division

Many languages, including C, C++, Fortran, and classical Python,
interpret the division operator in two ways:

1. Integer division: If both operands a and b are integers, the result a/b
is the floor of the mathematical result a/b. This yields the largest
integer that b can be multiplied with such that the product is less
than or equal to a. Or phrased simpler: The result of a/b is an
integer which is “rounded down”. As an example, 5/2 becomes 2.

2. Float division: If one of the operands is a floating-point number
or a complex number, a/b returns the mathematical result of the
division.

Accidental integer division in places where mathematical division is
needed, constitutes a very common source of errors in numerical pro-
grams.

It is often argued that in a statically typed language, where each
variable is declared with a fixed type, the programmer always knows
the type of the operands involved in a division expression. Therefore the
programmer can determine whether an expression has the right form
or not (the programmer can still oversee such errors). In a dynamically
typed language, such as Python, variables can hold objects of any type.
If a or b is provided by the user of the program, one can never know if
both types end up as integer and a/b will imply integer division.
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The only safe solution is to have two different operands for inte-
ger division and mathematical division. Python is currently moving in
this direction. By default, a/b still has its original double meaning, de-
pending on the types of operands. A new operator // is introduced for
explicitly employing integer division. To force a/b to mean standard
mathematical float division, one can write

from __future__ import division

This import statement must be present in every module file or script
where the / operator always shall imply float division. Alternatively,
one can run a Python program someprogram.py from the command line
with the argument -Qnew to the Python interpreter:

Unix/DOS> python -Qnew someprogram.py

The future Python 3.0 is suggested to abandon integer division inter-
pretation of a/b, i.e., a/b will always mean the relevant float division,
depending on the operands (float division for int and float operands,
and complex division if one of the operands is a complex).

Running a Python program with the -Qwarnall argument, say

Unix/DOS> python -Qwarnall someprogram.py

will print out a warning every time an integer division expression is
encountered.

There are currently alternative ways out of the integer division prob-
lem:

1. If the operands involve an integer with fixed value, such as in a/2,
the integer can be written as a floating-point number, as in a/2.0

or a/2., to enforce mathematical division regardless of whether a is
integer, float, or complex.

2. If both operands are variables, as in a/b, the only safe way out of
the problem is to write 1.0*a/b. Note that float(a)/b or a/float(b)
will work correctly from a mathematical viewpoint if a and b are of
integer or floating-point type, but not if the argument to float is
complex.

E.3 Visualizing a Program with Lumpy

Lumpy is a nice tool for graphically displaying the relations between
the variables in a program. Consider the following program (inspired
by Chapter 2.1.9), where we extract a sublist and modify the original
list:

l0 = [1, 4, 3]
l1 = l0
l2 = l1[:-1]
l1[0] = 100
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The point is that the change in l1 is reflected in l0, but not in l2,
because sublists are created by taking a copy of the original list, while
l1 and l0 refer to the same object. Lumpy can visually display the
variables and how they relate, and thereby making it obvious that l0

and l1 refer to the same object and that l2 is a different object. To
use Lumpy, some extra statements must be inserted in the program:

from scitools.Lumpy import Lumpy
lumpy = Lumpy()
lumpy.make_reference()
l0 = [1, 4, 3]
l1 = l0
l2 = l1[:-1]
l1[0] = 100
lumpy.object_diagram()

By running this program a graphical window is shown on the screen
with the variables in the program, see Figure E.1a. The variables have
lines to the object they point to, and inside the objects we can see the
contents, i.e., the list elements in this case.

We can add some lines to the program above and make a new,
additional drawing:

lumpy = Lumpy()
lumpy.make_reference()
n1 = 21.5
n2 = 21
l3 = [l1, l2, [n1, n2]]
s1 = ’some string’
lumpy.object_diagram()

Figure E.1b shows the second object diagram with the additional vari-
ables.

We recommend to actively use Lumpy to make graphical illustrations
of programs, especially if you search for an error and you are not 100%
sure of how all variables related to each other.

E.4 Doing Operating System Tasks in Python

Python has extensive support for operating system tasks, such as file
and folder management. The great advantage of doing operating sys-
tem tasks in Python and not directly in the operating system is that
the Python code works uniformly on Unix/Linux, Windows, and Mac
(there are exceptions, but they are few). Below we list some useful op-
erations that can be done inside a Python program or in an interactive
session.
Make a folder:
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l2 0 1

1 4

l0 0 100

1 4

2 3

l1

(a)

l3 0 0 100

1 4

2 3

1 0 1

1 4

2 0 21.5

1 21

n1 21.5

n2 21

s1 ’some string’

(b)

Fig. E.1 Output from Lumpy: (a) program with three lists; (b) extended program
with another list, two floats, and a string.

import os
os.mkdir(foldername)

Recall that Python applies the term directory instead of folder. Ordi-
nary files are created by the open and close functions in Python.

Make intermediate folders: Suppose you want to make a subfolder
under your home folder:

$HOME/python/project1/temp

but the intermediate folders python and project1 do not exist. This
requires each new folder to be made separately by os.mkdir, or you
can make all folders at once with os.makedirs:

foldername = os.path.join(os.environ[’HOME’], ’python’,
’project1’, ’temp’)

os.makedirs(foldername)

With os.environ[var] we can get the value of any environment variable
var as a string.

Move to a folder:

origfolder = os.getcwd() # get name of current folder
os.chdir(foldername) # move ("change directory")
...
os.chdir(origfolder) # move back

Rename a file or folder:
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os.rename(oldname, newname)

List files (using Unix shell wildcard notation):

import glob
filelist1 = glob.glob(’*.py’)
filelist2 = glob.glob(’*[1-4]*.dat’)

List all files and folders in a folder:

filelist1 = os.listdir(foldername)
filelist1 = os.listdir(os.curdir) # current folder (directory)

Check if a file or folder exists:

if os.path.isfile(filename):
f = open(filename)
...

if os.path.isdir(foldername):
filelist = os.listdir(foldername)
...

Remove files:

import glob
filelist = glob.glob(’tmp_*.eps’)
for filename in filelist:

os.remove(filename)

Remove a folder and all its subfolders:

import shutil
shutil.rmtree(foldername)

It goes without saying that this command may be dangerous!

Copy a file to another file or folder:

shutil.copy(sourcefile, destination)

Copy a folder and all its subfolders:

shutil.copytree(sourcefolder, destination)

Run any operating system command:

cmd = ’c2f.py 21’ # command to be run
failure = os.system(cmd)
if failure:

print ’Execution of "%s" failed!\n’ % cmd
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sys.exit(1)

# record output from the command:
from subprocess import Popen, PIPE
p = Popen(cmd, shell=True, stdout=PIPE)
output, errors = p.communicate()
# output contains text sent to standard output
# errors contains text sent to standard error

# process output:
for line in output.splitlines():

# process line

# simpler recording of output on Linux/Unix:
import commands
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’Execution of "%s" failed!\n’ % cmd, output
sys.exit(1)

The constructions above are mainly used for running stand-alone pro-
grams. Any file or folder listing or manipulation should be done by the
functionality in os or other modules.

Split file or folder name:

>>> fname = os.path.join(os.environ[’HOME’], ’data’, ’file1.dat’)
>>> foldername, basename = os.path.split(fname)
>>> foldername
’/home/hpl/data’
>>> basename
’file1.dat’
>>> outfile = basename[:-4] + ’.out’
>>> outfile
’file1.out’

E.5 Variable Number of Function Arguments

Arguments to Python functions are of four types:

1. positional arguments, where each argument has a name,
2. keyword arguments, where each argument has a name and a default

value,
3. a variable number of positional arguments, where each argument

has no name, but just a location in a list,
4. a variable number of keyword arguments, where each argument is a

(name, default value) pair in a dictionary.

The corresponding general function definition can be sketched as

def f(pos1, pos2, key1=val1, key2=val2, *args, **kwargs):

Here, pos1 and pos2 are positional arguments, key1 and key2 are key-
word arguments, args is a tuple holding a variable number of positional
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arguments, and kwargs is a dictionary holding a variable number of
keyword arguments. This appendix describes how to program with the
args and kwargs variables and why these are handy in many situations.

E.5.1 Variable Number of Positional Arguments

Let us start by making a function that takes an arbitrary number of
arguments and computes their sum:

>>> def add(*args):
... print ’args:’, args
... return sum(args)
...
>>> add(1)
args: (1,)
1
>>> add(1,5,10)
args: (1, 5, 10)
16

We observe that args is a tuple and that all the arguments we provide
in a call to add are stored in args.

Combination of ordinary positional arguments and a variable num-
ber of arguments is allowed, but the *args argument must appear after
the ordinary positional arguments, e.g.,

def f(pos1, pos2, pos3, *args):

In each call to f we must provide at least three arguments. If more
arguments are supplied in the call, these are collected in the args tuple
inside the f function.

Example. Chapter 7.1.1 describes functions with parameters, e.g.,
y(t; v0) = v0t − 1

2gt2, or the more general case f(x; p1, . . . , pn). The
Python implementation of such functions can take both the indepen-
dent variable and the parameters as arguments: y(t, v0) and f(x,

p1, p2, ...,pn). Suppose that we have a general library routine that
operates on functions of one variable. Relevant operations can be nu-
merical differentiation, integration, or root finding. A simple example
is a numerical differentiation function

def diff(f, x, h):
return (f(x+h) - f(x))/h

This diff function cannot be used with functions f that take more
than one argument, e.g., passing an y(t, v0) function as f leads to the
exception

TypeError: y() takes exactly 2 arguments (1 given)

Chapter 7.1.1 provides a solution to this problem where y becomes a
class instance. Here we can describe an alternative solution that allows
our y(t, v0) function to be used as is.



680 E Technical Topics

The idea is that we pass additional arguments for the parameters
in the f function through the diff function. That is, we view the f

function as f(x, *f_prms). Our diff routine can then be written as

def diff(f, x, h, *f_prms):
print ’x:’, x, ’h:’, h, ’f_prms:’, f_prms
return (f(x+h, *f_prms) - f(x, *f_prms))/h

Before explaining this function in detail, we “prove” that it works in
an example:

def y(t, v0):
g = 9.81; return v0*t - 0.5*g*t**2

dydt = diff(y, 0.1, 1E-9, 3) # t=0.1, h=1E-9, v0=3

The output from the call to diff becomes

x: 0.1 h: 1e-09 f_prms: (3,)

The point is that the v0 parameter, which we want to pass on to our y

function, is now stored in f_prms. Inside the diff function, calling

f(x, *f_prms)

is the same as if we had written

f(x, f_prms[0], f_prms[1], ...)

That is, *f_prms in a call takes all the values in the tuple *f_prms and
places them after each other as positional arguments. In the present
example with the y function, f(x, *f_prms) implies f(x, f_prms[0]),
which for the current set of argument values in our example becomes
a call y(0.1, 3).

For a function with many parameters,

def G(x, t, A, a, w):
return A*exp(-a*t)*sin(w*x)

the output from

dGdx = diff(G, 0.5, 1E-9, 0, 1, 0.6, 100)

becomes
x: 0.5 h: 1e-09 f_prms: (0, 1, 1.5, 100)

We pass here the arguments t, A, a, and w, in that sequence, as the
last four arguments to diff, and all the values are stored in the f_prms

tuple.
The diff function also works for a plain function f with one argu-

ment:
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from math import sin
mycos = diff(sin, 0, 1E-9)

In this case, *f_prms becomes an empty tuple, and a call like
f(x, *f_prms) is just f(x).

The use of a variable set of arguments for sending problem-specific
parameters “through” a general library function, as we have demon-
strated here with the diff function, is perhaps the most frequent use
of *args-type arguments.

E.5.2 Variable Number of Keyword Arguments

A simple test function

>>> def test(**kwargs):
... print kwargs

exemplifies that kwargs is a dictionary inside the test function, and
that we can pass any set of keyword arguments to test, e.g.,

>>> test(a=1, q=9, method=’Newton’)
{’a’: 1, ’q’: 9, ’method’: ’Newton’}

We can combine an arbitrary set of positional and keyword arguments,
provided all the keyword arguments appear at the end of the call:

>>> def test(*args, **kwargs):
... print args, kwargs
...
>>> test(1,3,5,4,a=1,b=2)
(1, 3, 5, 4) {’a’: 1, ’b’: 2}

From the output we understand that all the arguments in the call where
we provide a name and a value are treated as keyword arguments
and hence placed in kwargs, while all the remaining arguments are
positional and placed in args.

Example. We may extend the example in Appendix E.5.1 to make
use of a variable number of keyword arguments instead of a variable
number of positional arguments. Suppose all functions with parameters
in addition to an independent variable take the parameters as keyword
arguments. For example,

def y(t, v0=1):
g = 9.81; return v0*t - 0.5*g*t**2

In the diff function we transfer the parameters in the f function as a
set of keyword arguments **f_prms:
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def diff(f, x, h=1E-10, **f_prms):
print ’x:’, x, ’h:’, h, ’f_prms:’, f_prms
return (f(x+h, **f_prms) - f(x, **f_prms))/h

In general, the **f_prms argument in a call

f(x, **f_prms)

implies that all the key-value pairs in **f_prms are provided as keyword
arguments:

f(x, key1=f_prms[key1], key2=f_prms[key2], ...)

In our special case with the y function and the call

dydt = diff(y, 0.1, h=1E-9, v0=3)

f(x, **f_prms) becomes y(0.1, v0=3). The output from diff is now

x: 0.1 h: 1e-09 f_prms: {’v0’: 3}

showing explicitly that our v0=3 in the call to diff is placed in the
f_prms dictionary.

The G function from Appendix E.5.1 can also have its parameters as
keyword arguments:

def G(x, t=0, A=1, a=1, w=1):
return A*exp(-a*t)*sin(w*x)

We can now make the call

dGdx = diff(G, 0.5, h=1E-9, t=0, A=1, w=100, a=1.5)

and view the output from diff,

x: 0.5 h: 1e-09 f_prms: {’A’: 1, ’a’: 1.5, ’t’: 0, ’w’: 100}

to see that all the parameters get stored in f_prms. The h parameter
can be placed anywhere in the collection of keyword arguments, e.g.,

dGdx = diff(G, 0.5, t=0, A=1, w=100, a=1.5, h=1E-9)

We can allow the f function of one variable and a set of parame-
ters to have the general form f(x, *f_args, **f_kwargs). That is, the
parameters can either be positional or keyword arguments. The diff

function must take the arguments *f_args and **f_kwargs and transfer
these to f:

def diff(f, x, h=1E-10, *f_args, **f_kwargs):
print f_args, f_kwargs
return (f(x+h, *f_args, **f_kwargs) -

f(x, *f_args, **f_kwargs))/h
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This diff function gives the writer of an f function full freedom to
choose positional and/or keyword arguments for the parameters. Here
is an example of the G function where we let the t parameter be posi-
tional and the other parameters be keyword arguments:

def G(x, t, A=1, a=1, w=1):
return A*exp(-a*t)*sin(w*x)

A call

dGdx = diff(G, 0.5, 1E-9, 0, A=1, w=100, a=1.5)

gives the output

(0,) {’A’: 1, ’a’: 1.5, ’w’: 100}

showing that t is put in f_args and transferred as positional argument
to G, while A, a, and w are put in f_kwargs and transferred as keyword
arguments. We remark that in the last call to diff, h and t must be
treated as positional arguments, i.e., we cannot write h=1E-9 and t=0

unless all arguments in the call are on the name=value form.
In the case we use both *f_args and **f_kwargs arguments in f and

there is no need for these arguments, *f_args becomes an empty tuple
and **f_kwargs becomes an empty dictionary. The example

mycos = diff(sin, 0)

shows that the tuple and dictionary are indeed empty since diff just
prints out

() {}

Therefore, a variable set of positional and keyword arguments can be
incorporated in a general library function such as diff without any
disadvantage, just the benefit that diff works with different types f

functions: parameters as global variables, parameters as additional po-
sitional arguments, parameters as additional keyword arguments, or
parameters as instance variables (Chapter 7.1.2).

The program varargs1.py in the appendix folder implements the
examples in this appendix.

E.6 Evaluating Program Efficiency

E.6.1 Making Time Measurements

Time is not just “time” on a computer. The elapsed time or wall clock
time is the same time as you can measure on a watch or wall clock,
while CPU time is the amount of time the program keeps the central
processing unit busy. The system time is the time spent on operating
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system tasks like I/O. The concept user time is the difference between
the CPU and system times. If your computer is occupied by many
concurrent processes, the CPU time of your program might be very
different from the elapsed time.

The time Module. Python has a time module with some useful func-
tions for measuring the elapsed time and the CPU time:

import time
e0 = time.time() # elapsed time since the epoch
c0 = time.clock() # total CPU time spent in the program so far
<do tasks...>
elapsed_time = time.time() - e0
cpu_time = time.clock() - c0

The term epoch means initial time (time.time() would return 0), which
is 00:00:00 January 1, 1970. The time module also has numerous func-
tions for nice formatting of dates and time, and the more recent
datetime module has more functionality and an improved interface.
Although the timing has a finer resolution than seconds, one should
construct test cases that last some seconds to obtain reliable results.

The timeit Module. To measure the efficiency of a certain set of state-
ments or an expression, the code should be run a large number of
times so the overall CPU-time is of order seconds. The timeit mod-
ule has functionality for running a code segment repeatedly. Below is
an illustration of timeit for comparing the efficiency sin(1.2) versus
math.sin(1.2):

>>> import timeit
>>> t = timeit.Timer(’sin(1.2)’, setup=’from math import sin’)
>>> t.timeit(10000000) # run ’sin(1.2)’ 10000000 times
11.830688953399658
>>> t = timeit.Timer(’math.sin(1.2)’, setup=’import math’)
>>> t.timeit(10000000)
16.234833955764771

The first argument to the Timer constructor is a string containing the
code to execute repeatedly, while the second argument is the necessary
code for initialization. From this simple test we see that math.sin(1.2)
runs almost 40 percent slower than sin(1.2)!

If you want to time a function, say f, defined in the same program
as where you have the timeit call, the setup procedure must import f

and perhaps other variables from the program, as exemplified in

t = timeit.Timer(’f(a,b)’, setup=’from __main__ import f, a, b’)

Here, f, a, and b are names initialized in the main program. Another
example is found in src/random/smart_power.py.

Hardware Information. Along with CPU-time measurements it is often
convenient to print out information about the hardware on which the
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experiment was done. Python has a module platform with information
on the current hardware. The function scitools.misc.hardware_info

applies the platform module to extract relevant hardware information.
A sample call is

>>> import scitools.misc, pprint
>>> pprint.pprint(scitools.misc.hardware_info())
{’cpuinfo’:
{’CPU speed’: ’1196.170 Hz’,
’CPU type’: ’Mobile Intel(R) Pentium(R) III CPU - M 1200MHz’,
’cache size’: ’512 KB’,
’vendor ID’: ’GenuineIntel’},

’identifier’: ’Linux-2.6.12-i686-with-debian-testing-unstable’,
’python build’: (’r25:409’, ’Feb 27 2007 19:35:40’),
’python version’: ’2.5.0’,
’uname’: (’Linux’,

’ubuntu’,
’2.6.12’,
’#1 Fri Nov 25 10:58:24 CET 2005’,
’i686’,
’’)}

E.6.2 Profiling Python Programs

A profiler computes the time spent in the various functions of a pro-
gram. From the timings a ranked list of the most time-consuming func-
tions can be created. This is an indispensable tool for detecting bot-
tlenecks in the code, and you should always perform a profiling before
spending time on code optimization. The golden rule is to first write
an easy-to-understand program, then verify it, then profile it, and then
think about optimization2.

Python comes with two profilers implemented in the profile and
hotshot modules, respectively. The Python Library Reference has a
good introduction to profiling in Python (Chapter 10: “The Python
Profiler”). The results produced by the two alternative modules are
normally processed by a special statistics utility pstats developed for
analyzing profiling results. The usage of the profile, hotshot, and
pstats modules is straightforward, but somewhat tedious so SciTools
comes with a command scitools profiler that allows you to profile
any program (say) m.py by writing

Terminal

Unix/DOS> scitools profiler m.py c1 c2 c3

Here, c1, c2, and c3 are command-line arguments to m.py.
We refer to the Python Library Reference for detailed information

on how to interpret the output. A sample output might read

2 “Premature optimization is the root of all evil.” –Donald Knuth, computer scientist,
1938-.
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1082 function calls (728 primitive calls) in 17.890 CPU seconds

Ordered by: internal time
List reduced from 210 to 20 due to restriction <20>

ncalls tottime percall cumtime percall filename:lineno(function)
5 5.850 1.170 5.850 1.170 m.py:43(loop1)
1 2.590 2.590 2.590 2.590 m.py:26(empty)
5 2.510 0.502 2.510 0.502 m.py:32(myfunc2)
5 2.490 0.498 2.490 0.498 m.py:37(init)
1 2.190 2.190 2.190 2.190 m.py:13(run1)
6 0.050 0.008 17.720 2.953 funcs.py:126(timer)

...

In this test, loop1 is the most expensive function, using 5.85 seconds,
which is to be compared with 2.59 seconds for the next most time-
consuming function, empty. The tottime entry is the total time spent
in a specific function, while cumtime reflects the total time spent in the
function and all the functions it calls.

The CPU time of a Python program typically increases with a factor
of about five when run under the administration of the profile module.
Nevertheless, the relative CPU time among the functions are probably
not much affected by the profiler overhead.
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measure time in programs, 447
mesh, 574
method (class), 58
method (in class), 342
mod function, 423
module folders, 149
modules, 141
Monte Carlo integration, 443
Monte Carlo simulation, 433
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profiler.py, 685
profiling, 685
protected attributes (class), 367, 384
pydoc program, 98
pyreport program, 42, 227

r_, 212
raise, 137
random (from numpy), 421
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remove folders (in Python), 677
rename file/folder (in Python), 676
replace (string method), 293
resolution (mesh), 574
round function, 28
round-off errors, 25
rounding float to integer, 28
rstrip (string method), 295
run programs (from Python), 677
run Python program, 7, 29, 669

scalar (math. quantity), 172
scalar code, 178
scalar differential equations, 615

scaling, 243
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shutil.rmtree function, 677
slicing, 66, 292
source code, 14
special methods (in classes), 356
split (string method), 293
split filename, 678
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