Random Numbers and Simple Games

Random numbers have many applications in science and computer pro-
gramming, especially when there are significant uncertainties in a phe-
nomenon of interest. The purpose of this chapter is to look at some
practical problems involving random numbers and learn how to pro-
gram with such numbers. We shall make several games and also look
into how random numbers can be used in physics. You need to be fa-
miliar with the first four chapters in order to study the present chapter,
but a few examples and exercises will require familiarity with the class
concept from Chapter 7.

The key idea in computer simulations with random numbers is first
to formulate an algorithmic description of the phenomenon we want
to study. This description frequently maps directly onto a quite simple
and short Python program, where we use random numbers to mimic
the uncertain features of the phenomenon. The program needs to per-
form a large number of repeated calculations, and the final answers
are “only” approximate, but the accuracy can usually be made good
enough for practical purposes. Most programs related to the present
chapter produce their results within a few seconds. In cases where the
execution times become large, we can vectorize the code. Vectorized
computations with random numbers is definitely the most demanding
topic in this chapter, but is not mandatory for seeing the power of
mathematical modeling via random numbers.

All files associated with the examples in this chapter are found in
the folder src/random.
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8 Random Numbers and Simple Games

8.1 Drawing Random Numbers

Python has a module random for generating random numbers. The func-
tion call random.random() generates a random number in the half open
interval® [0,1). We can try it out:

>>> import random

>>> random.random()
0.81550546885338104
>>> random.random()
0.44913326809029852
>>> random.random()
0.88320653116367454

All computations of random numbers are based on deterministic al-
gorithms (see Exercise 8.16 for an example), so the sequence of numbers
cannot be truly random. However, the sequence of numbers appears to
lack any pattern, and we can therefore view the numbers as random?.

8.1.1 The Seed

Every time we import random, the subsequent sequence of
random.random() calls will yield different numbers. For debugging
purposes it is useful to get the same sequence of random numbers
every time we run the program. This functionality is obtained by
setting a seed before we start generating numbers. With a given value
of the seed, one and only one sequence of numbers is generated. The
seed is an integer and set by the random.seed function:

>>> random.seed(121)

Let us generate two series of random numbers at once, using a list
comprehension and a format with two decimals only:

>>> random.seed(2)

>>> [*%,.2f’ % random.random() for i in range(7)]
[’0.96°, ’0.95’, ’0.06°, ’0.08°, ’0.84’, °0.74’, ’0.67°]
>>> [?%.2f’ ¥ random.random() for i in range(7)]
[’0.31°, ’0.61’, ’0.61°, ’0.58°, °0.16°, ’0.43’, ’0.39’]

If we set the seed to 2 again, the sequence of numbers is regenerated:

>>> random.seed(2)
>>> [’%.2f’ ¥, random.random() for i in range(7)]
[’0.96°, °0.95’, °0.06°, °0.08°, °0.84’, °0.74’, ’0.67°]

If we do not give a seed, the random module sets a seed based on the
current time. That is, the seed will be different each time we run the

1 In the half open interval [0,1) the lower limit is included, but the upper limit is not.

2 What it means to view the numbers as random has fortunately a firm mathematical
foundation, so don’t let the fact that random numbers are deterministic stop you
from using them.
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program and consequently the sequence of random numbers will also
be different from run to run. This is what we want in most applica-
tions. However, we recommend to always set a seed during program
development to simplify debugging and verification.

8.1.2 Uniformly Distributed Random Numbers

The numbers generated by random.random() tend to be equally dis-
tributed between 0 and 1, which means that there is no part of the
interval [0,1) with more random numbers than other parts. We say
that the distribution of random numbers in this case is uniform. The
function random.uniform(a,b) generates uniform random numbers in
the half open interval [a, b), where the user can specify a and b. With
the following program (in file uniform_numbers0.py) we may generate
lots of random numbers in the interval [—1, 1) and visualize how they
are distributed :

import random

random.seed (42)

N = 500 # no of samples

x = range(N)

y = [random.uniform(-1,1) for i in x]
from scitools.easyviz import *

plot(x, y, ’+’, axis=[0,N-1,-1.2,1.2])

Figure 8.1 shows the values of these 500 numbers, and as seen, the
numbers appear to be random and uniformly distributed between —1
and 1.
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Fig. 8.1 The values of 500 random numbers drawn from the uniform distribution on
[-1,1).
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8 Random Numbers and Simple Games

8.1.3 Visualizing the Distribution

It is of interest to see how N random numbers in an interval [a, b] are
distributed throughout the interval, especially as N — oo. For example,
when drawing numbers from the uniform distribution, we expect that
no parts of the interval get more numbers than others. To visualize the
distribution, we can divide the interval into subintervals and display
how many numbers there are in each subinterval.

Let us formulate this method more precisely. We divide the interval
[a,b) into n equally sized subintervals, each of length h = (b — a)/n.
These subintervals are called bins. We can then draw N random
numbers by calling random.random() N times. Let H(i) be the num-
ber of random numbers that fall in bin no. i, [a + ih,a + (i + 1)h],
i1=0,...,n— 1. If N is small, the value of f[(z) can be quite different
for the different bins, but as N grows, we expect that H (i) varies little
with 1.

Ideally, we would be interested in how the random numbers are dis-
tributed as N — oo and n — oo. One major disadvantage is that H (i)
increases as N increases, and it decreases with n. The quantity H (i)/N,
called the frequency count, will reach a finite limit as N — oo. However,
H(i)/N will be smaller and smaller as we increase the number of bins.
The quantity H (i) = H(i)/(Nh) reaches a finite limit as N,n — oo.
The probability that a random number lies inside subinterval no. ¢ is
then H(i)/N = H(i)h.

We can visualize H(i) as a bar diagram (see Figure 8.2), called a
normalized histogram. We can also define a piecewise constant function
p(x) from H(i): p(x) = H(i) for z € [a+ih,a+(i+1)h),i=0,...,n—1.
As n,N — oo, p(x) approaches the probability density function of
the distribution in question. For example, random.uniform(a,b) draws
numbers from the uniform distribution on [a,b), and the probability
density function is constant, equal to 1/(b — a). As we increase n and
N, we therefore expect p(x) to approach the constant 1/(b — a).

The function compute_histogram from scitools.std returns two ar-
rays x and y such that plot(x,y) plots the piecewise constant function
p(z). The plot is hence the histogram of the set of random samples.
The program below exemplifies the usage:

from scitools.std import plot, compute_histogram
import random

samples = [random.random() for i in range(100000)]
x, y = compute_histogram(samples, nbins=20)
plot(x, y)

Figure 8.2 shows two plots corresponding to N taken as 10% and 10.
For small N, we see that some intervals get more random numbers
than others, but as N grows, the distribution of the random numbers
becomes more and more equal among the intervals. In the limit N —
00, p(z) — 1, which is illustrated by the plot.
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1000 samples of uniform numbers on (0,1) 1000000 samples of uniform numbers on (0,1)

Fig. 8.2 The histogram of uniformly distributed random numbers in 20 bins.

8.1.4 Vectorized Drawing of Random Numbers

There is a random module in the Numerical Python package which can
be used to efficiently draw a possibly large array of random numbers:

from numpy import random

r = random.random() # one number between O and 1
r = random.random(size=10000) # array with 10000 numbers

r = random.uniform(-1, 10) # one number between -1 and 10
r = random.uniform(-1, 10, size=10000) # array

There are thus two random modules to be aware of: one in the standard
Python library and one in numpy. For drawing uniformly distributed
numbers, the two random modules have the same interface, except that
the functions from numpy’s random module has an extra size parameter.
Both modules also have a seed function for fixing the seed.

Vectorized drawing of random numbers using numpy’s random module
is efficient because all the numbers are drawn “at once” in fast C code.
You can measure the efficiency gain with the time.clock() function as
explained on page 447 and in Appendix E.6.1.

Warning. It is easy to do an import random followed by a from
scitools.std import * or a from numpy import * without realizing
that the latter two import statements import a name random that over-
writes the same name that was imported in import random. The result
is that the effective random module becomes the one from numpy. A
possible solution to this problem is to introduce a different name for
Python’s random module:

import random as random_number

We will use this convention in the rest of the book. When you see only
the word random you then know that this is numpy.random.
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8 Random Numbers and Simple Games

8.1.5 Computing the Mean and Standard Deviation

You probably know the formula for the mean or average of a set of n
numbers zg, T1,. .., Tp_1:

n—1
1
T = sz] (8.1)
=0

The amount of spreading of the x; values around the mean z,,, can be

measured by the variance?,
1 n—1
o= Zo(xj —zm)?. (8.2)
]:

A variant of this formula reads
1 n—1
Ty = — Zaz? — 22 . (8.3)
=0

The good thing with this latter formula is that one can, as a statistical
experiment progresses and n increases, record the sums

q—1
S = ij, Sy = Zx? (8.4)
§=0

and then, when desired, efficiently compute the most recent estimate
on the mean value and the variance after g samples by

Tm = Sm/Qa Ty = Sv/q - 53)@/(]2 . (8-5)

The standard deviation
Ts = /Ty (8.6)

is often used as an alternative to the variance, because the standard
deviation has the same unit as the measurement itself. A common way
to express an uncertain quantity x, based on a data set zq,...,Tn—1,
from simulations or physical measurements, is x,, + xs. This means
that z has an uncertainty of one standard deviation zs to either side
of the mean value x,,. With probability theory and statistics one can
provide many other, more precise measures of the uncertainty, but that
is the topic of a different course.

Below is an example where we draw numbers from the uniform distri-
bution on [—1, 1) and compute the evolution of the mean and standard

3 Textbooks in statistics teach you that it is more appropriate to divide by n — 1
instead of n, but we are not going to worry about that fact in this book.
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deviation 10 times during the experiment, using the formulas (8.1) and
(8.3)—(8.6):

import sys

N = int(sys.argv[1])

import random as random_number

from math import sqrt

sm = 0; sv=0

for q in range(l, N+1):
x = random_number.uniform(-1, 1)
sm += X
SV += x*k*2

# write out mean and st.dev. 10 times in this loop:
if q % (N/10) == 0:
xm = sm/q
xs = sqrt(sv/q - xm**2)
print ’%10d mean: %12.5e stdev: %12.5e’ ¥ (q, xm, xs)

The if test applies the mod function, a % b is 0 if b times an integer
equals a. The particular if test here is true when i equals 0, N/10,
2%N/10, ..., N, i.e., 10 times during the execution of the loop. The
program is available in the file mean_stdev_uniformi.py. A run with
N = 10° gives the output

100000 mean: 1.86276e-03 stdev: 5.77101e-01
200000 mean: 8.60276e-04 stdev: 5.77779e-01
300000 mean: 7.71621e-04 stdev: 5.77753e-01
400000 mean: 6.38626e-04 stdev: 5.77944e-01
500000 mean: -1.19830e-04 stdev: 5.77752e-01
600000 mean: 4.36091e-05 stdev: 5.77809e-01
700000 mean: -1.45486e-04 stdev: 5.77623e-01
800000 mean: 5.18499e-05 stdev: 5.77633e-01
900000 mean: 3.85897e-05 stdev: 5.77574e-01
1000000 mean: -1.44821e-05 stdev: 5.77616e-01

We see that the mean is getting smaller and approaching zero as ex-
pected since we generate numbers between —1 and 1. The theoretical
value of the standard deviation, as N — oo, equals \/m ~ 0.57735.

We have also made a corresponding vectorized version of the code
above using numpy.random and the ready-made functions numpy.mean,
numpy . var, and numpy . std for computing the mean, variance, and stan-
dard deviation (respectively) of an array of numbers:

import sys

N = int(sys.argv[1])

from numpy import random, mean, var, std, sqrt
x = random.uniform(-1, 1, size=N)

xm = mean(x)
xv = var(x)
xs = std(x)

print ’7%10d mean: %12.5e stdev: %12.5e’ % (N, xm, xs)

This program can be found in the file mean_stdev_uniform2.py.

8.1.6 The Gaussian or Normal Distribution

In some applications we want random numbers to cluster around a
specific value m. This means that it is more probable to generate a
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number close to m than far away from m. A widely used distribution
with this qualitative property is the Gaussian or normal distribution®.
The normal distribution has two parameters: the mean value m and the
standard deviation s. The latter measures the width of the distribution,
in the sense that a small s makes it less likely to draw a number far
from the mean value, and a large s makes more likely to draw a number
far from the mean value.

Single random numbers from the normal distribution can be gener-
ated by

import random as random_number
r = random_number.normalvariate(m, s)

while efficient generation of an array of length N is enabled by

from numpy import random
r = random.normal(m, s, size=N)

The following program draws N random numbers from the normal
distribution in a loop, computes the mean and standard devation, and
plots the histogram:

N
m
s

int(sys.argv([1])
float(sys.argv([2])
float(sys.argv[3])

import random as random_number
random_number.seed(12) # for debugging/testing
from scitools.std import *

samples = [random_number.normalvariate(m, s) for i in range(N)]
X, y = compute_histogram(samples, 20, piecewise_constant=True)

print mean(samples), std(samples)

plot(x, y)

title(’’d samples of Gaussian random numbers on (0,1)’ % N)
hardcopy (’tmp.eps’)

The corresponding program file is normal_numbersl.py, which gives a
mean of —(0.00253 and a standard deviation of 0.99970 when run with
N as 1 million, m as 0, and s equal to 1. Figure 8.3 shows that the
random numbers cluster around the mean m = 0 in a histogram. This
normalized histogram will, as N goes to infinity, approach a bell-shaped
function, known as the normal distribution probability density func-
tion, given in (1.6) on page 45.

8.2 Drawing Integers

Suppose we want to draw a random integer among the values 1, 2,
3, and 4, and that each of the four values is equally probable. One

4 For example, the blood pressure among adults of one gender has values that follow
a normal distribution.
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1000000 samples of Gaussian/normal numbers on (0,1)
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Fig. 8.3 Normalized histogram of 1 million random numbers drawn from the normal
distribution.

possibility is to draw real numbers from the uniform distribution on,
e.g., [0,1) and divide this interval into four equal subintervals:

import random as random_number
r = random_number.random()
if 0 <= r < 0.25:

r =1

elif 0.25 <= r < 0.5:
r =2

elif 0.5 <=r < 0.75:
r =3

else:
r =4

Nevertheless, the need for drawing uniformly distributed integers
occurs quite frequently, so there are special functions for returning
random integers in a specified interval [a, b].

8.2.1 Random Integer Functions

Python’s random module has a built-in function randint (a,b) for draw-
ing an integer in [a, b], i.e., the return value is among the numbers a,
a+l, ..., b-1, b.

import random as random_number
r = random_number.randint(a, b)

The numpy.random.randint(a, b, N) function has a similar function-
ality for vectorized drawing of an array of length N of random integers
in [a,b). The upper limit b is not among the drawn numbers, so if we
want to draw from a, a+1, ..., b-1, b, we must write
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from numpy inport random
r = random.randint(a, b+1, N)

Another function, random_integers(a, b, N), also in numpy.random, in-
cludes the upper limit b in the possible set of random integers:

from numpy inport random
r = random.random_integers(a, b, N)

8.2.2 Example: Throwing a Die

We can make a program that lets the computer throw a die N times
and count how many times we get six eyes:

import random as random_number
import sys
N = int(sys.argv[1]) # perform N experiments
M=0 # no of times we get 6 eyes
for i in xrange(N):

outcome = random_number.randint (1, 6)

if outcome ==

M+=1

print ’Got six ’%d times out of %d’ % (M, N)

We use xrange instead of range because the former is more efficient
when N is large (see remark in Exercise 2.46). The vectorized version
of this code can be expressed as follows:

from numpy import random, sum

import sys

N = int(sys.argv[1])

eyes = random.randint(1, 7, N)

success = eyes == 6 # True/False array

M = sum(success) # treats True as 1, False as O
print ’Got six %d times out of %d’ % (M, N)

The eyes == 6 construction results in an array with True or False
values, and sum applied to this array treats True as 1 and False as
0 (the integer equivalents to the boolean values), so the sum is the
number of elements in eyes that equals 6. A very important point
here for computational efficiency is to use sum from numpy and not the
standard sum function that is available in standard Python. With the
former sum function, the vectorized version runs about 50 times faster
than the scalar version. (With the standard sum function in Python,
the vectorized versions is in fact slower than the scalar version.)

The two small programs above are found in the files roll_die.py
and roll_die_vec.py, respectively. You can try the programs and see
how much faster the vectorized version is (N probably needs to be of
size at least 10% to see any noticable differences for practical purposes).
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8.2.3 Drawing a Random Element from a List
Given a list a, the statement
re = random_number.choice(a)

picks out an element of a at random, and re refers to this element. The
shown call to random_number.choice is the same as

re = a[random_number.randint (0, len(a)-1)]

There is also a function shuffle that permutates the list elements in a
random order:

random_number.shuffle(a)

Picking now a[0], for instance, has the same effect as random.choice
on the original, unshuffled list. Note that shuffle changes the list given
as argument.

The numpy . random module has also a shuffle function with the same
functionality.

A small session illustrates the various methods for picking a random
element from a list:

>>> awards = [’car’, ’computer’, ’ball’, ’pen’]

>>> import random as random_number

>>> random_number.choice (awards)

’car’

>>> awards [random_number.randint (0, len(awards)-1)]
)pen7

>>> random_number.shuffle (awards)

>>> awards [0]

’computer’

8.2.4 Example: Drawing Cards from a Deck

The following function creates a deck of cards, where each card is
represented as a string, and the deck is a list of such strings:

def make_deck():
ranks = [’A’, 292 232 940 0B @7, 077,
’82, 090, 2107, *J7, °Q°, ’K’]
suits = [’C’, °’D’, °H’, ’S’]
deck = []
for s in suits:
for r in ranks:
deck.append(s + r)
random_number . shuffle (deck)
return deck

Here, ’A’ means an ace, >J’ represents a jack, ’Q’ represents a queen,
K’ represents a king, *C’ stands for clubs, ’D’ stands for diamonds,
"H’ means hearts, and ’S’ means spades. The computation of the list
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deck can alternatively (and more compactly) be done by a one-line list
comprehension:

deck = [s+r for s in suits for r in ranks]
We can draw a card at random by

deck = make_deck()

card = deck[0]

del deck[0]

# or better:

card = deck.pop(0) # return and remove element with index O

Drawing a hand of n cards from a shuffled deck is accomplished by

def deal_hand(n, deck):
hand = [deck[i] for i in range(n)]
del deck[:n]
return hand, deck

Note that we must return deck to the calling code since this list is

changed. Also note that the n first cards of the deck are random cards

if the deck is shuffled (and any deck made by make_deck is shuffled).
The following function deals cards to a set of players:

def deal(cards_per_hand, no_of_players):
deck = make_deck()
hands = []
for i in range(no_of_players):
hand, deck = deal_hand(cards_per_hand, deck)
hands . append (hand)
return hands

players = deal(5, 4)
import pprint; pprint.pprint(players)

The players list may look like

[[}D4)’ ;CQ;’ ’H10’, ’DK), ’CK’],
[’D7’>, °D6°, °S8J’, ’S4’, ’°C5°],
[7cs:’ ’DQ’, ’S3’, ’C9’, ’DJ’],
[’H6’, ’H9’, ’C6’, ’D5’, )56:]]

The next step is to analyze a hand. Of particular interest is the
number of pairs, three of a kind, four of a kind, etc. That is, how many
combinations there are of n_of_a_kind cards of the same rank (e.g.,
n_of_a_kind=2 finds the number of pairs):

def same_rank(hand, n_of_a_kind):

ranks = [card[1:] for card in hand]

counter = 0

already_counted = []

for rank in ranks:

if rank not in already_counted and \
ranks.count (rank) == n_of_a_kind:

counter += 1
already_counted.append (rank)

return counter
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Note how convenient the count method in list objects is for counting
how many copies there are of one element in the list.

Another analysis of the hand is to count how many cards there are
of each suit. A dictionary with the suit as key and the number of cards
with that suit as value, seems appropriate to return. We pay attention
only to suits that occur more than once:

def same_suit(hand):

suits = [card[0] for card in hand]
counter = {} # counter[suit] = how many cards of suit
for suit in suits:

count = suits.count(suit)

if count > 1:

counter[suit] = count

return counter

For a set of players we can now analyze their hands:

for hand in players:
print n nn\
The hand s
has %d pairs, %s 3-of-a-kind and
%s cards of the same suit.""" % \
(’, ’.join(hand), same_rank(hand, 2),
same_rank (hand, 3),
>+’ . join([str(s) for s in same_suit(hand).values()]))

The values we feed into the printf string undergo some massage: we
join the card values with comma and put a plus in between the counts
of cards with the same suit. (The join function requires a string ar-
gument. That is why the integer counters of cards with the same suit,
returned from same_suit, must be converted to strings.) The output of
the for loop becomes
The hand D4, CQ, H10, DK, CK
has 1 pairs, 0 3-of-a-kind and
2+2 cards of the same suit.
The hand D7, D6, SJ, S4, C5
has 0 pairs, 0 3-of-a-kind and
2+2 cards of the same suit.
The hand C3, DQ, S3, C9, DJ
has 1 pairs, 0 3-of-a-kind and
2+2 cards of the same suit.
The hand H6, H9, C6, D5, S6
has O pairs, 1 3-of-a-kind and
2 cards of the same suit.
The file cards.py contains the functions make_deck, hand, hand?2,
same_rank, same_suit, and the test snippets above. With the cards.py

file one can start to implement real card games.

8.2.5 Example: Class Implementation of a Deck

To work with a deck of cards with the code from the previous section
one needs to shuffle a global variable deck in and out of functions. A
set of functions that update global variables (like deck) is a primary
candidate for a class: The global variables are stored as attributes and

429
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the functions become class methods. This means that the code from the
previous section is better implemented as a class. We introduce class
Deck with a list of cards, deck, as attribute, and methods for dealing
one or several hands and for putting back a card:

class Deck:
def __init__(self):
ranks = [JA)’ 723’ 731, ’47’ )5)’ 76)’ )7),
)87, )9), 7107’ 7J7’ 7Q7, )K?]
suits = [’C’, ’D’, °’H’, ’S’]
self.deck = [s+r for s in suits for r in ranks]
random_number.shuffle(self.deck)

def hand(self, n=1):
"""Deal n cards. Return hand as list."""
hand = [self.deck[i] for i in range(n)] # pick cards
del self.deck[:n] # remove cards
return hand

def deal(self, cards_per_hand, no_of_players):
"""Deal no_of_players hands. Return list of lists."""
return [self.hand(cards_per_hand) \
for i in range(no_of_players)]

def putback(self, card):
"""Put back a card under the rest."""
self.deck.append(card)

def __str__(self):

return str(self.deck)

This class is found in the module file Deck.py. Dealing a hand of five
cards to p players is coded as

from Deck import Deck
deck = Deck()

print deck

players = deck.deal(5, 4)

Here, players become a nested list as shown in Chapter 8.2.4.

One can go a step further and make more classes for assisting card
games. For example, a card has so far been represented by a plain
string, but we may well put that string in a class Card:

class Card:
"""Representation of a card as a string (suit+rank)."""
def __init__(self, suit, rank):

self.card = suit + str(rank)

def __str__(self): return self.card
def __repr__(self): return str(self)

Note that str(self) is equivalent to self.__str__().
A Hand contains a set of Card instances and is another natural ab-
straction, and hence a candidate for a class:

class Hand:
"""Representation of a hand as a list of Card objects."""
def __init__(self, list_of_cards):
self.hand = list_of_cards
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def __str__(self): return str(self.hand)
def __repr__(self): return str(self)

With the aid of classes Card and Hand, class Deck can be reimple-
mented as

class Deck:
"""Representation of a deck as a list of Card objects."""

def __init__(self):
I-anks = [JAJ’ )23’ )33’ )4)’ ,5), )6), 17,’
)8), 79)’ 7107’ )J}, )QJ, )K)]
suits = [’C’, ’D’, ’H’, ’S’]
self.deck = [Card(s,r) for s in suits for r in ranks]
random_number.shuffle(self.deck)

def hand(self, n=1):
"""Deal n cards. Return hand as a Hand object."""
hand = Hand([self.deck[i] for i in range(n)])
del self.deck[:n] # remove cards
return hand

def deal(self, cards_per_hand, no_of_players):
"""Deal no_of_players hands. Return list of Hand obj."""
return [self.hand(cards_per_hand) \
for i in range(no_of_players)]

def putback(self, card):
"""Put back a card under the rest."""
self.deck.append(card)

def __str__(self):
return str(self.deck)

return str(self)

def __repr__(self):

def __len__(self):
return len(self.deck)

The module file Deck2.py contains this implementation. The usage of
the two Deck classes is the same,

from Deck2 import Deck
deck = Deck()
players = deck.deal(5, 4)

with the exception that players in the last case holds a list of Hand
instances, and each Hand instance holds a list of Card instances.

We stated in Chapter 7.3.9 that the __repr__ method should return
a string such that one can recreate the object from this string by the
aid of eval. However, we did not follow this rule in the implementation
of classes Card, Hand, and Deck. Why? The reason is that we want to
print a Deck instance. Python’s print or pprint on a list applies repr (e)
to print an element e in the list. Therefore, if we had implemented

class Card:

def repr__(self):

return "Card(’%s’, %s)" % (self.card[0], self.card[1:])
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class Hand:

def __repr__(self): return ’Hand(%s)’ % repr(self.hand)

a plain printing of the deck list of Hand instances would lead to output
like
[Hand ([Card(’C’, ’10’), Card(’C’, ’4’), Card(’H’, ’K’), ...]1),
Hand ([Card(’D’, ’7’), Card(’C’, ’5’), ..., Card(’D’, ’9°)1)]

This output is harder to read than
[[ci0, C4, HK, DQ, HQ],
[SA, 88, H3, H10, C2],
[HJ, C7, S2, CQ, DK]
[D7, €5, DJ, $3, Dol]
That is why we let __repr__ in classes Card and Hand return the same

“pretty print” string as __str__, obtained by returning str(self).

- -

8.3 Computing Probabilities

With the mathematical rules from probability theory one may com-
pute the probability that a certain event happens, say the probability
that you get one black ball when drawing three balls from a hat with
four black balls, six white balls, and three green balls. Unfortunately,
theoretical calculations of probabilities may soon become hard or im-
possible if the problem is slightly changed. There is a simple “numerical
way” of computing probabilities that is generally applicable to problems
with uncertainty. The principal ideas of this approximate technique is
explained below, followed by with three examples of increasing com-
plexity.

8.3.1 Principles of Monte Carlo Simulation

Assume that we perform N experiments where the outcome of each
experiment is random. Suppose that some event takes place M times
in these N experiments. An estimate of the probability of the event is
then M/N. The estimate becomes more accurate as N is increased, and
the exact probability is assumed to be reached in the limit as N — oc.
(Note that in this limit, M — oo too, so for rare events, where M may
be small in a program, one must increase N such that M is sufficiently
large for M /N to become a good approximation to the probability.)
Programs that run a large number of experiments and record the
outcome of events are often called simulation programs®. The mathe-
matical technique of letting the computer perform lots of experiments
5 This term is also applied for programs that solve equations arising in mathematical

models in general, but it is particularly common to use the term when random
numbers are used to estimate probabilities.
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based on drawing random numbers is commonly called Monte Carlo
stmulation. This technique has proven to be extremely useful through-
out science and industry in problems where there is uncertain or ran-
dom behavior is involved®. For example, in finance the stock market
has a random variation that must be taken into account when trying
to optimize investments. In offshore engineering, environmental loads
from wind, currents, and waves show random behavior. In nuclear and
particle physics, random behavior is fundamental according to quan-
tum mechanics and statistical physics. Many probabilistic problems
can be calculated exactly by mathematics from probability theory, but
very often Monte Carlo simulation is the only way to solve statistical
problems. Chapters 8.3.2-8.3.4 applies examples to explain the essence
of Monte Carlo simulation in problems with inherent uncertainty. How-
ever, also deterministic problems, such as integration of functions, can
be computed by Monte Carlo simulation (see Chapter 8.5).

8.3.2 Example: Throwing Dice

What is the probability of getting at least six eyes twice when rolling
four dice? The experiment is to roll four dice, and the event we are
looking for appears when we get two or more dice with six eyes. A
program roll_dicel.py simulating N such experiments may look like
this:

import random as random_number
import sys
N = int(sys.argv[1]) # no of experiments

M=0 # no of successful events
for i in range(N):
six = 0 # count the no of dice with a six
rl = random_number.randint (1, 6)
if r1 ==
six += 1
r2 = random_number.randint (1, 6)
if r2 == 6:
six += 1
r3 = random_number.randint (1, 6)
if r3 == 6:
six += 1
r4 = random_number.randint(1, 6)
if r4 == 6:
six += 1

# successful event?
if six >= 2:
M+=1
p = float(M)/N
print ’probability:’, p

Generalization. We can easily parameterize how many dice (ndice) we
roll in each experiment and how many dice with six eyes we want to see

6 “As far as the laws of mathematics refer to reality, they are not certain, as far as
they are certain, they do not refer to reality.” —Albert Einstein, physicist, 1879-1955.
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(nsix). Thereby, we get a shorter and more general code. The increased
generality usually makes it easier to apply or adapt to new problems.
The resulting program is found in roll_dice2.py and is listed below:

import random as random_number

import sys

N = int(sys.argv[1]) # no of experiments

ndice = int(sys.argv[2]) # no of dice

nsix = int(sys.argv[3]) # wanted no of dice with six eyes
#

M=0 no of successful events
for i in range(N):
six = 0 # how many dice with six eyes?

for j in range(ndice):
# roll die no. j:
r = random_number.randint (1, 6)
if r ==
six += 1
# successful event?
if six >= nsix:
M+= 1
p = float(M)/N
print ’probability:’, p

With this program we may easily change the problem setting and
ask for the probability that we get six eyes ¢ times when we roll ¢ dice.
The theoretical probability can be calculated to be 674 ~ 0.00077, and
a program performing 10° experiments estimates this probability to
0.0008. For such small probabilities the number of successful events M
is small, and M /N will not be a good approximation to the probabil-
ity unless M is reasonably large, which requires a very large N. The
roll_dice2.py program runs quite slowly for one million experiments,
so it is a good idea to try to vectorize the code to speed up the exper-
iments. Unfortunately, this may constitute a challenge for newcomers
to programming, as shown below.

Vectorization. In a vectorized version of the roll_dice2.py program,
we generate a two-dimensional array of random numbers where the first
dimension reflects the experiments and the second dimension reflects
the trials in each experiment:

from numpy import random, sum
eyes = random.randint(1l, 7, (N, ndice))

The next step is to count the number of successes in each experiment.
For this purpose, we must avoid explicit loops if we want the program
to run fast. In the present example, we can compare all rolls with
6, resulting in an array compare (dimension as eyes) with ones for
rolls with 6 and 0 otherwise. Summing up the rows in compare, we
are interested in the rows where the sum is equal to or greater than
nsix. The number of such rows equals the number of successful events,
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which we must divide by the total number of experiments to get the
probability”:

compare = eyes ==
nthrows_with_6 = sum(compare, axis=1) # sum over columns (index 1)
nsuccesses = nthrows_with_6 >= nsix

M = sum(nsuccesses)

p = float(M)/N

The complete program is found in the file roll_dice2_vec.py. Getting
rid of the two loops, as we obtained in the vectorized version, speeds
up the probability estimation with a factor of 40. However, the vector-
ization is highly non-trivial, and the technique depends on details of
how we define success of an event in an experiment.

8.3.3 Example: Drawing Balls from a Hat

Suppose there are 12 balls in a hat: four black, four red, and four blue.
We want to make a program that draws three balls at random from
the hat. It is natural to represent the collection of balls as a list. Each
list element can be an integer 1, 2, or 3, since we have three different
types of balls, but it would be easier to work with the program if the
balls could have a color instead of an integer number. This is easily
accomplished by defining color names:

colors = ’black’, ’red’, ’blue’ # (tuple of strings)
hat = []
for color in colors:
for i in range(4):
hat.append(color)

Drawing a ball at random is performed by

import random as random_number
color = random_number.choice(hat)
print color

Drawing n balls without replacing the drawn balls requires us to remove
an element from the hat when it is drawn. There are three ways to
implement the procedure: (i) we perform a hat.remove(color), (ii) we
draw a random index with randint from the set of legal indices in the
hat list, and then we do a del hat([index] to remove the element, or
(iii) we can compress the code in (ii) to hat.pop(index).

def draw_ball(hat):
color = random_number.choice (hat)
hat.remove(color)

7 This code is considered advanced so don’t be surprised if you dont’t understand
much of it. A first step toward understanding is to type in the code and write out
the individual arrays for (say) N = 2. The use of numpy’s sum function is essential
for efficiency.
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return color, hat

def draw_ball (hat):
index = random_number.randint (0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def draw_ball (hat):
index = random_number.randint (0, len(hat)-1)
color = hat.pop(index)
return color, hat

# draw n balls from the hat:
balls = []
for i in range(n):
color, hat = draw_ball (hat)
balls.append(color)
print ’Got the balls’, balls

We can extend the experiment above and ask the question: What
is the probability of drawing two or more black balls from a hat with
12 balls, four black, four red, and four blue? To this end, we perform
N experiments, count how many times M we get two or more black
balls, and estimate the probability as M/N. Each experiment consists
of making the hat list, drawing a number of balls, and counting how
many black balls we got. The latter task is easy with the count method
in list objects: hat.count(’black’) counts how many elements with
value ’black’ we have in the list hat. A complete program for this task
is listed below. The program appears in the file balls_in_hat.py.

import random as random_number

def draw_ball(hat):
"""Draw a ball using list index."""
index = random_number.randint (0, len(hat)-1)
color = hat.pop(index)
return color, hat

def draw_ball(hat):
"""Draw a ball using list index."""
index = random_number.randint (0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def draw_ball(hat):
"""Draw a ball using list element."""
color = random_number.choice (hat)
hat.remove(color)
return color, hat

def new_hat():
colors = ’black’, ’red’, ’blue’ # (tuple of strings)
hat = []
for color in colors:
for i in range(4):
hat .append(color)
return hat

int (raw_input (’How many balls are to be drawn? ’))
int (raw_input (’How many experiments? ’))
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# run experiments:
M =0 # no of successes
for e in range(N):
hat = new_hat()
balls = [] # the n balls we draw
for i in range(n):
color, hat = draw_ball (hat)
balls.append(color)
if balls.count(’black’) >= 2: # at least two black balls?
M+= 1
print ’Probability:’, float(M)/N

Running the program with n = 5 (drawing 5 balls each time) and
N = 4000 gives a probability of 0.57. Drawing only 2 balls at a time
reduces the probability to about 0.09.

One can with the aid of probability theory derive theoretical expres-
sions for such probabilities, but it is much simpler to let the computer
perform a large number of experiments to estimate an approximate
probability.

A class version of the code in this section is better than the code
presented, because we avoid shuflling the hat variable in and out of
functions. Exercise 8.17 asks you to design and implement a class Hat.

8.3.4 Example: Policies for Limiting Population Growth

China has for many years officially allowed only one child per couple.
However, the success of the policy has been somewhat limited. One
challenge is the current overrepresentation of males in the population
(families have favored sons to live up). An alternative policy is to allow
each couple to continue getting children until they get a son. We can
simulate both policies and see how a population will develop under the
“one child” and the “one son” policies. Since we expect to work with
a large population over several generations, we aim at vectorized code
at once.

Suppose we have a collection of n individuals, called parents, consist-
ing of males and females randomly drawn such that a certain portion
(male_portion) constitutes males. The parents array holds integer val-
ues, 1 for male and 2 for females. We can introduce constants, MALE=1
and FEMALE=2, to make the code easier to read. Our task is to see how
the parents array develop from one generation to the next under the
two policies. Let us first show how to draw the random integer array
parents where there is a probability male_portion of getting the value
MALE:

r = random.random(n)
parents = zeros(n, int)
MALE = 1; FEMALE = 2
parents[r < male_portion]
parents[r >= male_portion]

MALE
FEMALE
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The number of potential couples is the minimum of males and females.
However, only a fraction (fertility) of the couples will actually get a

child. Under the perfect “one child” policy, these couples can have one
child each:

males = len(parents[parents==MALE])

females = len(parents) - males

couples = min(males, females)

n = int(fertility*couples) # couples that get a child

# the next generation, one child per couple:
r = random.random(n)
children = zeros(n, int)
children[r < male_portion]
children[r >= male_portion]

MALE
FEMALE

The code for generating a new population will be needed in every gener-
ation. Therefore, it is natural to collect the last statements statements
in a separate function such that we can repeat the statements when
needed.

def get_children(n, male_portion, fertility):
n = int(fertility*n)
r = random.random(n)
children = zeros(n, int)
children[r < male_portion]
children[r >= male_portion]
return children

MALE
FEMALE

Under the “one son” policy, the families can continue getting a new
child until they get the first son:

# first try:
children = get_children(couples, male_portion, fertility)

# continue with getting a new child for each daughter:
daughters = children[children == FEMALE]
while len(daughters) > 0:
new_children = get_children(len(daughters),
male_portion, fertility)
children = concatenate((children, new_children))
daughters = new_children[new_children == FEMALE]

The program birth_policy.py organizes the code segments above for
the two policies into a function advance_generation, which we can call
repeatedly to see the evolution of the population.

def advance_generation(parents, policy=’one child’,
male_portion=0.5, fertility=1.0):
males = len(parents[parents==MALE])
females = len(parents) - males
couples = min(males, females)
if policy == ’one child’:
children = get_children(couples, male_portion, fertility)
elif policy == ’one son’:
# first try at getting a child:
children = get_children(couples, male_portion, fertility)
# continue with getting a new child for each daughter:
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daughters = children[children == FEMALE]
while len(daughters) > O:
new_children = get_children(len(daughters),
male_portion, fertility)
children = concatenate((children, new_children))
daughters = new_children[new_children == FEMALE]
return children

The simulation is then a matter of repeated calls to advance_generation:

N = 1000000 # population size

male_portion = 0.51

fertility = 0.92

# start with a "perfect" generation of parents:

parents = get_children(N, male_portion=0.5, fertility=1.0)

print ’one son policy, start: %d’ % len(parents)

for i in range(10):
parents = advance_generation(parents, ’one son’,

male_portion, fertility)

print ’%3d: %d’ % (i+l, len(parents))

Under ideal conditions with unit fertility and a male_portion of
0.5, the program predicts that the “one child” policy halves the popula-
tion from one generation to the next, while the “one son” policy, where
we expect each couple to get one daughter and one son on average,
keeps the population constant. Increasing male_portion slightly and
decreasing fertility, which corresponds more to reality, will in both
cases lead to a reduction of the population. You can try the program
out with various values of these input parameters.

An obvious extension is to incorporate the effect that a portion of
the population does not follow the policy and get ¢ children on average.
The program birth_policy.py can account for the effect, which is quite
dramatic: If 1% of the population does not follow the “one son” policy
and get 4 children on average, the population grows with 50% over 10
generations (male_portion and fertility kept at the ideal values 0.5
and 1, respectively).

Normally, simple models like the difference equations (5.9) and
(5.12), or the differential equations (B.11) or (B.23), are used to model
population growth. However, these models track the number of individ-
uals through time with a very simple growth factor from one generation
to the next. The model above tracks each individual in the population
and applies rules involving random actions to each individual. Such a
detailed and much more computer-time consuming model can be used
to see the effect of different policies. Using the results of this detailed
model, we can (sometimes) estimate growth factors for simpler models
so that these mimic the overall effect on the population size. Exer-
cise 8.24 asks you to investigate if a certain realization of the “one son”
policy leads to simple exponential growth.
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8.4 Simple Games

This section presents the implementation of some simple games based
on drawing random numbers. The games can be played by two humans,
but here we consider a human versus the computer.

8.4.1 Guessing a Number

The Game. The computer determines a secret number, and the player
shall guess the number. For each guess, the computer tells if the number
is too high or too low.

The Implementation. We let the computer draw a random integer in
an interval known to the player, let us say [1,100]. In a while loop the
program prompts the player for a guess, reads the guess, and checks
if the guess is higher or lower than the drawn number. An appropri-
ate message is written to the screen. We think the algorithm can be
expressed directly as executable Python code:

import random as random_number
number = random_number.randint(1, 100)
attempts = 0 # count no of attempts to guess the number
guess = 0
while guess != number:
guess = eval(raw_input(’Guess a number: ’))
attempts += 1

if guess == number:
print ’Correct! You used’, attempts, ’attempts!’
break

elif guess < number:
print ’Go higher!’
else:
print ’Go lower!’

The program is available as the file guessnumber.py. Try it out! Can
you come up with a strategy for reducing the number of attempts? See
Exercise 8.25 for an automatic investigation of two possible strategies.

8.4.2 Rolling Two Dice

The Game. The player is supposed to roll two dice, and on beforehand
guess the sum of the eyes. If the guess on the sum is n and it turns
out to be right, the player earns n euros. Otherwise, the player must
pay 1 euro. The machine plays in the same way, but the machine’s
guess of the number of eyes is a uniformly distributed number between
2 and 12. The player determines the number of rounds, r, to play, and
receives r euros as initial capital. The winner is the one that has the
largest amount of euros after r rounds, or the one that avoids to lose
all the money.
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The Implementation. There are three actions that we can naturally
implement as functions: (i) roll two dice and compute the sum; (ii)
ask the player to guess the number of eyes; (iii) draw the computer’s
guess of the number of eyes. One soon realizes that it is as easy to
implement this game for an arbitrary number of dice as it is for two
dice. Consequently we can introduce ndice as the number of dice. The
three functions take the following forms:

import random as random_number

def roll_dice_and_compute_sum(ndice):
return sum([random_number.randint(1, 6) \
for i in range(ndice)])

def computer_guess(ndice):
return random_number.randint(ndice, 6*ndice)

def player_guess(ndice):
return input(’Guess the sum of the no of eyes ’\
’in the next throw: ’)

We can now implement one round in the game for the player or the
computer. The round starts with a capital, a guess is performed by
calling the right function for guessing, and the capital is updated:

def play_one_round(ndice, capital, guess_function):
guess = guess_function(ndice)
throw = roll_dice_and_compute_sum(ndice)
if guess == throw:
capital += guess
else:
capital -= 1
return capital, throw, guess

Here, guess_function is either computer_guess or player_guess.
With the play_one_round function we can run a number of rounds
involving both players:

def play(nrounds, ndice=2):
# start capital:
player_capital = computer_capital = nrounds

for i in range(nrounds):
player_capital, throw, guess = \
play_one_round(ndice, player_capital, player_guess)
print ’YOU guessed %d, got %d’ % (guess, throw)
if player_capital ==
print ’Machine won!’; sys.exit(0)

computer_capital, throw, guess = \
play_one_round(ndice, computer_capital, computer_guess)

print ’Machine guessed %d, got %d’ % (guess, throw)
if computer_capital ==
print = ’You won!’; sys.exit(0)

rint ’Status: you have %d euros, machine has J%d euros’ % \
P y
(player_capital, computer_capital)

if computer_capital > player_capital:
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winner = ’Machine’
else:

winner = ’You’
print winner, ’won!’

The name of the program is ndice.py.

Ezample. Here is a session (with a fixed seed of 20):

Guess the sum of the no of eyes in the next throw: 7
YOU guessed 7, got 11

Machine guessed 10, got 8

Status: you have 9 euros, machine has 9 euros

Guess the sum of the no of eyes in the next throw: 9
YOU guessed 9, got 10

Machine guessed 11, got 6

Status: you have 8 euros, machine has 8 euros

Guess the sum of the no of eyes in the next throw: 9
YOU guessed 9, got 9

Machine guessed 3, got 8

Status: you have 17 euros, machine has 7 euros

Exercise 8.27 asks you to perform simulations to determine whether a
certain strategy can make the player win over the computer in the long
run.

A Class Version. We can cast the previous code segment in a class.
Many will argue that a class-based implementation is closer to the
problem being modeled and hence easier to modify or extend.

A natural class is Dice, which can throw n dice:

class Dice:
def init__(self, n=1):

self.n = n # no of dice

def throw(self):
return [random_number.randint(1,6) \
for i in range(self.n)]

Another natural class is Player, which can perform the actions of a
player. Functions can then make use of Player to set up a game. A
Player has a name, an initial captial, a set of dice, and a Dice object
to throw the object:

class Player:
def __init__(self, name, capital, guess_function, ndice):
self .name = name
self.capital = capital
self.guess_function = guess_function
self.dice = Dice(ndice)

def play_one_round(self):
self.guess = self.guess_function(self.dice.n)
self.throw = sum(self.dice.throw())
if self.guess == self.throw:
self.capital += self.guess
else:
self.capital -= 1
self .message()
self .broke ()
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def message(self):
print ’Ys guessed %d, got %d’ % \
(self.name, self.guess, self.throw)

def broke(self):
if self.capital == 0O:
print ’Y%s lost!’ % self.name
sys.exit(0) # end the program

The guesses of the computer and the player are specified by functions:

def computer_guess(ndice):
# any of the outcomes (sum) is equally likely:
return random_number.randint(ndice, 6*ndice)

def player_guess(ndice):
return input(’Guess the sum of the no of eyes °’\
’in the next throw: ’)

The key function to play the whole game, utilizing the Player class for
the computer and the user, can be expressed as

def play(nrounds, ndice=2):
player = Player(’YOU’, nrounds, player_guess, ndice)
computer = Player(’Computer’, nrounds, computer_guess, ndice)

for i in range(nrounds):
player.play_one_round ()
computer.play_one_round()
print ’Status: user have %d euro, machine has %d euro\n’ % \
(player.capital, computer.capital)

if computer.capital > player.capital:
winner = ’Machine’

else:
winner = ’You’

print winner, ’won!’

The complete code is found in the file ndice2.py. There is no new
functionality compared to the ndice.py implementation, just a new
and better structuring of the code.

8.5 Monte Carlo Integration

One of the earliest applications of random numbers was numerical com-
putation of integrals, that is, a non-random (deterministic) problem.

Here we shall address two related methods for computing f; f(z)dx.

8.5.1 Standard Monte Carlo Integration

Let x1,...,z, be uniformly distributed random numbers between a
and b. Then

(b a)%Zf(xi) (8.7)
=1
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is an approximation to the integral f; f(x)dx. This method is usually
referred to as Monte Carlo integration. It is easy to interpret (8.7). A
well-known result from calculus is that the integral of a function f over
[a,b] equals the mean value of f over [a,b] multiplied by the length of
the interval, b — a. If we approximate the mean value of f(z) by the
mean of n randomly distributed function evaluations f(z;), we get the
method (8.7).
We can implement (8.7) in a small function:

import random as random_number

def MCint(f, a, b, n):
s =0
for i in range(n):
x = random_number.uniform(a, b)

s += f(x)
I = (float(b-a)/n)*s
return I

One normally needs a large n to obtain good results with this
method, so a faster vectorized version of the MCint function is handy:
from numpy import *

def MCint_vec(f, a, b, n):
x = random.uniform(a, b, n)

s = sum(f(x))
I = (float(b-a)/n)*s
return I

Let us try the Monte Carlo integration method on a simple linear
function f(z) = 2 + 3z, integrated from 1 to 2. Most other numeri-
cal integration methods will integrate such a linear function exactly,
regardless of the number of function evaluations. This is not the case
with Monte Carlo integration. It would be interesting to see how the
quality of the Monte Carlo approximation increases n. To plot the
evolution of the integral approximation we must store intermediate I
values. This requires a slightly modified MCint method:

def MCint2(f, a, b, n):
s =0
# store the intermediate integral approximations in an
# array I, where I[k-1] corresponds to k function evals.
I = zeros(n)
for k in range(1, n+1):
x = random_number.uniform(a, b)
s += £(x)
I[k-11 = (float(b-a)/k)*s
return I

Note that we let k go from 1 to n while the indices in I, as usual, go
from 0 to n-1. Since n can be very large, the I array may consume more
memory than what we have on the computer. Therefore, we decide to
store only every N values of the approximation. Determining if a value
is to be stored or not can then be computed by the mod function (see
page 423 or Exercise 2.45):
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for k in range(1l, n+1):

if k % N == 0:
# store

That is, every time k can be divided by N without any remainder, we
store the value. The complete function takes the following form:

def MCint3(f, a, b, n, N=100):
s =0
# store every N intermediate integral approximations in an
# array I and record the corresponding k value
I_values = []
k_values = []
for k in range(1l, n+1):
x = random_number.uniform(a, b)
s += £(x)
if k % N == 0:
I = (float(b-a)/k)*s
I_values.append(I)
k_values.append (k)
return k_values, I_values

Now we have the tools to plot the error in the Monte Carlo approx-
imation as a function of n:

def f1(x):
return 2 + 3%x

k, I = MCint3(f1, 1, 2, 1000000, N=10000)

from scitools.std import plot

error = 6.5 - array(I)

plot(k, error, title=’Monte Carlo integration’,
xlabel=’n’, ylabel=’error’)

Figure 8.4 shows the resulting plot.

Monte Carlo integration
0.016 T T T
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0.012 ~

0.01 b
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n

Fig. 8.4 The convergence of Monte Carlo integration applied to f12(2 + 3z)dx.

For functions of one variable, method (8.7) requires many points
and is inefficient compared to other integration rules. Most integra-
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tion rules have an error that reduces with increasing n, typically like
n~" for some r > 0. For the Trapezoidal rule, r = 2, while r = 1/2
for Monte Carlo integration, which means that this method converges
quite slowly compared to the Trapezoidal rule. However, for functions
of many variables, Monte Carlo integration in high space dimension
completely outperforms methods like the Trapezoidal rule and Simp-
son’s rule. There are also many ways to improve the performance of
(8.7), basically by being “smart” in drawing the random numbers (this
is called variance reducing techniques).

8.5.2 Computing Areas by Throwing Random Points

Think of some geometric region G in the plane and a surrounding
bounding box B with geometry [xr, x| X [y, yr]. One way of comput-
ing the area of GG is to draw N random points inside B and count how
many of them, M, that lie inside G. The area of G is then the fraction
M/N (G’s fraction of B’s area) times the area of B, (vg—=zr)(yg —yr).
Phrased differently, this method is a kind of dart game where you
record how many hits there are inside G if every throw hits uniformly
within B.

Let us formulate this method for computing the integral f; f(z)dx.
The important observation is that this integral is the area under the
curve y = f(x) and above the z axis, between z = a and z = b. We
introduce a rectangle B,

B={(x,y)la<z<b 0<y<m}

where m < max,¢(,) f(2). The algorithm for computing the area un-
der the curve is to draw NN random points inside B and count how
many of them, M, that are above the x axis and below the y = f(z)
curve, see Figure 8.5. The area or integral is then estimated by

M
ﬁm(b —a).

First we implement the “dart method” by a simple loop over points:

def MCint_area(f, a, b, n, m):

below = 0 # counter for no of points below the curve
for i in range(n):

x = random_number.uniform(a, b)

y = random_number.uniform(0, m)

if y <= £(x):

below += 1

area = below/float (n)*m*(b-a)
return area

Note that this method draws twice as many random numbers as the
previous method.
A vectorized implementation reads
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0 I I

Fig. 8.5 The “dart” method for computing integrals. When M out of N random points
in the rectangle [0, 2] X [0, 2.4] lie under the curve, the area under the curve is estimated
as the M/N fraction of the area of the rectangle, i.e., (M/N)2-2.4.

def MCint_area_vec(f, a, b, n, m):
x = random.uniform(a, b, n)
y = random.uniform(0, m, n)
below = y[y < f(x)].size
area = below/float (n)*m*(b-a)
return area

Even for 2 million random numbers the plain loop version is not that
slow as it executes within some seconds on a slow laptop. Nevertheless,
if you need the integration being repeated many times inside another
calculation, the superior efficiency of the vectorized version may be
important. We can quantify the efficiency gain by the aid of the timer
time.clock() in the following way (see Appendix E.6.1):

import time

t0 = time.clock()

print MCint_area(fl, a, b, n, fmax)

t1 = time.clock() # time of MCint_area is t1-tO
print MCint_area_vec(fl, a, b, n, fmax)

t2 = time.clock() # time of MCint_area_vec is t2-ti
print ’loop/vectorized fraction:’, (t1-t0)/(t2-t1)

With n = 10% T achieved a factor of about 16 in favor of the vectorized
version on an IBM laptop.

8.6 Random Walk in One Space Dimension

In this section we shall simulate a collection of particles that move
around in a random fashion. This type of simulations are fundamental
in physics, biology, chemistry as well as other sciences and can be used
to describe many phenomena. Some application areas include molecular
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motion, heat conduction, quantum mechanics, polymer chains, popu-
lation genetics, brain research, hazard games, and pricing of financial
instruments.

Imagine that we have some particles that perform random moves,
either to the right or to the left. We may flip a coin to decide the
movement of each particle, say head implies movement to the right
and tail means movement to the left. Each move is one unit length.
Physicists use the term random walk for this type of movement of a
particle®.

The movement is also known as “drunkard’s walk”. You may have
experienced this after a very wet night on a pub: you step forward
and backward in a random fashion. Since these movements on average
make you stand still, and since you know that you normally reach home
within reasonable time, the model is not good for a real walk. We need
to add a drift to the walk, so the probability is greater for going forward
than backward. This is an easy adjustment, see Exercise 8.33. What
may come as a surprise is the following fact: even when there is equal
probability of going forward and backward, one can prove mathemati-
cally that the drunkard will always reach his home. Or more precisely,
he will get home in finite time (“almost surely” as the mathematicians
must add to this statement). Exercise 8.34 asks you to experiment
with this fact. For many practical purposes, “finite time” does not help
much as there might be more steps involved than the time it takes to
get sufficiently sober to remove the completely random component of
the walk.

8.6.1 Basic Implementation

How can we implement ng random steps of n, particles in a program?
Let us introduce a coordinate system where all movements are along the
x axis. An array of x values then holds the positions of all particles. We
draw random numbers to simulate flipping a coin, say we draw from
the integers 1 and 2, where 1 means head (movement to the right)
and 2 means tail (movement to the left). We think the algorithm is
conveniently expressed directly as a complete Python program:

import random as random_number
import numpy

np = 4 # no of particles

ns = 100 # no of steps

positions = numpy.zeros(np) # all particles start at x=0
HEAD = 1; TAIL = 2 # constants

for step in range(ns):
for p in range(np):
coin = random_number.randint(1,2) # flip coin

8 You may try this yourself: flip the coin and make one step to the left or right, and
repeat this process.
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if coin == HEAD:

positions[p] += 1  # one unit length to the right
elif coin == TAIL:

positions[p] -= 1 # one unit length to the left

This program is found in the file walkiD.py.

8.6.2 Visualization

We may add some visualization of the movements by inserting a plot
command at the end of the step loop and a little pause to better
separate the frames in the animation?:

plot(positions, y, ’ko3’, axis=[xmin, xmax, -0.2, 0.2])
time.sleep(0.2) # pause

Recall from Chapter 4 that in an animation like this the axis must be
kept fixed. We know that in ng steps, no particle can move longer than
ns unit lengths to the right or to the left so the extent of the = axis
becomes [—ng, ns]. However, the probability of reaching these lower or
upper limit is very small'®. Most of the movements will take place in
the center of the plot. We may therefore shrink the extent of the axis
to better view the movements. It is known that the expected extent
of the particles is of the order ,/ng, so we may take the maximum
and minimum values in the plot as +2,/n,. However, if a position of
a particle exceeds these values, we extend xmax and xmin by 2,/n, in
positive and negative x direction, respectively.

The y positions of the particles are taken as zero, but it is necessary
to have some extent of the y axis, otherwise the coordinate system
collapses and most plotting packages will refuse to draw the plot. Here
we have just chosen the y axis to go from -0.2 to 0.2. You can find the
complete program in src/random/walk1Dp.py. The np and ns parameters
can be set as the first two command-line arguments:

Terminal

walkliDp.py 6 200

It is hard to claim that this program has astonishing graphics. In Chap-
ter 8.7, where we let the particles move in two space dimensions, the
graphics gets much more exciting.

8.6.3 Random Walk as a Difference Equation

The random walk process can easily be expressed in terms of a differ-
ence equation (Chapter 5). Let x, be the position of the particle at

9 These actions require from scitools.std import * and import time.
10 The probability is 2~"s, which becomes about 10~ for 30 steps.
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time n. This position is an evolvement from time n — 1, obtained by
adding a random variable s to the previous position z,,_1, where s = 1
has probability 1/2 and s = —1 has probability 1/2. In statistics, the
expression “probability of event A” is written P(A). We can therefore
write P(s = 1) = 1/2 and P(s = —1) = 1/2. The difference equation
can now be expressed mathematically as

Tp=Tp-1+s, x0=0, P(s=1)=P(s=-1)=1/2. (8.8)

This equation governs the motion of one particle. For a collection m

of particles we introduce ng ) as the position of the i-th particle at the
n-th time step. Each xq(f ) is governed by (8.8), and all the s values in

each of the m difference equations are independent of each other.

8.6.4 Computing Statistics of the Particle Positions

Scientists interested in random walks are in general not interested in
the graphics of our walkiD.py program, but more in the statistics of
the positions of the particles at each step. We may therefore, at each
step, compute a histogram of the distribution of the particles along the
x axis, plus estimate the mean position and the standard deviation.
These mathematical operations are easily accomplished by letting the
SciTools function compute_histogram and the numpy functions mean and
std operate on the positions array (see Chapter 8.1.5)!! :

mean_pos = mean(positions)
stdev_pos = std(positions)
pos, freq = compute_histogram(positions, nbins=int (xmax),

piecewise_constant=True)

We can plot the particles as circles, as before, and add the histogram
and vertical lines for the mean and the positive and negative standard
deviation (the latter indicates the “width” of the distribution of parti-
cles). The vertical lines can be defined by the six lists

Xmean, ymean
xstdvl, ystdvl
xstdv2, ystdv2

[mean_pos, mean_pos], [yminv, ymaxv]
[stdev_pos, stdev_pos], [yminv, ymaxv]
[-stdev_pos, -stdev_pos], [yminv, ymaxv]

where yminv and ymaxv are the minimum and maximum y values of
the vertical lines. The following command plots the position of every
particle as circles, the histogram as a curve, and the vertical lines with
a thicker line:

1 The number of bins in the histogram is just based on the extent of the particles. It
could also have been a fixed number.



8.6 Random Walk in One Space Dimension

plot(positions, y, ’ko3’, # particles as circles
pos, freq, ’r’, # histogram
Xmean, ymean, ’r2’, # mean position as thick line
xstdvl, ystdvl, ’b2’, # +1 standard dev.
xstdv2, ystdv2, ’b2’, # -1 standard dev.
axis=[xmin, xmax, ymin, ymax],
title=’random walk of %d particles after Jd steps’ 7% \

(np, step+l))

This plot is then created at every step in the random walk. By observing
the graphics, one will soon realize that the computation of the extent
of the y axis in the plot needs some considerations. We have found
it convenient to base ymax on the maximum value of the histogram
(max(freq)), plus some space (chosen as 10 percent of max(freq)).
However, we do not change the ymax value unless it is more than
0.1 different from the previous ymax value (otherwise the axis “jumps”
too often). The minimum value, ymin, is set to ymin=-0.1*ymax every
time we change the ymax value. The complete code is found in the
file walkiDs.py. If you try out 2000 particles and 30 steps, the final
graphics becomes like that in Figure 8.6. As the number of steps is
increased, the particles are dispersed in the positive and negative x di-
rection, and the histogram gets flatter and flatter. Letting f](z) be the
histogram value in interval number 4, and each interval having width
Az, the probability of finding a particle in interval i is H (i)Az. It can
be shown mathematically that the histogram is an approximation to
the probability density function of the normal distribution (1.6) (see
page 45), with mean zero and standard deviation s ~ y/n, where n is
the step number.

8.6.5 Vectorized Implementation

There is no problem with the speed of our one-dimensional random
walkers in the walk1Dp.py or walk1Ds.py programs, but in real-life ap-
plications of such simulation models, we often have a very large number
of particles performing a very large number of steps. It is then impor-
tant to make the implementation as efficient as possible. Two loops over
all particles and all steps, as we have in the programs above, become
very slow compared to a vectorized implementation.

A vectorized implementation of a one-dimensional walk should uti-
lize the functions randint or random_integers from numpy.random. A
first idea may be to draw steps for all particles at a step simultane-
ously. Then we repeat this process in a loop from 0 to ng — 1. However,
these repetitions are just new vectors of random numbers, and we may
avoid the loop if we draw n, x n, random numbers at once:

moves = random.randint(1l, 3, size=np*ns)
# or
moves = random.random_integers(1l, 2, size=np*ns)
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random walk of 2000 particles after 30 steps
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Fig. 8.6 Particle positions (circles), histogram (piecewise constant curve), and vertical

lines indicating the mean value and the standard deviation from the mean after a one-
dimensional random walk of 2000 particles for 30 steps.

The values are now either 1 or 2, but we want —1 or 1. A simple scaling
and translation of the numbers transform the 1 and 2 values to —1 and
1 values:

moves = 2*moves - 3

Then we can create a two-dimensional array out of moves such that
moves[i,j] is the i-th step of particle number j:

moves.shape = (ns, np)

It does not make sense to plot the evolution of the particles and
the histogram in the vectorized version of the code, because the point
with vectorization is to speed up the calculations, and the visualiza-
tion takes much more time than drawing random numbers, even in the
walk1Dp.py and walk1Ds.py programs from Chapter 8.6.4. We therefore
just compute the positions of the particles inside a loop over the steps
and some simple statistics. At the end, after n, steps, we plot the his-
togram of the particle distribution along with circles for the positions
of the particles. The rest of the program, found in the file walkiDv.py,
looks as follows:
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positions = zeros(np)
for step in range(ns):
positions += moves[step, :]

mean_pos, stdev_pos = mean(positions), std(positions)
print mean_pos, stdev_pos

nbins = int(3*sqrt(ns)) # no of intervals in histogram
pos, freq = compute_histogram(positions, nbins,
piecewise_constant=True)

plot(positions, zeros(np), ’ko3’,
pos, freq, ’r’,
axis=[min(positions), max(positions), -0.05, 1.1*max(freq)],
hardcopy=’tmp.ps’)

8.7 Random Walk in Two Space Dimensions

A random walk in two dimensions performs a step either to the north,
south, west, or east, each one with probability 1/4. To demonstrate
this process, we introduce x and y coordinates of n, particles and
draw random numbers among 1, 2, 3, or 4 to determine the move. The
positions of the particles can easily be visualized as small circles in an
xy coordinate system.

8.7.1 Basic Implementation

The algorithm described above is conveniently expressed directly as a
complete working program:

def random_walk_2D(np, ns, plot_step):

xpositions = zeros(np)

ypositions = zeros(np)

# extent of the axis in the plot:
xymax = 3*sqrt(ns); xymin = -xymax

NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4 # constants

for step in range(ns):
for i in range(np):
direction = random_number.randint(1l, 4)
if direction == NORTH:
ypositions[i] += 1
elif direction == SOUTH:
ypositions[i] -= 1
elif direction == EAST:
xpositions[i] += 1
elif direction == WEST:
xpositions[i] -= 1

# plot just every plot_step steps:
if (step+l) ¥ plot_step == O:
plot(xpositions, ypositions, ’ko’,
axis=[xymin, xymax, xymin, xymax],
title=’Yd particles after %d steps’ % \
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(np, step+l),
hardcopy=’tmp_%03d.eps’ % (step+1))
return xpositions, ypositions

# main program:

import random as random_number
random_number.seed (10)

import sys

from scitools.std import zeros, plot, sqrt

np = int(sys.argv[1]) # number of particles
ns = int(sys.argv[2]) # number of steps
plot_step = int(sys.argv[3]) # plot every plot_step steps

X, y = random_walk_2D(np, ns, plot_step)

The program is found in the file walk2D.py. Figure 8.7 shows two snap-
shots of the distribution of 3000 particles after 40 and 400 steps. These
plots were generated with command-line arguments 3000 400 20, the
latter implying that we visualize the particles every 20 time steps only.

3000 particles after 40 steps 3000 particles after 400 steps

60 -40 20 0 20 40 60 60 -40 =20 0 20 40 60

() (b)
Fig. 8.7 Location of 3000 particles starting at the origin and performing a random
walk: (a) 40 steps; (b) 400 steps.

To get a feeling for the two-dimensional random walk you can try
out only 30 particles for 400 steps and let each step be visualized (i.e.,
command-line arguments 30 400 1). The update of the movements is
now fast.

The walk2D.py program dumps the plots to PostScript files with
names of the form tmp_xxx.eps, where xxx is the step number. We can
create a movie out of these individual files using the movie function
(Chapter 4.3.7) or the program convert from the ImageMagick suite!?:

convert -delay 50 -loop 1000 tmp_*.eps movie.gif

All the plots are now put after each other as frames in a movie, with a
delay of 50 ms between each frame. The movie will run in a loop 1000
times. Alternatively, we can create the movie with the movie function
from Easyviz, inside a program:

12 If you want to run this command from an IPython session, prefix convert with an
exclamation mark: !convert.
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from scitools.std import movie
movie(’tmp_*.eps’, encoder=’convert’, output_file=’movie.gif’)

The resulting movie file is named movie.gif, which can be viewed by
the animate program (also from the ImageMagick program suite), just
write animate movie.gif. Making and showing the movie are slow pro-
cesses if a large number of steps are included in the movie — 100 steps or
fewer are appropriate, but this depends on the power of your computer.

8.7.2 Vectorized Implementation

The walk2D.py program is quite slow. Now the visualization is much
faster than the movement of the particles. Vectorization may speed up
the walk2D.py program significantly. As in the one-dimensional phase,
we draw all the movements at once and then invoke a loop over the
steps to update the x and y coordinates. We draw n, X n, numbers
among 1, 2, 3, and 4. We then reshape the vector of random numbers
to a two-dimensional array moves[i, jl, where i counts the steps, j
counts the particles. The if test on whether the current move is to the
north, south, east, or west can be vectorized using the where function
(see Chapter 4.4.1). For example, if the random numbers for all parti-
cles in the current step are accessible in an array this_move, we could
update the x positions by

xpositions += where(this_move == EAST, 1, 0)
xpositions -= where(this_move == WEST, 1, 0)

provided EAST and WEST are constants, equal to 3 and 4, respectively.
A similar construction can be used for the y moves.
The complete program is listed below:

def random_walk_2D(np, ns, plot_step):
xpositions = zeros(np)
ypositions = zeros(np)
moves = random.random_integers(1l, 4, size=ns*np)
moves.shape = (ns, np)

# estimate max and min positions:
xymax = 3*sqrt(ns); xymin = -xymax

NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4 # constants

for step in range(ns):
this_move = moves[step, :]

ypositions += where(this_move == NORTH, 1, 0)
ypositions -= where(this_move == SOUTH, 1, 0)
xpositions += where(this_move == EAST, 1, 0)
xpositions -= where(this_move == WEST, 1, 0)

# just plot every plot_step steps:
if (step+l) ¥ plot_step == O:
plot(xpositions, ypositions, ’ko’,
axis=[xymin, xymax, xymin, xymax],
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title=’%d particles after Jd steps’ % \
(np, step+1),
hardcopy=’tmp_%03d.eps’ % (step+1))
return xpositions, ypositions

# main program:
from scitools.std import *
random.seed (11)

np = int(sys.argv[1]) # number of particles
ns = int(sys.argv[2]) # number of steps
plot_step = int(sys.argv[3]) # plot each plot_step step
X, y = random_walk_2D(np, ns, plot_step)

You will easily experience that this program, found in the file
walk2Dv.py, runs significantly faster than the walk2D.py program.

8.8 Summary

8.8.1 Chapter Topics

Drawing Random Numbers. Random numbers can be scattered
throughout an interval in various ways, specified by the distribution
of the numbers. We have considered a uniform distribution (Chap-
ter 8.1.2) and a normal (or Gaussian) distribution (Chapter 8.1.6).
Table 8.1 shows the syntax for generating random numbers of these
two distributions, using either the standard scalar random module in
Python or the vectorized numpy.random module.

Table 8.1 Summary of important functions for drawing random numbers. N is the
array length in vectorized drawing, while m and s represent the mean and standard
deviation values of a normal distribution.

random numpy . random
uniform numbers in [0, 1) random() random (N)
uniform numbers in [a,b) uniform(a, b) uniform(a, b, N)
integers in [a, b] randint(a, b) randint(a, b+1, N)
random_integers(a, b, N)
Gaussian numbers, mean m, st.dev. s gauss(m, s) normal (m, s, N)
set seed (1) seed(i) seed(i)
shuffle list a (in-place) shuffle(a) shuffle(a)
choose a random element in list a choice(a)

Typical Probability Computation. Many programs performing proba-
bility computations draw a large number N of random numbers and
count how many times M a random number leads to some true condi-
tion (Monte Carlo simulation):
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import random as random_number
M=0
for i in xrange(N):
r = random_number.randint(a, b)
if condition:
M+=1
print ’Probability estimate:’, float(M)/N

For example, if we seek the probability that we get at least four eyes
when throwing a dice, we choose the random number to be the number
of eyes, i.e., an integer in the interval [1,6] (a=1, b=6) and condition
becomes r >= 4.

For large N we can speed up such programs by vectorization, i.e.,
drawing all random numbers at once in a big array and use operations
on the array to find M. The similar vectorized version of the program
above looks like

from numpy import *

r = random.uniform(a, b, N)

M = sum(condition)

# or

M = sum(where(condition, 1, 0))

print ’Probability estimate:’, float(M)/N

(Combinations of boolean expressions in the condition argument to
where requires special constructs as outlined in Exercise 8.14.) Make
sure you use sum from numpy, when operating on large arrays, and not
the much slower built-in sum function in Python.

Statistical Measures. Given an array of random numbers, the follow-
ing code computes the mean, variance, and standard deviation of the
numbers and finally displays a plot of the histogram, which reflects
how the numbers are statistically distributed:

from scitools.std import mean, var, std, compute_histogram

m = mean(numbers)
v = var (numbers)
s = std(numbers)

X, y = compute_histogram(numbers, 50, piecewise_constant=True)
plot(x, y)

8.8.2 Summarizing Example: Random Growth

Chapter 5.1.1 contains mathematical models for how an investment
grows when there is an interest rate being added to the investment at
certain intervals. The model can easily allow for a time-varying interest
rate, but for forecasting the growth of an investment, it is difficult to
predict the future interest rate. One commonly used method is to build
a probabilistic model for the development of the interest rate, where
the rate is chosen randomly at random times. This gives a random
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growth of the investment, but by simulating many random scenarios
we can compute the mean growth and use the standard deviation as a
measure of the uncertainty of the predictions.

Problem. Let p be the annual interest rate in a bank in percent. Sup-
pose the interest is added to the investment ¢ times per year. The
new value of the investment, z,,, is given by the previous value of the
investment, x,,_1, plus the p/q percent interest:

Tp = Tp—1 + %i)qxn—l .
Normally, the interest is added daily (¢ = 360 and n counts days),
but for efficiency in the computations later we shall assume that the
interest is added monthly, so ¢ = 12 and n counts months.
The basic assumption now is that p is random and varies with time.
Suppose p increases with a random amount ~ from one month to the
next:

Pn = Pn—1+7-

A typical size of p adjustments is 0.5. However, the central bank does
not adjust the interest every month. Instead this happens every M
months on average. The probability of a v # 0 can therefore be taken
as 1/M. In a month where v # 0, we may say that v = m with
probability 1/2 or v = —m with probability 1/2 if it is equally likely
that the rate goes up as down (this is not a good assumption, but a
more complicated evolvement of v is postponed now).

Solution. First we must develop the precise formulas to be imple-
mented. The difference equations for x,, and p, are in simple in the
present case, but the details computing ~ must be worked out. In a
program, we can draw two random numbers to estimate ~: one for de-
ciding if v # 0 and the other for determining the sign of the change.
Since the probability for v # 0is 1 /M, we can draw a number 7, among

the integers 1,..., M and if r; = 1 we continue with drawing a second
number ry among the integers 1 and 2. If ro = 1 we set v = m, and if
ro = 2 we set v = —m. We must also assure that p, does not take on

unreasonable values, so we choose p, < 1 and p,, > 15 as cases where
Pr is not changed.

The mathematical model for the investment must track both x,, and
pn. Below we express with precise mathematics the equations for x,,
and p, and the computation of the random ~ quantity:
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Tn = Tn 1+ 15’_‘7*1100%_1, i=1,...,N (8.9)
r1 = random integer in [1, M] (8.10)
ro = random integer in [1, 2] (8.11)
m, ifri=1andry =1,
vy=4 —m,ifr; =1 and ry = 2, (8.12)
0, ifr#1
=t {3 e (513

We remark that the evolution of p, is much like a random walk
process (Chapter 8.6), the only differences is that the plus/minus steps
are taken at some random points among the times 0,1,2,..., N rather
than at all times 0,1, 2, ..., N. The random walk for p,, also has barriers
at p =1 and p = 15, but that is common in a standard random walk
too.

Each time we calculate the z,, sequence in the present application, we
get a different development because of the random numbers involved.
We say that one development of zg,...,x, is a path (or realization,
but since the realization can be viewed as a curve x,, or p, versus n
in this case, it is common to use the word path). Our Monte Carlo
simulation approach consists of computing a large number of paths, as
well as the sum of the path and the sum of the paths squared. From
the latter two sums we can compute the mean and standard deviation
of the paths to see the average development of the investment and the
uncertainty of this development. Since we are interested in complete
paths, we need to store the complete sequence of x,, for each path. We
may also be interested in the statistics of the interest rate so we store
the complete sequence p,, too.

Programs should be built in pieces so that we can test each piece
before testing the whole program. In the present case, a natural piece is
a function that computes one path of z,, and p,, with N steps, given M,
m, and the initial conditions xy and py. We can then test this function
before moving on to calling the function a large number of times. An
appropriate code may be

def simulate_one_path(N, x0, pO, M, m):
x = zeros(N+1)
p = zeros(N+1)
index_set = range(0, N+1)

x[0]
plo]

x0
pO

for n in index_set[1:]:
x[n] = x[n-1] + p[n-11/(100.0%12)*x[n-1]

# update interest rate p:
r = random_number.randint (1, M)
if r ==
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# adjust gamma:
r = random_number.randint (1, 2)
gamma = m if r == 1 else -m
else:
gamma = 0O
pn = pln-1] + gamma
pln] = pn if 1 <= pn <= 15 else p[n-1]
return x, p

Testing such a function is challenging because the result is different
each time because of the random numbers. A first step in verifying
the implementation is to turn off the randomness (m = 0) and check
that the deterministic parts of the difference equations are correctly
computed:

X, p = simulate_one_path(3, 1, 10, 1, 0)
print x

The output becomes
[ 1. 1.00833333 1.01673611 1.02520891]

These numbers can quickly be checked against a formula of the type
(5.4) on page 237 in an interactive session:

>>> def g(x0, n, p):
. return x0*(1 + p/(12.%100))**n

>>> g(1, 1, 10)
1.0083333333333333
>>> g(1, 2, 10)
1.0167361111111111
>>> g(1, 3, 10)
1.0252089120370369

We can conclude that our function works well when there is no ran-
domness. A next step is to carefully examine the code that computes
gamma and compare with the mathematical formulas.

Simulating many paths and computing the average development of
T, and p, is a matter of calling simulate_one_path repeatedly, use two
arrays xm and pm to collect the sum of x and p, respectively, and finally
obtain the average path by dividing xm and pm by the number of paths
we have computed:

def simulate_n_paths(n, N, L, pO, M, m):
xm = zeros(N+1)
pn = zeros(N+1)
for i in range(n):
X, p = simulate_one_path(N, L, pO, M, m)
# accumulate paths:
Xm += X
pm += p
# compute average:
xm /= float(n)
pm /= float(n)
return xm, pm

We can also compute the standard deviation of the paths using for-
mulas (8.3) and (8.6), with z; as either an x or a p array. It might
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happen that small round-off errors generate a small negative variance,
which mathematically should have been slightly greater than zero. Tak-
ing the square root will then generate complex arrays and problems
with plotting. To avoid this problem, we therefore replace all negative
elements by zeros in the variance arrays before taking the square root.
The new lines for computing the standard deviation arrays xs and ps
are indicated below:

def simulate_n_paths(n, N, x0O, pO, M, m):

xs = zeros(N+1) # standard deviation of x
ps = zeros(N+1) # standard deviation of p
for i in range(n):

X, p = simulate_one_path(N, x0, pO, M, m)

# accumulate paths:

Xm += X

pm += p

XS += xX*k*2

ps += p¥*2

# compute standard deviation:

xs = xs/float(n) - xm*xm # variance

ps = ps/float(n) - pm*pm # variance

# remove small negative numbers (round off errors):
xs[xs < 0] =0

pslps < 0] =0

xs = sqrt(xs)

ps = sqrt(ps)

return xm, Xxs, pm, ps

A remark regarding the efficiency of array operations is appropriate
here. The statement xs += x**2 could equally well, from a mathemati-
cal point of view, be written as xs = xs + x**2. However, in this latter
statement, two extra arrays are created (one for the squaring and one
for the sum), while in the former only one array (x**2) is made. Since
the paths can be long and we make many simulations, such optimiza-
tions can be important.

One may wonder whether x**2 is “smart” in the sense that squaring is
detected and computed as x*x, not as a general (slow) power function.
This is indeed the case for arrays, as we have investigated in the little
test program smart_power.py in the random directory. This program
applies time measurement methods from Appendix E.6.2.

Our simulate_n_paths function generates four arrays which are nat-
ural to visualize. Having a mean and a standard deviation curve, it is
often common to plot the mean curve with one color or linetype and
then two curves, corresponding to plus one and minus one standard
deviation, with another less visible color. This gives an indication of
the mean development and the uncertainty of the underlying process.
We therefore make two plots: one with xm, xm+xs, and xm-xs, and one
with pm, pm+ps, and pm-ps.
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Both for debugging and curiosity it is handy to have some plots of
a few actual paths. We may pick out 5 paths from the simulations and
visualize these:

def simulate_n_paths(n, N, x0, pO, M, m):
for i in range(n):

# show 5 random sample paths:
if i % (n/5) == 0:
figure(1)
plot(x, title=’sample paths of investment’)
hold(’on’)
figure(2)
plot(p, title=’sample paths of interest rate’)
hold(’on’)
figure(1); hardcopy(’tmp_sample_paths_investment.eps’)
figure(2); hardcopy(’tmp_sample_paths_interestrate.eps’)

return ...

Note the use of figure: we need to hold on both figures to add new
plots and switch between the figures, both for plotting and making the

final hardcopy.
After the visualization of sample paths we make the mean + stan-
dard deviation plots by this code:

xm, Xs, pm, ps = simulate_n_paths(n, N, x0, pO, M, m)
figure(3)
months = range(len(xm)) # indices along the x axis
plot(months, xm, ’r’,
months, xm-xs, ’y’,
months, xm+xs, ’y’,
title=’Mean +/- 1 st.dev. of investment’,
hardcopy=’tmp_mean_investment.eps’)
figure(4)
plot(months, pm, ’r’,
months, pm-ps, ’y’,
months, pm+ps, ’y’,
title=’Mean +/- 1 st.dev. of annual interest rate’,
hardcopy=’tmp_mean_interestrate.eps’)

The complete program for simulating the investment development is
found in the file growth_random. py.
Running the program with the input data

initial investment

initial interest rate

number of months

p changes (on average) every M months
number of simulations

adjustment of p

x0
0

8B =29
HHHHHH

and initializing the seed of the random generator to 1, we get four
plots, which are shown in Figure 8.8.
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Mean +/-1 st.dev. of investment Mean +/-1 st.dev. of annual interest rate.

sample paths of investment sample paths of interest rate

Fig. 8.8 Development of an investment with random jumps of the interest rate at ran-
dom points of time: (a) mean value of investment + one standard deviation; (b) mean
value of the interest rate + one standard deviation; (c) five paths of the investment
development; (d) five paths of the interest rate development.

8.9 Exercises

Exercise 8.1. Flip a coin N times.

Make a program that simulates flipping a coin N times. Print out
“tail” or “head” for each flip and let the program count the number of
heads. (Hint: Use r = random.random() and define head as r <= 0.5 or
draw an integer among {1, 2} with r = random.randint(1,2) and define
head when r is 1.) Name of program file: flip_coin.py. o

Exercise 8.2. Compute a probability.

What is the probability of getting a number between 0.5 and 0.6
when drawing uniformly distributed random numbers from the interval
[0,1)? To answer this question empirically, let a program draw N such
random numbers using Python’s standard random module, count how
many of them, M, that fall in the interval (0.5,0.6), and compute the
probability as M/N. Run the program with the four values N = 10’
for ¢ =1,2,3,6. Name of program file: compute_prob.py. o

Exercise 8.3. Choose random colors.

Suppose we have eight different colors. Make a program that chooses
one of these colors at random and writes out the color. Hint: Use a list
of color names and use the choice function in the random module to
pick a list element. Name of program file: choose_color.py. o

463



464

8 Random Numbers and Simple Games

Exercise 8.4. Draw balls from a hat.

Suppose there are 40 balls in a hat, of which 10 are red, 10 are blue,
10 are yellow, and 10 are purple. What is the probability of getting
two blue and two purple balls when drawing 10 balls at random from
the hat? Name of program file: 4balls_from10.py. o

Exercise 8.5. Probabilities of rolling dice.

1. You throw a die. What is the probability of getting a 67

2. You throw a die four times in a row. What is the probability of
getting 6 all the times?

3. Suppose you have thrown the die three times with 6 coming up all
times. What is the probability of getting a 6 in the fourth throw?

4. Suppose you have thrown the die 100 times and experienced a 6 in
every throw. What do you think about the probability of getting a
6 in the next throw?

First try to solve the questions from a theoretical or common sense
point of view. Thereafter, make functions for simulating cases 1, 2,
and 3. Name of program file: rolling_dice.py. o

Exercise 8.6. Estimate the probability in a dice game.

Make a program for estimating the probability of getting at least
one 6 when throwing n dice. Read n and the number of experiments
from the command line. (To verify the program, you can compare the
estimated probability with the exact result 11/36 when n = 2.) Name
of program file: one6_2dice.py. o

Exercise 8.7. Decide if a dice game is fair.

Somebody suggests the following game. You pay 1 unit of money and
are allowed to throw four dice. If the sum of the eyes on the dice is less
than 9, you win 10 units of money, otherwise you lose your investment.
Should you play this game? Answer the question by making a program
that simulates the game. Name of program file: sum9_4dice.py. o

Exercise 8.8. Adjust the game in Ezer. 8.7.

It turns out that the game in Exercise 8.7 is not fair, since you lose
money in the long run. The purpose of this exercise is to adjust the
winning award so that the game becomes fair, i.e., that you neither
lose nor win money in the long run.

Make a program that computes the probability p of getting
a sum less than s when rolling n dice. Name of program file:
sum_s_ndice_fair.py.

If the cost of each game is ¢ units of money, the game is fair if the
payment in case you win is r = ¢/p. Run the program you made for
s =9 and n = 4, which corresponds to the game in Exercise 8.7, and
compute the corresponding p. Modify the program from Exercise 8.7
so that the award is r = 1/p, and run that program to see that now
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the game is fair, i.e., you neither win nor lose money in a larze number
of games.

Erplanation. The formula for a fair game can be developed as follows.
Let p= M/N be the prebability of winning, which means that you in
the long run win M out of N games. The cost is Ng and the income is
Mr. To make the net income Mr — Ng zero, which is the requirement
of a fair game, we get r = gN/M = g/p. (This reasoning is hased
on common sense and an intuitive interpretation of probability. More
precise reasoning from probability theory will introduce the game as an
expoeriment with two outcomes, cither you win with probability p and
or lose with probability 1—p. The expexted payment is then the sum of
probabilitics times the corresponding net incomes: —g(1 —p) — (r —qJp
(reeall that the net income in a winning game is r — ¢). A fair gamc
has zero expected payment, ie., r = ¢/p.) &

Exercise 8.9. Probabulitics of throwing two dice.

Make a computer program for throwing two dice a large number of
times. Record the sum of the eyes each time and count how many times
each of the possibilities for the sum (2, 3, ..., 12} appear. A dictionary
with the sum as key and count as value is convenient here. Divide the
counts hy the tatal number of trials such that you set the frequency of
each passible sum. Write out the frequencies and compare them with
exact probabilitics. (To find the exact probabilities, set up all the 6 x 6
possible cuteomes of throwing two dice, and then count how many of
them that has a sum s for s = 2,3,...,12.) Name of program file:
freq_2dice.py. <

Exercise 8.10. Compute the probability of draunng bolls.
A hat has 20 balls, 5 red, 5 yellow, 5 green, and 5 brown, We draw
n 2> 3 balls at random. What is the probability of getting

® at least one red and one brown ball?
¢ exactly one rad ball?

e exactly two red balls?

o at least three green balls?

Use Monte Carle simulation to compute the probabilitics and write
out the answers to the four questions for n = 3,5,7,10,15. Namc of
prograin file: draw_balls.py. &

Exercise 8.11. Compute the probability of hands of cerds.

Use the Deck.py module (in src/random) and the same_rank and
same_suit functions from the cards module to compute the following
prababilities by Monte Carlo simulation:

e oxactly two pairs among five cards,
e four or five cards of the same suit among five cards,
o four-of-a-kind among five cards.
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Name of program file: card_hands.py. o

Exercise 8.12. Play with vectorized boolean expressions.

Using the numpy.random module, make an array containing N uni-
formly distributed random numbers between 0 and 1. Print out the ar-
raysr <= 0.5, r[r <= 0.5], where(r <= 0.5, 1, 0) and convince your-
self that you understand what these arrays express. We want to com-
pute how many of the elements in r that are less than or equal to 0.5.
How can this be done in a vectorized way, i.e., without explicit loops
in the program, but solely with operations on complete arrays? Name
of program file: bool_vec.py. o

Exercise 8.13. Vectorize the program from FExer. 8.1.

Simulate flipping a coin N times and write out the number of
tails. The code should be vectorized, i.e., there must be no loops in
Python. Hint: Use ideas from Exercise 8.12. Name of program file:
flip_coin_vec.py. o

Exercise 8.14. Vectorize the code in Ezer. 8.2.

The purpose of this exercise is to speed up the code in Exercise 8.2
by vectorization. Hint: First draw an array r with a large number
of random numbers in [0,1). The simplest way to count how many
elements in r that lie between 0.5 and 0.6, is to first extract the elements
larger than 0.5: r1 = r[r>0.5], and then extract the elements in r1 that
are less than 0.6 and get the size of this array: r1[r1<=0.6] .size. Name
of program file: compute_prob_vec.py.

Remark. An alternative and more complicated method is to use
the where function. The condition (the first argument to where) is
now a compond boolean expression 0.5 <= r <= 0.6, but this can-
not be used with NumPy arrays. Instead one must test for 0.5 <=
r and r < = 0.6. The needed boolean construction in the where call
is operator.and_(0.5 <= r, r <= 0.6). See also the discussion of the
same topic in Chapter 4.4.1. o

Exercise 8.15. Throw dice and compute a small probability.
Compute the probability of getting 6 eyes on all dice when rolling
7 dice. Since you need a large number of experiments in this case (see
the first paragraph of Chapter 8.3), you can save quite some simula-
tion time by using a vectorized implementation. Name of program file:
roll_7dice.py. <

Exercise 8.16. Difference equation for random numbers.
Simple random number generators are based on simulating difference
equations. Here is a typical set of two equations:

Zn = (axp—1 + ¢) mod m, (8.14)
Yn = Tp/m, (8.15)
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forn = 1,2,.... A seed zg must be given to start the sequence. The
numbers y1, 42, ..., represent the random numbers and xg,x1,... are
“help” numbers. Although y,, is completely deterministic from (8.14)—
(8.15), the sequence y,, appears random. The mathematical expression
p mod q is coded as p % q in Python.

Use a = 8121, ¢ = 28411, and m = 134456. Solve the system (8.14)—
(8.15) in a function that generates and returns N random numbers.
Make a histogram to examine the distribution of the numbers (the y,
numbers are randomly distributed if the histogram is approximately
flat). Name of program file: diffeq_random.py. o

Exercise 8.17. Make a class for drawing balls from a hat.
Consider the example about drawing colored balls from a hat in
Chapter 8.3.3. It could be handy to have an object that acts as a hat:

# make a hat with balls of 3 colors, each color appearing
# on 4 balls:
hat = Hat(colors=(’red’, ’black’, ’blue’), number_of_each_color=4)

# draw 3 balls at random
balls = hat.draw(number_of_balls=3)

Realize such code with a class Hat. You can borrow useful code from
the balls_in_hat.py program and ideas from Chapter 8.2.5. Use the
Hat class to solve the probability problem from Exercise 8.4. Name of
program file: Hat.py. o

Exercise 8.18. Independent vs. dependent random numbers.

Generate a sequence of IV independent random variables with values
0 or 1 and print out this sequence without space between the numbers
(i.e., as 001011010110111010).

The next task is to generate random zeros and ones that are depen-
dent. If the last generated number was 0, the probability of generating
anew 0 is p and a new 1 is 1 — p. Conversely, if the last generated
was 1, the probability of generating a new 1 is p and a new 0 is 1 — p.
Since the new value depends on the last one, we say the variables are
dependent. Implement this algorithm in a function returning an array
of N zeros and ones. Print out this array in the condense format as
described above.

Choose N = 80 and try p = 0.5, 0 = 0.8 and p = 0.9.
Can you describe the differences between sequences of indepen-
dent and dependent random variables? Name of program file:
dependent_random_variables.py. <&

Exercise 8.19. Compute the probability of flipping a coin.

Modify the program from either Exercise 8.1 or 8.13 to incorporate
the following extensions: look at a subset Ny < N of the experiments
and compute probability of getting a head (M;/Ny, where M; is the
number of heads in N experiments). Choose N = 1000 and print out
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the probability for N1 = 10,100, 500, 1000. (Generate just N numbers
once in the program.) How do you think the accuracy of the computed
probability vary with N1?7 Is the output compatible with this expecta-
tion? Name of program file: f1ip_coin_prob.py. o

Exercise 8.20. Ezxtend Exer. 8.19.

We address the same problem as in Exercise 8.19, but now we want
to study the probability of getting a head, p, as a function of Ny, i.e.,
for Ny =1,..., N. We also want to vectorize all operations in the code.
A first try to compute the probability array for p is

where(r <= 0.5, 1, 0)

zeros (N)

or i in range(N):

plil = sum(h([:i+1])/float(i+1)

h
p
£

An array q[i] = sum(h([:i])) reflects a cumulative sum and can be
efficiently generated by the cumsum function in numpy: q = cumsum(h).
Thereafter we can compute p by q/I, where I[i]=i+1 and I can be com-
puted by arange(1,N+1) or r_[1:N+1]. Implement both the loop over i
and the vectorized version based on cumsum and check in the program
that the resulting p array has the same elements (for this purpose you
have to compare float elements and you can use the float_eq func-
tion from SciTools, see Exercise 2.51, or the allclose function in numpy
(float_eq actually uses allclose for array arguments)). Plot p against
I for the case where N = 10000. Annotate the axis and the plot with
relevant text. Name of program file: f1ip_coin_prob_developm.py. ¢

Exercise 8.21. Simulate the problems in Exer. 3.26.

FExercise 3.26 describes some problems that can be solved exactly
using the formula (3.8), but we can also simulate these problems and
find approximate numbers for the probabilities. That is the task of this
exercise.

Make a general function simulate_binomial(p, n, x) for running n
experiments, where each experiment have two outcomes, with probabil-
ities p and 1—p. The n experiments constitute a “success” if the outcome
with probability p occurs exactly x times. The simulate_binomial func-
tion must repeat the n experiments N times. If M is the number of “suc-
cesses” in the N experiments, the probability estimate is M/N. Let the
function return this probability estimate together with the error (the
exact result is (3.8)). Simulate the three cases in Exercise 3.26 using
this function. Name of program file: simulate_binomial_problems.py.
o

Exercise 8.22. Simulate a poker game.

Make a program for simulating the development of a poker (or sim-
plified poker) game among n players. Use ideas from Chapter 8.2.4.
Name of program file: poker.py. o
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Exercise 8.23. Write a non-vectorized version of a code.

Read the file birth_policy.py containing the code from Chap-
ter 8.3.4. To prove that you understand what is going on in this simula-
tion, replace all the vectorized code by explicit loops over the random
arrays. For such code it is natural to use Python’s standard random
module instead of numpy.random. However, to verify your alternative
implementation it is convenient to have the same sequence of random
numbers in the two programs. Therefore, use numpy’s random module,
but use it like the standard Python random module, i.e., draw real num-
bers one at a time instead of a whole array at once. Name of program
file: birth_policy2.py. o

Exercise 8.24. Estimate growth in a simulation model.

The simulation model in Chapter 8.3.4 predicts the number of indi-
viduals from generation to generation. Make a simulation of the “one
son” policy with 10 generations, a male portion of 0.51 among newborn
babies, set the fertility to 0.92, and assume that 6% of the population
will break the law and want 6 children in a family. These parameters
implies a significant growth of the population. See if you can find a
factor r such that the number of individuals in generation n fulfills the
difference equation

Tn=14+7)TH_1.

Hint: Compute r for two consecutive generations z,_1 and z, (r =
Zn/Tn—1—1) and see if r is approximately constant through the evolu-
tion of the generations. Name of program file: growth_birth_policy.py.
o

Exercise 8.25. Investigate guessing strategies for Ch. 8.4.1.

In the game from Chapter 8.4.1 it is smart to use the feedback from
the program to track an interval [p,q] that must contain the secret
number. Start with p = 1 and ¢ = 100. If the user guesses at some
number n, update p to n 4+ 1 if n is less than the secret number (no
need to care about numbers smaller than n + 1), or update ¢ ton — 1
if n is larger than the secret number (no need to care about numbers
larger than n — 1).

Are there any smart strategies to pick a new guess s € [p, ¢|? To an-
swer this question, investigate two possible strategies: s as the midpoint
in the interval [p, ¢, or s as a uniformly distributed random integer in
[p, q]. Make a program that implements both strategies, i.e., the player
is not prompted for a guess but the computer computes the guess based
on the chosen strategy. Let the program run a large number of games
and see if either of the strategies can be considered as superior in the
long run. Name of program file: strategies4guess.py. o
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Exercise 8.26. Make a vectorized solution to Exer. 8.7.

Vectorize the simulation program from Exercise 8.7 with the aid of
the module numpy . random and the numpy . sum function. Name of program
file: sum9_4dice_vec.py. o

Exercise 8.27. Compare two playing strategies.

Suggest a player strategy for the game in Chapter 8.4.2. Remove the
question in the player_guess function in the file src/random/ndice2. py,
and implement the chosen strategy instead. Let the program play a
large number of games, and record the number of times the computer
wins. Which strategy is best in the long run: the computer’s or yours?
Name of program file: simulate_strategiesl.py. o

Exercise 8.28. Solve Exercise 8.27 with different no. of dice.
Solve Exercise 8.27 for two other cases with 3 and 50 dice, respec-
tively. Name of program file: simulate_strategies?2.py. o

Exercise 8.29. FExtend FExercise 8.28.

Extend the program from Exercise 8.28 such that the computer and
the player can use a different number of dice. Let the computer choose
a random number of dice between 2 and 20. Experiment to find out if
there is a favorable number of dice for the player. Name of program
file: simulate_strategies3.py. o

Exercise 8.30. Compute w by a Monte Carlo method.

Use the method in Chapter 8.5.2 to compute m by computing the
area of a circle. Choose G as the circle with its center at the origin
and with unit radius, and choose B as the rectangle [—1,1] x [—1, 1].
A point (z,y) lies within G if 22 + 32 < 1. Compare the approximate
m with math.pi. Name of program file: MC_pi.py. o

Exercise 8.31. Do a variant of Exer. 8.30.

This exercise has the same purpose of computing 7 as in Exer-
cise 8.30, but this time you should choose G as a circle with cen-
ter at (2,1) and radius 4. Select an appropriate rectangle B. A point
(x,y) lies within a circle with center at (x.,y.) and with radius R if
(x — 2)? 4+ (y — ye)? < R% Name of program file: MC_pi2.py. o

Exercise 8.32. Compute w by a random sum.
Let zg,...,xy be N + 1 uniformly distributed random numbers be-

tween 0 and 1. Explain why the random sum Sy = Zf\;o 2(1 — 22)~t

(2
is an approximation to 7. (Hint: Interpret the sum as Monte Carlo in-
tegration and compute the corresponding integral exactly by hand.)
Make a program for plotting Sy versus N for N = 10%, k =
0,1/2,1,3/2,2,5/2,...,6. Write out the difference between Sjgs and

pi from the math module. Name of program file: MC_pi_plot.py. o
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Exercise 8.33. 1D random walk with drift.

Modify the walk1D.py program such that the probability of going to
the right is 7 and the probability of going to the left is 1 — r (draw
numbers in [0,1) rather than integers in {1,2}). Compute the aver-
age position of n, particles after 100 steps, where n,, is read from the
command line. Mathematically one can show that the average position
approaches rng — (1 — r)ng as n, — oo. Write out this exact result
together with the computed mean position with a finite number of
particles. Name of program file: walk1D_drift.py. o

Exercise 8.34. 1D random walk until a point is hit.

Set np=1 in the walk1Dv.py program and modify the program to
measure how many steps it takes for one particle to reach a given
point = z,. Give x, on the command line. Report results for x, =
5,50, 5000, 50000. Name of program file: walk1Dv_hit_point.py. o

Exercise 8.35. Make a class for 2D random walk.

The purpose of this exercise is to reimplement the walk2D.py pro-
gram from Chapter 8.7.1 with the aid of classes. Make a class Particle
with the coordinates (z,y) and the time step number of a particle as at-
tributes. A method move moves the particle in one of the four directions
and updates the (x,y) coordinates. Another class, Particles, holds a
list of Particle objects and a plotstep parameter (as in walk2D.py). A
method move moves all the particles one step, a method plot can make
a plot of all particles, while a method moves performes a loop over time
steps and calls move and plot in each step.

Equip the Particle and Particles classes with print functionality
such that one can print out all particles in a nice way by saying print
p (for a Particles instance p) or print self (inside a method). Hint:
In __str__, apply the pformat function from the pprint module to the
list of particles, and make sure that __repr__ just reuse __str__ in both
classes.

To verify the implementation, print the first three positions of four
particles in the walk2D.py program and compare with the correspond-
ing results produced by the class-based implementation (the seed of
the random number generator must of course be fixed identically in
the two programs). You can just perform p.move() and print p three
times in a verify function to do this verification task.

Organize the complete code as a module such that the classes
Particle and Particles can be reused in other programs. The test
block should call a run(N) method to run the walk for N steps, where N
is given on the command line.

Compare the efficiency of the class version against the vectorized
version in walk2Dv.py, using the techniques of Appendix E.6.1. Name
of program file: walk2Dc.py. o
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Exercise 8.36. Vectorize the class code from Exer. 8.35.

The program developed in Exercise 8.35 cannot be vectorized as
long as we base the implementation on class Particle. However, if we
remove that class and focus on class Particles, the latter can employ
arrays for holding the positions of all particles and vectorized updates
of these positions in the moves method. Use ideas from the walk2Dv.py
program to vectorize class Particle. Verify the code against walk2Dv.py
as explained in Exercise 8.35, and measure the efficiency gain over the
version with class Particle. Name of program file: walk2Dcv.py. o

Exercise 8.37. 2D random walk with walls; scalar version.

Modify the walk2D.py program or the walk2Dc.py program from Ex-
ercise 8.35 so that the walkers cannot walk outside a rectangular area
A = [z, xzg] X [y, ym]. Do not move the particle if the new position
of a particle is outside A. Name of program file: walk2D_barrier.py. ¢

Exercise 8.38. 2D random walk with walls; vectorized version.

Modify the walk2Dv.py program so that the walkers cannot walk out-
side a rectangular area A = [z, zg] X [yr, yg]. Hint: First perform the
moves of one direction. Then test if new positions are outside A. Such
a test returns a boolean array that can be used as index in the position
arrays to pick out the indices of the particles that have moved outside
A. With this array index, one can move all particles outside A back to
the relevant boundary of A. Name of program file: walk2Dv_barrier.py.
o

Exercise 8.39. Simulate the mixture of gas molecules.

Suppose we have a box with a wall dividing the box into two equally
sized parts. In one part we have a gas where the molecules are uniformly
distributed in a random fashion. At ¢t = 0 we remove the wall. The gas
molecules will now move around and eventually fill the whole box.

This physical process can be simulated by a 2D random walk inside
a fixed area A as introduced in Exercises 8.37 and 8.38 (in reality the
motion is three-dimensional, but we only simulate the two-dimensional
part of it since we already have programs for doing this). Use the
program from either Exercises 8.37 or 8.38 to simulate the process
for A =[0,1] x [0,1]. Initially, place 10000 particles at uniformly dis-
tributed random positions in [0,1/2] x [0,1]. Then start the random
walk and visualize what happens. Simulate for a long time and make a
hardcopy of the animation (an animated GIF file, for instance). Is the
end result what you would expect? Name of program file: disorder1.py.

Molecules tend to move randomly because of collisions and forces
between molecules. We do not model collisions between particles in the
random walk, but the nature of this walk, with random movements,
simulates the effect of collisions. Therefore, the random walk can be
used to model molecular motion in many simple cases. In particular,
the random walk can be used to investigate how a quite ordered system,
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where one gas fills one half of a box, evolves through time to a more
disordered system. o

Exercise 8.40. Simulate the mixture of gas molecules.

Solve Exercise 8.39 when the wall dividing the box is not completely
removed, but instead we make a small hole in the wall initially. Name
of program file: disorder2.py. o

Exercise 8.41. Guess beer brands.

You are presented n glasses of beer, each containing a different
brand. You are informed that there are m > n possible brands in
total, and the names of all brands are given. For each glass, you can
pay p euros to taste the beer, and if you guess the right brand, you get
q > p euros back. Suppose you have done this before and experienced
that you typically manage to guess the right brand 7" times out of 100,
so that your probability of guessing the right brand is b = 7'/100.

Make a function simulate(m, n, p, q, b) for simulating the beer
tasting process. Let the function return the amount of money earned
and how many correct guesses (< n) you made. Call simulate a large
number of times and compute the average earnings and the probability
of getting full score in the case m=n=4,p=3,¢=06,and b=1/m
(i.e., four glasses with four brands, completely random guessing, and a
payback of twice as much as the cost). How much more can you earn
from this game if your ability to guess the right brand is better, say
b =1/2? Name of program file: simulate_beer_tasting.py. o

Exercise 8.42. Simulate stock prices.
A common mathematical model for the evolution of stock prices can
be formulated as a difference equation

Tp = Tn_1+ Atpz, 1+ oxp_ 1V Atr, 1, (8.16)

where x,, is the stock price at time t,, At is the time interval between
two time levels (At = t, — t,—1), p is the growth rate of the stock
price, ¢ is the volatility of the stock price, and rg,...,r,_1 are nor-
mally distributed random numbers with mean zero and unit standard
deviation. An initial stock price xg must be prescribed together with
the input data u, o, and At.

We can make a remark that Equation (8.16) is a Forward Euler
discretization of a stochastic differential equation for x(t):

d
d;: = px + oN(t),
where N(¢) is a so-called white noise random time series signal. Such

equations play a central role in modeling of stock prices.
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Make R realizations of (8.16) for n = 0,..., N for N = 5000 steps
over a time period of T"= 180 days with a step size At = T'/N. Name
of program file: stock_prices.py. o

Exercise 8.43. Compute with option prices in finance.

In this exercise we are going to consider the pricing of so-called Asian
options. An Asian option is a financial contract where the owner earns
money when certain market conditions are satisfied.

The contract is specified by a strike price K and a maturity time
T. It is written on the average price of the underlying stock, and if
this average is bigger than the strike K, the owner of the option will
earn the difference. If, on the other hand, the average becomes less, the
owner recieves nothing, and the option matures in the value zero. The
average is calculated from the last trading price of the stock for each
day.

From the theory of options in finance, the price of the Asian option
will be the expected present value of the payoff. We assume the stock
price dynamics given as,

St+1) = (1+7)S(t) + oS(t)e(t), (8.17)

where r is the interest-rate, and o is the volatility of the stock price.
The time t is supposed to be measured in days, t = 0,1,2,..., while
€(t) are independent identically distributed normal random variables
with mean zero and unit standard deviation. To find the option price,
we must calculate the expectation

T
p=(1+r)TE [max (;;sw - K, 0)

The price is thus given as the expected discounted payoff. We will use
Monte Carlo simulations to estimate the expectation. Typically, r» and
o can be set to r = 0.0002 and ¢ = 0.015. Assume further S(0) = 100.

(8.18)

a) Make a function that simulates a path of S(¢), that is, the function
computes S(t) for t = 1,...,T for a given T based on the recursive
definition in (8.17). The function should return the path as an array.
b) Create a function that finds the average of S(¢) from ¢t = 1 to
t = T. Make another function that calculates the price of the Asian
option based on N simulated averages. You may choose T = 100
days and K = 102.

c¢) Plot the price p as a function of N. You may start with N = 1000.
d) Plot the error in the price estimation as a function N (assume
that the p value corresponding to the largest N value is the “right”
price). Try to fit a curve of the form ¢/+/N for some ¢ to this error
plot. The purpose is to show that the error is reduced as 1/ V/N.

Name of program file: option_price.py.
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If you wonder where the values for » and ¢ come from, you will
find the explanation in the following. A reasonable level for the
yearly interest-rate is around 5%, which corresponds to a daily rate
0.05/250 = 0.0002. The number 250 is chosen because a stock ex-
change is on average open this amount of days for trading. The value
for o is calculated as the volatility of the stock price, corresponding
to the standard deviation of the daily returns of the stock defined
as (S(t+ 1) — S(t))/S(t). “Normally”, the volatility is around 1.5%
a day. Finally, there are theoretical reasons why we assume that the
stock price dynamics is driven by r, meaning that we consider the risk-
neutral dynamics of the stock price when pricing options. There is an
exciting theory explaining the appearance of r in the dynamics of the
stock price. If we want to simulate a stock price dynamics mimicing
what we see in the market, r in Equation (8.17) must be substituted
with p, the expected return of the stock. Usually, p is higher than r. ¢

Exercise 8.44. Compute velocity and acceleration.

In a laboratory experiment waves are generated through the impact
of a model slide into a wave tank. (The intention of the experiment is
to model a future tsunami event in a fjord, generated by loose rocks
that fall into the fjord.) At a certain location, the elevation of the sur-
face, denoted by 7, is measured at discrete points in time using an
ultra-sound wave gauge. The result is a time series of vertical positions
of the water surface elevations in meter: n(tg), n(t1),n(t2),...,n(ty).
There are 300 observations per second, meaning that the time differ-
ence between to neighboring measurement values 7(t;) and n(t;+1) is
h = 1/300 second.

Write a Python program that accomplishes the following tasks:

1. Read A from the command line.
2. Read the 7 values in the file src/random/gauge.dat into an array
eta.

w

. Plot eta versus the time values.
4. Compute the velocity v of the surface by the formula

i1 — Mi—1
U = ) )

Plot v versus time values in a separate plot.
5. Compute the acceleration a of the surface by the formula

i=1,...,n—1.

M1 — 20 + M1
a; ~ h2 9

Plot a versus the time values in a separate plot.

i=1,...,n—1.

Name of program file: labstunamil.py. o
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Exercise 8.45. Numerical differentiation of noisy signals.

The purpose of this exercise is to look into numerical differentiation
of time series signals that contain measurement errors. This insight
might be helpful when analyzing the noise in real data from a labora-
tory experiment in Exercises 8.44 and 8.46.

1. Compute a signal

2
7 :Asin(%ti), ti=i—, i=0,...,200.

E)
Display 7; versus time ¢; in a plot. Choose A = 1 and T' = 27. Store
the 1 values in an array etabar.

2. Compute a signal with random noise F;,

n; = 1 + L,

E; is drawn from the normal distribution with mean zero and stan-
dard deviation o = 0.04A. Plot this 7; signal as circles in the same
plot as ;. Store the F; in an array E for later use.

3. Compute the first derivative of 7; by the formula

Ni+1 — Mi—1 )
Jor Z -l
2h b Z b

and store the values in an array detabar. Display the graph.
4. Compute the first derivative of the error term by the formula

coon—1,

Eiy1— FEi
2h ’

and store the values in an array dE. Calculate the mean and the
standard deviation of dE.
5. Plot detabar and detabar + dE. Use the result of the standard devi-
ation calculations to explain the qualitative features of the graphs.
6. The second derivative of a time signal 7; can be computed by

Nig1 —21; + i — 1
h? ’

Use this formula on the etabar data and save the result in d2etabar.
Also apply the formula to the E data and save the result in d2E. Plot
d2etabar and d2etabar + d2E. Compute the standard deviation of
d2E and compare with the standard deviation of dE and E. Discuss
the plot in light of these standard deviations.

Name of program file: sine_noise.py. o

Exercise 8.46. Model the noise in the data in Ezxer. 8.44.

We assume that the measured data can be modeled as a smooth
time signal 7j(¢) plus a random variation E(t). Computing the velocity
of n = 7+ E results in a smooth velocity from the 7 term and a noisy
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signal from the F term. We can estimate the level of noise in the first
derivative of E as follows. The random numbers E(t;) are assumed to
be independent and normally distributed with mean zero and standard
deviation . It can then be shown that

Eiy1— Ei
2h

produces numbers that come from a normal distribution with mean
zero and standard deviation 2~Y/2h 1. How much is the original noise,
reflected by o, magnified when we use this numerical approximation of
the velocity?

The fraction
Eiy1—2E,+E; 4

h2
will also generate numbers from a normal distribution with mean zero,
but this time with standard deviation 2h~2¢. Find out how much the
noise is magnified in the computed acceleration signal.

The numbers in the gauge.dat file are given with 5 digits. This is no
certain indication of the accuracy of the measurements, but as a test
we may assume o is of the order 1074, Check if the visual results for the
velocity and acceleration are consistent with the standard deviation of
the noise in these signals as modeled above. o

Exercise 8.47. Reduce the noise in Exer. 8.44.

If we have a noisy signal 7;, where ¢ = 0,...,n counts time levels,
the noise can be reduced by computing a new signal where the value
at a point is a weighted average of the values at that point and the

neighboring points at each side. More precisely, given the signal 7;,
(1)

i =0,...,n, we compute a filtered (averaged) signal with values 7,

by the formula
771(1) = i(nprl +2n; + 772‘*1)7 i1=1,...,n—1, 7751) = 7o, 777(11) =Mn-
(8.19)
Make a function filter that takes the n; values in an array eta as input
and returns the filtered 171(1) values in an array. Let ngk) be the signal
arising by applying the filtered function k times to the same signal.
Make a plot with curves 7; and the filtered ngk) values for k = 1, 10, 100.
Make similar plots for the velocity and acceleration where these are
made from both the original n data and the filtered data. Discuss the

results. Name of program file: labstunami2.py. o

Exercise 8.48. Find the expected waiting time in traffic lights.

A driver must pass 10 traffic lights on a certain route. Each light
has a period red—yellow-green-yellow of two minutes, of which the green
and yellow lights last for 70 seconds. Suppose the driver arrives at a
traffic light at some uniformly distributed random point of time during
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the period of two minutes. Compute the corresponding waiting time.
Repeat this for 10 traffic lights. Run a large number of routes (i.e.,
repetitions of passing 10 traffic lights) and let the program write out
the average waiting time. Does the computed time coincide with what
you would expect? Name of program file: waiting_time.py. o



