"Le ciel en rayons gamma visible par tous" Le projet COSMAX

Version v6 Novembre 2021

Benoit Lott, <u>lott@cenbg.in2p3.fr</u> Denis Dumora, <u>dumora@cenbg.in2p3.fr</u>

Centre d'Etudes Nucléaires de Bordeaux Gradignan IN2P3/CNRS - Université de Bordeaux

Introduction

Le projet Cosmax est basé sur l'utilisation des données du satellite spatial Fermi détectant des rayons gamma pour réaliser des cartes du ciel et mettre en évidence des événements cosmiques intéressants (sursauts solaires, sursauts gamma, éruptions de noyaux actifs de galaxie, novas...). Le but du projet est de sensibiliser le grand public aux phénomènes très violents de l'Univers, qui présentent tous des propriétés extraordinaires, et dont la grande variabilité temporelle (ou le caractère temporaire) de certains d'entre eux tranche avec l'apparente immuabilité du ciel communément observée.

Les rayons cosmiques détectés sur Terre constituent la preuve la plus directe (et historiquement la plus ancienne, puisque le centième anniversaire de leur découverte a été célébré en 2012) de l'existence d'«accélérateurs cosmiques» dans l'Univers. La nature de ces accélérateurs est restée longtemps un mystère, principalement parce que les rayons cosmiques sont défléchis de manière aléatoire dans les champs magnétiques omniprésents dans l'Univers. L'information associée à leur direction d'émission par rapport à la Terre est alors perdue.

Les rayons gamma constituent un moyen privilégiée d'étudier les accélérateurs cosmiques, qu'ils soient à l'origine des rayons cosmiques observés sur Terre ou non: ces rayons sont produits uniquement par des particules de très grande énergie interagissant avec la matière, des champs magnétiques ou des radiations de basse énergie (comme la lumière) et ne subissent pas de déflexion en traversant les champs magnétiques. Différentes classes d'accélérateurs ont ainsi été observés grâce aux rayons gamma incluant les pulsars, restes de supernova, binaires X, nova, novaux actifs de galaxie, sursauts gamma... Grâce à ses données d'une qualité exceptionnelle, le télescope Fermi-LAT (Large Area Telescope) a permis de faire un bond important dans notre connaissance de ces objets. La possibilité d'explorer de manière élémentaire des données du Fermi-LAT repose sur plusieurs caractéristiques particulières de ces données: elles sont publiques (ainsi que tous les outils d'analyse), couvrant tout le ciel (un balayage complet toutes les 3 heures), assez facile à comprendre (consistant en une simple liste de paramètres de photons: coordonnées dans le ciel, énergie, date de détection...) et disponibles rapidement (moins de 12 heures entre la détection et la mise à disposition sur internet). Il est ainsi possible pour des non-spécialistes de générer des cartes du ciel entier (ou de régions restreintes du ciel) telles que celles illustrant la plupart des communiqués de presse issus du Fermi-LAT, portant par exemple sur des événements éphémères particulièrement intéressants (par exemple des éruptions violentes de différentes sources). Des films illustrant l'évolution temporelle de ces événements peuvent être créées. Le ciel peut également être observé « en direct » en utilisant les toutes dernières données produites (la liste des sources variables détectées à un moment donné est affichée sur le blog de Fermi http://fermisky.blogspot.co.at/). L'évolution de la luminosité de ces phénomènes en fonction du temps peut également être suivie.

Les dernières nouvelles peuvent être consultées sur : https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/news.txt

Tutoriel de l'exploration des données du LAT

Contexte

- Le satellite Fermi orbite la Terre à une latitude 565 km, ce qui correspond à une période de 96.5 min. Il a été lancé par la NASA le 11 Juin 2008 (la mission s'appelait alors GLAST) et devrait continuer à prendre des données au moins jusqu'en 2016. Son instrument principal, le LAT (Large Area Telescope) détecte les rayons gamma dont l'énergie est supérieure à 30 MeV. Le champ de vue du LAT est de l'ordre de 20% du ciel à un moment donné. En mode de « balayage », il pivote sur son axe à chaque orbite pour couvrir alternativement les deux hémisphères du ciel et ainsi l'intégralité du ciel toutes les 3 heures. La couverture du ciel est approximativement uniforme à environ 30% près.
- Les rayons gamma sont détectés un photon à la fois, avec des techniques venant de la Physique des particules. Les photons sont rares: avec une surface d'environ 1 m² le LAT ne détecte en moyenne que 3 photons par seconde, alors que les rayons cosmiques détectés dans le même temps sont approximativement 1000 fois plus nombreux.
- Quand ils pénètrent dans le détecteur, la majorité des photons se convertissent en paires électrons-positons (une application de la fameuse formule d'Einstein E=mc²). La direction initiale et l'énergie du photon va être « reconstruite » grâce à des algorithmes sophistiqués à partir des signaux laissés par les électrons et positons dans les deux principaux éléments du LAT, appelés trajectographe et calorimètre. Un troisième élément, le bouclier d'anticoincidence permet de savoir si la particule ayant pénétré dans le LAT est chargée ou non, et ainsi de faire une discrimination entre rayons cosmiques (chargés) et rayons gamma (électriquement neutres).
- La précision avec le LAT peut mesurer la direction de provenance d'un photon (sa résolution angulaire) dépend fortement de l'énergie et varie entre 0.2° à haute énergie (au-delà de 10 GeV) et environ 5° à 100 MeV. Cela explique que même les sources ponctuelles apparaissent sous forme de taches étendues sur les cartes du ciel.
- Les données du LAT peuvent être téléchargées pour chaque semaine de la mission (à partir de la semaine 9, c'est-à-dire le début de la période opérationnelle du LAT en Aout 2008) à l'URL: <u>http://heasarc.gsfc.nasa.gov/FTP/fermi/data/lat/weekly/photon/</u>¹ Pour information, les fichiers contenant les paramètres du satellite, comme sa position, son orientation..., correspondants (optionnels pour la suite) sont téléchargeables à l'URL suivante: <u>http://heasarc.gsfc.nasa.gov/FTP/fermi/data/lat/weekly/spacecraft/</u>².
- Le temps de détection des photons est exprimé en «mission elapsed time » (MET), temps par rapport à un temps de référence fixé arbitrairement au 1^{er} Janvier 2001³.
- La direction de provenance des photons dans le ciel est exprimée en coordonnées célestes : ascension droite (notée RA), déclinaison (notée DEC) équivalents de la longitude et latitudes, le plan de référence étant également le plan de l'équateur, ou en coordonnées galactiques : longitude galactique, notée L, et latitude galactique, notée B (le plan de référence étant dans ce cas le plan de notre Galaxie).

¹ Un programme utilitaire, « fetch », installé sur la machine VMware permet de réaliser ce téléchargement automatiquement pour une semaine donnée. Note : Depuis 2020, ce programme récupère les données copiées au CENBG et non plus directement sur le site de la NASA, qui n'accepte plus le protocole initial.

² L'utilitaire « fetch_sat » permet de réaliser ce téléchargement automatiquement pour une semaine donnée.

³ Les utilitaires Date_to_MET and MET_to_Date permettent de convertir la date et l'heure (en temps universel) en MET et inversement.

Figure 1 Schéma éclaté du Fermi-LAT. Le télescpe est constitué de 16 éléments, composés chacun d'un trajectographe (partie supérieure) et d'un calorimètre (partie inférieure). Un système d'anticoincidence (tuiles en gris clair) entoure la partie supérieure et est recouverte d'un bouclier de protection contre les micro-météorites (en jaune).

Figure 2 Résultat de la simulation d'un photon de 5 GeV détecté par le LAT.

Installation de la machine virtuelle VMwarePlayer (utilisateurs Windows)

Configuration requise

- Windows XP ou version plus récente avec une connection internet.⁴

- version VmWare Player-5.x ou plus récente (gratuite pour Windows et linux),

http://www.vmware.com

- au moins 1Go de RAM pour la machine virtuelle (la mémoire peut être changée par le menu « Virtual Machine » puis « Virtual MachineSettings », « Memory » voir figure ci dessous)

- au moins 10 Go d'espace disque libre

- une résolution d'écran de 1280x1024 (qui peut être changée avec les privilèges « root »)

Téléchargement

- télécharger le fichier zippé https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/sl5.7z
- « dézipper » le fichier avec 7Zip (gratuit: http://www.7-zip.org/)
- télécharger la dernière version de VMwarePlayer pour Windows PC

Installation

- Installer VmwarePlayer
- Décompresser les fichiers .zip sous un répertoire
- Les fichiers .zip peuvent ensuite être effacés.

Utilisation

- Exécuter VMware Player pour ouvrir la machine virtuelle (ou double cliquer sur le fichier SL5.7.vmx). La première fois, si le message « Copied or Moved machine ?» apparait, cliquer sur « Copied ».

- Une fois la machine démarrée, vous avez accès à un vrai système SL5, avec le réseau internet si votre machine Windows est connectée.

- Ouvrir la session prédéfinie, nom: local1, mot de passe :local1
- Il est conseillé de taper la commande « update » deux fois cosécutives.

- L'analyse peut commencer.

Quelques informations pratiques :

- La configuration de la session est définie dans /home/local1/.ucshrc.

- Le mot de passe "root" est 'scilinux5.7'.

- On peut passer de la machine virtuelle à Windows en cliquant dans les fenêtres respectives.

- Il est possible de définir un répertoire d'échange entre Windows et la machine virtuelle Linux de la manière suivante :

Sur le menu de la machine virtuelle linux, sélectionner Player Manage (ou suivant les installations « Virtual Machine ») puis "Virtual Machine Settings" (ou alternativement cliquer sur la bande bleue labellée « SL5.7 VMWare Player » puis taper CTRL-D), puis "Options", "Shared Folders", s'assurer que l'option "Always enabled" est cochée, puis sélectionner "Add" et choisir un chemin de repertoire sous Windows avec un nom comme « Echanges » puis « Finish ». Le nom du répertoire apparait sous "Host Path". Cliquer sous OK (voir figure ci-dessous).

⁴ - Sur des PC anciens, la fonctionnalité « Virtualization Technology » peut ne pas être autorisée. Voir <u>http://www.sysprobs.com/disable-enable-virtualization-technology-bios</u> pour corriger ce problème.

	Virtual Machine Sett	ings	
- Dans votre session, le repertoire d'échange se trouve sous /mnt/hgfs/Echang e	Hardware Options Device Image: Memory Image: Processors Hard Disk (SCSI) CD/DVD (IDE) Floppy Network Adapter USB Controller Sound Card Printer Display	Summary 1 GB 1 12 GB Using file C:\Program Files\V Auto detect NAT Present Auto detect Present Auto detect	Device status Connected Connected Connect at power on Network connection Bridged: Connected directly to the physical network Replicate physical network connection state NAT: Used to share the host's IP address Host-only: A private network shared with the host LAN segment: LAN Segments Advanced
Figure 3. Page ''Hardware'' de la configuration de la machine virtuelle (Vrtual Machine Settings).		Add Remove	OK Cancel Help

Settings	Summary	Folder sharing
∭General ▶ Power	SL5.7	Shared folders expose your files to programs in the virtual machine. This may put your computer and your data at risk. Only enable shared folders if you
Shared Folders	Enabled	trust the virtual machine with your data.
WWware Tools	Default	O Disabled
Unity	NICK CASE OFFICE	Always enabled
Autologon	Not supported	Enabled until next power off or suspend
		Folders
		Name Host Path
		Add Remove Properties

Figure 4. Page "Options" de la configuration de la machine virtuelle (Virtual Machine Settings)

Installation de la machine virtuelle Linux VirtualBox sur un PC Windows PC ou un Mac

Configuration requise

- Une connection internet fonctionnelle.

- au moins 1Go de RAM pour la machine virtuelle (la mémoire peut être changée par le menu « Configuration» puis « System »)

- au moins 12 Go d'espace disque libre

- une résolution d'écran de 1280x1024 (qui peut être changée avec les privilèges « root »)

Téléchargement

- télécharger le fichier cosmax_VB.ova

(https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/cosmax_VB.ova)

- télécharger la dernière version de VirtualBox (<u>https://www.virtualbox.org/</u>) pour votre machine.

Installation

- Installer VirtualBox
- Executer VirtualBox
- Dans le menu Fichier, cliquer sur "Importer un appareil virtuel"
- Entrer le chemin vers le fichier cosmax_VB.ova

Utilisation

- Démarrer la machine virtuelle cosmax_VB en cliquant sur le bouton ON-OFF.

- Une fois la machine est démarrée, vous avez accès à une machine linux SL5 complète, avec accès internet si votre machine hôte machine est connectée.

- Ouvrez une session utilisateur, username: local1, password :local1

- Il est conseillé de taper la commande « update » deux fois cosécutives.

- L'analyse peut débuter.

Quelques informations pratiques:

- Le fichier d'environnement est /home/local1/.ucshrc.

- Le mot de passe "root" est 'scilinux5.7'.

- On peut passer de la machine virtuelle à la mchine hôte en cliquant dans les fenêtres respectives.

- Il est possible de definer un repertoire d'échange entre la machine hôte et la machine Linux virtuelle machine comme suit :

Dans le menu « Configuration" de la machine virtuelle Linux, sélectionner "Shared Folders", puis "Add" dans "Permanent Files". Choisir un répertoire existant sur votre machine hôte (appelé « Echanges » dans la suite) et cocher les cases "Montage automatique" et "Configuration permanente"

(voir figure ci-dessous)

- Dans votre session Linux, le repertoire d'échange sera /media/sf_Echanges (dans notre exemple).

Figure 5. Configuration de VirtualBox

Général	Dossiers par	tagés		
Système	Liste des dossiers -			
Affichage	Nom	Chemin	Montage automatiqu	Accès
Stockage	Echanges	D:\Echanges	Oui	Plein
 Son Réseau Ports séries USB 	Chemin du do	un dossier partagé		
Dossiers partagés Interface utilisateur		 Montage automatique Configuration permanente 		

Figure 6. Configuration de répertoire partagé pour VirtualBox

Installation des outils sous Linux (utilisateurs Linux)

Les utilisateurs voulant travailler sous leur environnement Linux peuvent installer directement les outils sans passer par la machine virtuelle. La description de l'installation est donnée dans le fichier https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/README.txt, reproduit ci-dessous.

- créer un répertoire d'accueil (appelé par exemple /xxxx/cosmax)
- télécharger le fichier https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/cosmax_linux.tar.gz dans ce répertoire
- décompresser le fichier: tar -xfz cosmax_linux.tar.gz
- assigner la variable d'environnement COSMAX au chemin du répertoire d'accueil: si le shell est csh
 - o setenv COSMAX /xxxx/cosmax
 - o source setup.csh
- si le shell est sh
 - o export COSMAX=/xxxx/cosmax
 - o source setup.sh
- tester si python et root sont installés:
 - o which python
 - o which root
- Si les deux commandes précédentes donnent des résulats positifs, le programme est prêt.
- Les scripts pouvant ne pas être à jour, faire :
 - o update
 - Si cette commande est inconnue (message: « command not found »),

faire

- o wget <u>https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/update/update.p</u> y
- o python update.py

Préambule

Il n'est pas nécessaire de maîtriser linux (ou UNIX) pour ce projet, cependant la connaissance de commandes simples telles que cd (change de répertoire courant), ls (liste les fichiers du répertoire), cp (copie un fichier), mv (renomme ou déplace un fichier), rm (efface un fichier)... simplifiera grandement la vie de l'utilisateur.

IMPORTANT : si les fonctionnalités décrites ci-dessous ne fonctionnent pas, l'installation peut ne pas être à jour. Pour cela entrer la commande :

➤ update

Si le problème persiste ou en cas de message d'erreur, faire :

```
➢ rm −f update.py
```

```
> wget https:/heberge.cenbg.in2p3.fr/ftp/astropart/VM/update/update.py
> update
```

Si cette dernière commande est inconnue (message: command not found), faire:

> python update.py

Données

Les fichiers hebdomadaires de données du LAT, de format fits, sont stockés dans le répertoire *fits_file* par défaut. **Note :** Un autre répertoire de destination peut être choisi grâce à la variable d'environnement DATAFILE_DIR.

> setenv DATAFILE_DIR #repertoire_de_destination

Les fichiers de données se présentent sous la forme :

lat_photon_weekly_wxxx_pyyy_vzzz_filt.fits où xxx est le numéro de la semaine et yyyy et zzz sont des numéros de version définies par la NASA. Du fait de leur taille, seuls quelques fichiers sont préinstallés sur la machine. Les autres fichiers peuvent être téléchargés individuellement (voir section suivante). La liste des fichiers disponibles sur la machine est obtenue avec

➤ ls fits_file

ou alternativement par :

➢ ls \$DATAFILE_DIR

si DATAFILE_DIR a été défini (voir ci-dessus).

Les fichiers des paramètres du satellite sont stockés par défaut dans le répertoire fits_file_sat. De manière analogue au répertoire de données, un autre répertoire où les nouvelles données seront téléchargées peut être choisi grâce à la variable d'environnement SATFILE_DIR.

setenv SATFILE_DIR #repertoire_de_destination

La liste des fichiers de données du satellite disponibles est obtenue avec

```
➢ ls fits_file_sat
```

ou alternativement par :

 \succ ls \$SATFILE_DIR

si SATFILE_DIR a été défini.

Télécharger un fichier hebdomadaire pour une date donnée

Convertir la date en MET, ce qui donne également la semaine correspondante.

Date_to_MET heure minute seconde jour mois année

Exemple

Date_to_MET 0 0 0 16 9 2008 2008-09-16 00:00:00

MET: 243216000 semaine: 15

Le fichier de données est téléchargé (si la liaison internet fonctionne) grâce à la commande :

➤ fetch #semaine

Exemple : fetch 15

Cette commande télécharge dans un premier temps le fichier lat_photon_weekly_wxxx_pyyy_vzzz.fits et en élimine certains photons qui proviennent essentiellement du bruit de fond (condition « zenith_angle>100 »). Le nouveau fichier s'appelle lat_photon_weekly_wxxx_pyyy_vzzz_filt.fits et est utilisé par la suite, alors que le fichier original lat_photon_weekly_wxxx_pyyy_vzzz.fits est effacé pour économiser de l'espace sur le disque.

Les données de plusieurs semaines consécutives peuvent téléchargées grâce à :

▶ fetch #semaine_initiale-#semaine_finale

Ex : *fetch 120-122*

On peut récupérer les données de la semaine actuelle avec la commande :

➢ fetch current

Lors du téléchargement, le nom du fichier est affiché et l'on peut voir les valeurs de yyy et zzz dans le nom du fichier (comme p202 pour yyy et 001 pour zzz par exemple). Le nom du fichier peut être obtenu après téléchargement avec la commande *ls* comme décrit ci-dessus.

Les données du satellite (uniquement nécessaires dans l'utilisation des commandes create_exposure, create_light_curve et create_spectrum ci-dessous) peuvent être téléchargées par :

▶ fetch_sat #semaine

ou

fetch_sat #semaine_initiale-#semaine_finale

Exploration des données

Ouvrir un des fichiers de données hebdomadaires (ici pour la semaine 15) avec le programme fv⁵ (« fits viewer ») :

fv fits_file/lat_photon_weekly_w015_pyyy_vzzz_filt.fits

Onen Ele	File Edit	Tools								Help
SkyView	Index	Extension	Туре	Dimension			View			
Catalogs	0	Primary	Image	0	Header	lma	ige	Т	able	
VizieR	1	EVENTS	Binary	22 cols X 282496 rows	Header	Hist	Plot	AL	Select	1
Connect to Hera	2	GTI	Binary	2 cols X 108 rows	Header	Hist	Plot	41	Select	1
Display Device					neauer	Hist	HOU	~	Jelect	
File Summary Header										
File Summary Header Table Image Table Vector Table				Elle Edit View 225 13:31	<u>T</u> erminal history	local Ta <u>b</u> s gre	1@loc Help	alhos	t:/home	2/10
File Summary				Ele Edit View 225 13:31 <226>local1:00 <227>local1:10	Terminal history calhost.lo calhost.lo	local Ta <u>b</u> s gre pcaldo	1@loc <u>H</u> elp p cp main% main%	cp s	t:/home un.jpg its_fil	//00 /mn e/l
File Summary				Ele Edit View 225 13:31 <226:local1:lo <227:local1:lo /home/local1 fits_file/lat	Terminal history calhost.lu calhost.lu photon_wee	local Ta <u>b</u> s gre ocaldo ocaldo	1@loc Help p cp main% main%	alhos cps lsf 130_v	t:/home un.jpg its_fil 001.fit	//o /mn e/l s
File Summary , , , , , , , , , , , , , , , , , , ,				Ele Eatt View 225 13:31 <226>local1:lo <227>local1:lo /home/local1 fits_file/lat fits_file/lat	<u>T</u> erminal history calhost.lo calhost.lo photon_wee photon_wee	local Tabs gre ocaldo ocaldo ekly_w ekly_w	1@loc Help p cp main% main% 010_p 015_p 015_p	alhos cps lsf 130_v 130_v	t:/home un.jpg its_fil 001.fit 001_fil 001_fil	/mn e/lo s t.f
File Summary				Bie Edit Yew 225 13:31 <226>localling <226>localling /home/locall fits file/lat fits file/lat fits file/lat fits file/lat	<u>Terminal</u> history calhost.lu calhost.lu photon_we photon_we photon_we	local Tabs gre ocaldo ocaldo ekly_w ekly_w ekly_w	1@loc <u>H</u> elp main% main% 010_p 015_p 015_p	alhos cp s ls f 130_v 130_v 130_v 130_v 130_v	un.jpg its_fil 001.fit 001_fil 001.fit 001_fit	///c /mr e/1 s t.1 s

Les deux panneaux grisés representés ci-contre apparaissent. Le panneau horizontal correspond au contenu du fichier ouvert. Sur la ligne Index=1 (Extension=EVENTS), cliquer sur « All ».

Figure 7 Menus de fv

⁵ http://heasarc.gsfc.nasa.gov/ftools/fv/tutorial/fv_guide.html

Les données apparaissent sous forme d'une table, où chaque ligne correspond à un photon, et les différentes colonnes à ses paramètres, dont la description est donnée dans « Header »: Energy (énergie en MeV), RA (ascension droite), DEC (déclinaison), L (longitude galactique), B (latitude galactique), ..., TIME (temps de détection en MET),..., ainsi que d'autres paramètres annexes, nécessaires pour une analyse plus précise que celle présentée ici. Il est possible de créer des histogrammes de ces différents paramètres en cliquant sur Hist, puis sélectionner le paramètre désiré.

Les analyses simples présentées dans la suite font appel aux seuls paramètres Energy, RA, DEC (ou alternativement L et B) et TIME.

ven File	File Edit	Tools								H
vView	Index	Extension	Extension Type Dimension			View				
, talogs	0	Primary	Image	e O		Header Image		f a	able	1
zieR	- 1	EVENTS	Binary	22 cols X 28249	6 rows		End Dave	0	Onland	1
nnect to Hera			,		_	neader	iist Piut		Select	1
	2	GII	Binary	2 COIS X 108	rows	Header H	list Plot	All	Select	
spiay Device	E fwr Bin	ary Table of lai	t photon wee	kly w015 n13	0 VOOT 605 6	telll in /	home/lr	call/fi	te f 🗌	6
le All Windows		ary rable of fa	photon_wee	kly_wors_pro		cafe1 un /	nonne/re	Jean 1/1		
e Summary	File Edit	10015								н
ader 🖓	8	_ ENERGY	_ RA	_ DEC	L	1	в	TH	IETA	
ble 🗸	Select	E	E	E	E	E		E		
nage Table	_ All	MeV	deg deg		deg	de	g	deg		
ctor Table	Invert	Modify	Modify	Modify	Modify	Mod	lify	Mod	lify	
	1	5.948376E+02	3.190671E+02	-3.705634E+01	6.410967E+0	-4. 3974	06E+01	7.0438	32E+01	I
eference	2	3.559989E+02	5.263270E+01	2.587974E+01	1.622107E+0	2 -2.4607	32E+01	4.0785	84E+01	1
	3	4.958988E+02	3.013696E+02	3.537136E+01	7.224776E+0	1 1.9232	293E+00	6.5504	76E+01	
pboard	4	2.561439E+02	4.725511E+00	6.717871E+01	1.197768E+0	2 4.5065	52E+00	5.3329	01E+01	
la.	5	3.140352E+02	3.761794E+01	-4.568155E+01	2.628327E+0	2 -6.2983	19E+01	6.4285	06E+01	
-in-	6	4.192114E+02	5.025957E+01	5.157824E+01	1.451875E+0	2 -4.7108	41E+00	4.8502	83E+01	
ni.	7	2.660367E+02	7.625768E+01	3.367800E+00	1.969225E+0	2 -2.1780	014E+01	6.4501	30E+01	
	8	7.746436E+02	4.434700E+01	2.130900E+01	1.582946E+0	2 -3.2775	52E+01	3.1531	18E+01	
	9	4.046572E+02	6.938319E+01	3.018223E+01	1.702534E+0	2 -1.1251	.00E+01	5,4696	25E+01	
	10	1.369719E+02	5.213140E+01	3.194742E+01	1.578145E+0	2 -2.0080	077E+01	4.0408	37E+01	
	11	3.997244E+02	3.530521E+02	1.858325E+01	9.797916E+0	1 -4.0418	33E+01	1.8910	41E+01	
	12	1.658488E+02	3.066959E+02	4.506220E+01	8.256982E+0	1 3.9410	032E+00	6.2776	95E+01	
	13	4.585629E+03	1.083242E+01	3.266071E+01	1.209584E+0	2 -3.0179	991E+01	1.8320	21E+01	
	14	3.793775E+02	4.164798E+01	1.037430E+01	1.634978E+0	2 -4.3245	23E+01	2.8751	99E+01	
	15	1.526924E+02	3.383994E+02	1.378288E+01	7.933768E+0	1 -3.7160	058E+01	3.3074	20E+01	
	16	1.013430E+02	3.353424E+02	1.529149E+01	7.774402E+0	1 -3.4101	.94E+01	3.5916	10E+01	
	17	1.856867E+02	3.167148E+01	2.925471E+01	1.420531E+0	2 -3.0807	77E+01	2.2869	78E+01	
	18	2.878818E+02	3.101717E+02	3.919566E+01	7.939149E+0	1 -1.6222	287E+00	5.9840	22E+01	
	19	5.396586E+02	3.551581E+02	5.789342E+01	1.136128E+0	2 -3.6914	28E+00	4.5324	73E+01	
	20	2.429480E+02	5.011462E+01	5.818341E+01	1.415458E+0	8.0265	58E-01	5.1258	24E+01	1

Figure 8 Menus et table « EVENTS » visualisée par fv

Réalisation d'une carte du ciel utilisant une semaine de données

La commande :

create_map #semaine (option)

crée une carte du ciel (enregistrée dans le fichier counts_map_#semaine_option.fits) pour la semaine entière sélectionnée (notée '#semaine') pour une projection (notée 'option') parmi trois possibles: cel, gal et ait (voir ci-dessous).

Ces cartes peuvent être visualisées avec la commande ds9⁶

ds9 -cmap b -scale log -zoom to fit counts_map_#semaine_option.fits

Option 'cel'

La carte (exemple ci-dessous) est en coordonnées célestes et en projection cartésienne. L'échelle de DEC (ordonnée) s'étend de -90° à +90°. L'échelle en RA (abscisse) décroit de 180° à -180°, de telle sorte que le point RA=0, DEC=0 (appelé point vernal, position apparente du Soleil à l'équinoxe de printemps) soit au centre de la figure. Le plan de la Galaxie forme une courbe en cloche. Cette projection ne conserve pas les superficies, les zones situées près des pôles étant très dilatées par rapport à celles proches de l'équateur.

Option 'gal'

La carte (exemple ci-dessous) est en coordonnées galactiques et en projection cartésienne. L'échelle en B (ordonnée) s'étend de -90° à +90°. L'échelle en L (abscisse) décroit de 180° à -180°, de telle sorte que le point L=0, B=0 (le centre galactique) soit au centre de la figure. Le plan de la Galaxie s'étend le long de l'axe B=0. Cette projection ne conserve pas les superficies, les surperficies près des pôles étant très dilatées par rapport à celles près de l'équateur. Ce type de cartes peut être utilisée pour trouver les coordonnées (L,B) de sources brillantes en utilisant le curseur dans ds9.

⁶ http://hea-www.harvard.edu/RD/ds9/ref/

Option 'ait'

La carte (exemple ci-dessous) est en coordonnées galactiques et en projection Hammer-Aitoff. Certaines courbes à L et B constants sont représentées. Cette projection conserve les superficies, d'où son utilisation très courante en astronomie.

La commande suivante a été utilisée :

Is ds9 -cmap b -scale log -zoom to fit -grid yes -grid view axes tickmarks no -grid skyformat degrees -grid format1 d.0 -grid format2 d.0 -wcs galactic -file counts_map_015_ait.fits -regions load all bright_sources.reg

Figure 11 Carte en projection Hammer-Aitoff et en coordonnées galactiques. La position de sources brillantes a été ajoutée (3 pulsars, dans le plan galactique et 5 blazars, en dehors).

Création d'une carte du ciel avec sélection

La commande :

create_map #semaine option time_min time_max ra dec r emin emax permet de créer une carte où les photons ont été sélectionnés :

- en temps d'arrivée, compris entre time_min et time_max, exprimés en MET (ces temps doivent être compris dans les limites de la semaine sélectionnée ; note : entrer time_min=0 et time_max=0 permet de sélectionner tous les photons du fichier).
- en position, dans une région du ciel circulaire centrée au point de coordonnées (RA, DEC) et de rayon r
- en énergie entre emin et emax, exprimés en MeV.

Ex : create_map 256 ait 388727100 388799100 173.1 27.7 15

crée la carte de la semaine 256 entre les temps t=388727100 et t=388799100 d'une région centrée sur les coordonnées RA=173.1, DEC=27.7 et de rayon 15 (sursaut gamma GRB 130427A).

En plus du fichier counts_map_#semaine.fits visualisable avec ds9, un fichier des photons sélectionnés est créé sous le nom lat_photon_weekly_w#semaine_pyyy_vzzz_temp.fits

Création d'un film d'animation illustrant l'évolution temporelle d'une source

La commande :

create_movie #semaine option time_min time_max delta_t (ra dec r emin emax delai)

permet de créer une animation

où le temps d'arrivée des photons est compris entre time_min et time_max, exprimés en MET (ces temps doivent être compris dans les limites de la semaine sélectionnée ; note : entrer time_min=0 et time_max=0 permet de sélectionner tous les photons du fichier) et delta_t est la période couverte par chaque image (en seconde). Le paramètre delai est le temps entre deux images dans l'animation (défaut : 0.05 s).

Note : Plusieurs semaines consécutives peuvent être combinées en remplaçant #semaine par #semaine_initiale-#semaine_finale.

Des sélections optionnelles peuvent être réalisées :

- en position, dans une région du ciel circulaire centrée au point de coordonnées (RA, DEC) et de rayon r ;
- en énergie entre emin et emax, exprimés en MeV.

Ex : create_movie 256 ait 388727100 388799100 3600 173.1 27.7 15

Le fichier résultant, en format « gif animé», est stocké sous movie/mov_#semaine.gif (ou movie/mov_#semaine_initiale-#semaine_finale.gif). Il peut être visualisé par exemple avec firefox :

firefox movie/mov_#semaine.gif

Des exemples sont donnés ci-dessous pour le sursaut gamma et l'éruption solaire.

Création d'une courbe de lumière illustrant l'évolution temporelle d'une source La commande :

create_light_curve #semaine fichier_de_sortie time_min time_max delta_t (ra dec r emin emax)

permet de créer une courbe de lumière (variation du flux d'une source en fonction du temps)

- où le temps d'arrivée des photons est compris entre time_min et time_max, exprimés en MET (ces temps doivent être compris dans les limites de la semaine sélectionnée ;

note : entrer time_min=0 et time_max=0 permet de sélectionner tous les photons du fichier) et delta_t est le pas en temps (en seconde).

Note : Plusieurs semaines consécutives peuvent être combinées en remplaçant #semaine par #semaine_initiale-#semaine_finale.

Important : les fichiers du satellite pour toutes les semaines doivent aussi être disponibles (obtenu par fetch_sat #semaine), afin de calculer l'exposition et d'accéder au flux à partir du nombre de photons.

Des sélections optionnelles peuvent être réalisées :

- en position, dans une région du ciel circulaire centrée au point de coordonnées (RA, DEC) et de rayon r ;
- en énergie entre emin et emax, exprimés en MeV.

Le fichier résultant (fichier_de_sortie) est en format texte : temps, delta_t,flux, erreur sur le flux

Description de la carte du ciel

Les photons proviennent essentiellement de quatre composantes :

- le **fond diffus d'émission galactique**, principalement dû à l'intéraction des rayons cosmiques avec la matière de la galaxie (gaz, poussière); il contribue à rendre le plan de la Galaxie si visible ;
- le **fond diffus isotrope** (c'est-à-dire spatialement uniforme) dont l'origine est incertaine; Il est peut-être constitué de différentes composantes, certaines connues (noyaux actifs de galaxie non résolus), d'autres plus hypothétiques (autres types de galaxie, matière noire).
- un bruit de fond instrumental résiduel, correspondant à des particules différentes des rayons gamma cosmiques, qui sont mal identifiées et passent « à travers les mailles » des outils de rejection. Ce bruit de fond est plus ou moins uniforme comme le précédent. Pour la plupart des applications pratiques ils sont considérés comme une composante unique et non séparément ;
- des sources ponctuelles, soit galactiques: pulsars, nébuleuses de pulsars et autres restes de supernova, binaires X, amas globulaires, soit extragalactiques : noyaux actifs de galaxie et sursauts gamma. Le catalogue le plus récent, publié en 2012 et établi avec 2 ans de données compte 1873 sources. Les trois sources les plus brillantes, qui ont une luminosité constante (ou quasi-constante) sont des pulsars: les pulsars de Vela, Geminga et du Crabe. Ils produisent une émission pulsée avec des périodes de 89 ms, 237 ms et 33 ms respectivement, avec très peu de photons au-delà de 10 GeV (10000 MeV), comme le montre la carte ci-dessous réalisée avec des photons au-delà de ce seuil.

Figure 12 Carte en projection Hammer-Aitoff et en coordonnées galactiques, pour des photons d'énergie supérieure à 10 GeV.

Eruption majeure de 3C 454.3

3C 454.3 est le plus brillant du millier de blazars détectés par le LAT. Les blazars sont des radiogalaxies (appartenant à la classe des galaxies actives) qui présentent un jet relativiste, émanant des régions proches d'un trou noir supermassif central (qui a une masse supérieure à 100 milions de masses solaires) et qui est dirigé vers la Terre. Cette caractéristique rend la source très lumineuse et très variable, l'émission étant produite dans un cône étroit de quelques degrés d'ouverture. Situé à 7.2 milliards d'années lumière, 3C 454.3 a montré plusieurs éruptions majeures depuis la mise en service de Fermi en Août 2008, dont la plus spectaculaire a eu lieu entre le 17 et 22 Novembre 2010 (semaine 129). La source, de coordonnées galactiques L= 86.1, B=-38.2, était la plus brillante du ciel dans cette période.

Figure 13 Carte obtenue avec le fichier de la semaine 129. 3C 454.3 est apparent à (L,B)= (86.1, 38

La variation de luminosité de ce blazar est spectaculaire comme l'illustre la figure ci-dessous (couvrant d'Aout 2008 à Décembre 2010). Le flux Vela, la source habituellement la plus brillante du ciel est représenté par la ligne en pointillé. Chaque fois que le flux de 3C 454.3 dépasse cette valeur, elle devient la star du ciel en rayons gamma.

Un sursaut gamma très brillant

Le sursaut gamma GRB 080916C, correspondant probablement à l'explosion d'une étoile très massive en fin de vie, a été détecté le 16 Septembre 2008 à 0H13 UT et a duré 23 minutes. La distance estimée de l'explosion est de 12.2 milliards d'années lumière. Sa luminosité exceptionnelle correspondait à celle de 9000 supernovae.

http://www.nasa.gov/mission_pages/GLAST/news/high_grb.html

http://en.wikipedia.org/wiki/GRB_080916C

http://www.science20.com/news_releases/grb_080916c_most_extreme_gammaray_blast_ever we_know_about

La carte suivante (créée avec > *create_map 15 ait 243216000 243219600 120 - 56 15*) illustre la détection de cet événement.

On peut explorer l'évolution temporelle de cet événement rare :

➢ fv fits_file/lat_photon_weekly_w015_pyyy_vzzz_temp.fits

puis cliquer sur Hist, paramètre X: TIME, limites Min=243216000 Max=243219600 Bin Size=50

ou bien

hist #file_name TIME (nombre_de_canaux)

où nombre_de_canaux est un paramètre optionnel (défaut: 100) et définit la taille de l'histogramme.

Voir https://heberge.cenbg.in2p3.fr/ftp/astropart/VM/mov_015.gif pour un exemple d'animation sur ce sursaut gamma (créé par :

create_movie 15 ait 243216000 243219600 300 120 -56 15)

Figure 16 Distribution du temps d'arrivée des photons pendant l'heure où a eu lieu GRB080916C

Une éruption solaire majeure

Cette éruption, la plus violente jamais observée avec des rayons gamma, a eu lieu le 6 Mars 2012 (semaine 196). La carte ci-dessous montre comme le soleil est visible ($L \sim 80^{\circ}, B \sim -60^{\circ}$) pendant cette période.

Figure 17 Carte du ciel montrant l'éruption solaire la plus brillante enregistrée par Fermi.

Voir https://heberge.cenbg.in2p3.fr/<u>ftp/astropart/VM/mov_196.gif</u> pour un exemple d'animation sur cette éruption (une image correspondant à 3h, la durée totale couvrant une semaine; créé par :

create_movie 196 cel 0 0 11580 348 -5 15)

La nébuleuse du Crabe en éruption

La nébuleuse du Crabe (M1) est un reste de supernova abritant un pulsar. Ce pulsar génère un vent de particules qui alimente en énergie la nébuleuse environnante, constituée par l'interaction de la matière éjectée lors de l'explosion avec le milieu interstellaire. L'explosion date du 4 Juillet 1054 et a été reportée par les astronomes chinois de l'époque. Le pulsar et la nébuleuse émettent à la fois en rayons gamma. Sur les images produites avec le Fermi-LAT, il n'est pas possible de les distinguer spatialement bien que la nébuleuse soit étendue (6'x 4') car la résolution angulaire de l'instrument n'est pas suffisante. L'émission du pulsar est (quasi-)périodique avec une période de 33 ms alors que celle de la nébuleuse est continue. On a longtemps cru que l'émission de la nébuleuse ne variait que sur des échelles temporelles très longues (des dizaines d'années), à telle point qu'elle était considérée comme la « chandelle standard » de l'Astronomie Gamma. On sait depuis 2009 que cette émission peut en fait varier sur des périodes beaucoup courtes de l'ordre d'une journée ou moins. Les propriétés de la zone émettrice (beaucoup plus petite que la nébuleuse entière) et les processus responsables de cette activité rapide restent très mal compris. Les figures ci-dessous montrent une région du ciel centrée sur la nébuleuse pour les semaines 196 (activité normale, en haut) et 248 (éruption, en bas). La source de gauche est le pulsar Geminga, qui sert de référence : habituellemet plus brillant que la nébuleuse du Crabe (figure du haut), il l'est moins dans la période d'éruption. Les projections sur l'axe horizontale (longitude galactique, L, avec le

sens de l'axe inversé, Geminga apparaissant à droite du Crabe) sont présentées dans les figures de droite.

Utilisation du « blog de Fermi »

Pour (presque) chaque semaine, il est possible de consulter quelles sources variables ont été particulièrement actives grâce au « blog de Fermi ». Ce blog est un service offert à la communauté scientifique et est actualisé par des membres de la collaboration appelés « les défenseurs des éruptions » (« Flare advocates »). Pour une semaine donnée, taper :

➢ blog #semaine

pour visualiser le blog de la semaine concernée (en anglais...) via Firefox. Un exemple est donnée ci-dessous pour la semaine 196.

La commande « blog » crée également un fichier des positions des sources mentionnées dans le blog qui seront automatiquement superposées aux cartes créées ultérieurement par « create_map » (uniquement avec l'option 'ait') pour la semaine considérée.

Au-delà de la création de cartes, pour ceux qui en veulent plus...

Les cartes présentées ci-dessus mettent en oeuvre le simple comptage de photons. Les grandeurs physiques caractérisant une source que l'on cherche à déterminer sont le flux de photons (unité: photons/cm²/s), le flux d'énergie (unité: erg/cm²/s), et la distribution en énergie (appelée spectre) des photons issus de la source. Le spectre en rayons gamma est utilisé conjointement avec les spectres obtenus dans d'autres domaines du spectre électromagnétiques (radio, micro-onde, infrarouge, visible, ultraviolet, rayons X, rayons gamma de basse ou de très haute énergie) pour être comparé aux prédictions de modèles et ainsi établir quels sont les processus d'émission, les propriétés des particules émettrices et celles de l'environnement (incluant la matière, les rayonnements, le champ magnétique...) du site d'émission.

De manière très simplifiée, le nombre de photons collectés N est égal à :N = F x S x T où F est le flux de la source, S l'aire de collection (appelée surface effective) et T le temps de collection. Dans le cas du Fermi-LAT, S dépend de l'énergie et n'est pas constante en fonction du temps, puisque l'instrument balaye le ciel continuement : S varie fortement avec l'angle θ entre l'axe de l'instrument et la direction de la source dans le ciel. On appelle exposition, A, le produit S x T (plus exactement $A = \int S(\theta(t))dt$, où l'angle $\theta(t)$ varie avec le temps. C'est la même notion qui apparaît en photographie, l'exposition d'une photo dépendant du diaphragme, qui est proportionnel au rayon de l'ouverture dans laquelle passe la lumière, et le temps de pose.

Une carte d'exposition (pour des phtons d'énergie 1 GeV) peut être créée (après que les commandes fetch et fetch_sat aient été executées pour la semaine considérée) par la commande :

create_exposure #semaine

La carte se trouve dans le fichier: figures/expo_aitoff_#semaine.gif Un exemple est donné ci-dessous.

Le *nombre différentiel* de photons par unité d'énergie est : $N(E) = F(E) \times A(E)$ et le nombre total de photons attendu devient: $N = \int F(E)A(E)dE$. Dans l'analyse standard du Fermi-LAT, on définit une région du ciel centrée sur la source avec un rayon typique de 10 degrés, et on ajuste les paramètres d'un modèle qui prend en compte toutes les sources et composantes

diffuses contribuant aux photons de cette région. Cette analyse tient compte de l'étalement de la direction des photons dûe à l'imperfection de l'instrument (« résolution angulaire », qui dépend fortement l'énergie), qui conduit au recouvrement de différentes sources voisines. Pour l'analyse de sources très brillantes, il est possible de faire une analyse simplifiée. Elle permet de trouver le coefficient K et l'indice spectral Γ , en supposant que la distribution de flux différentiel est une loi de puissance $F(E) = KE^{-\Gamma}$ à partir de la distribution en énergie des photons sélectionnés sur une région centrée sur la direction de la source et incluant 90% des photons de la source (en prenant en compte la résolution angulaire)⁷. La figure ci-dessous présente la distribution d'énergie des photons ainsi sélectionnés. La courbe rouge représente le résultat d'un modèle où la fonction en loi de puissance F(E) (représentée en vert), puis intégrée sur le méme pas en énergie que l'histogramme des photons, afin de disposer de quantités comparables. La contribution du bruit de fond diffus est souvent négligeable pour une source brillante.

La commande fit_spectrum permet de chercher manuellement un couple (F, Γ) qui reproduit correctement les données par une comparaison telle que celle de la figure ci-dessous. Elle nécessite un fichier de données créé par create_map pour une région centrée sur la source de rayon ~10 deg et un fichier des données du satellite téléchargé avec fetch_sat pour la semaine considérée.

- fit_spectrum #semaine
 - Enter flux, index (type -1 to exit) : 1.7e-5, 2.3

Dans l'exemple ci dessus, #semaine=128, on a entré $F=1.7 \times 10^{-5}$ photons cm⁻² s⁻¹ (flux intégral au dessus de 100 MeV) et un indice spectral Γ de 2.3. F est typiquement de l'ordre de 10⁻⁶ -10⁻⁵ ph cm⁻² s⁻¹ pour une source brillante, et Γ est compris entre 1.5 et 3. Dans le jargon scientifique, un spectre avec Γ faible (< 2) est appelé « dur », avec Γ grand, il est dit « mou ».

Figure 18 Distribution en énergie des photons sélectionnés dans une région autour de 3C 454.3. (croix noires). La courbe rouge représente un modèle dont les paramètres ont été ajustés manuellement pour reproduire correctement les données. La courbe magenta correspond à la contribution du fond diffus.

⁷ La détermination du flux intégral F au dessus d'une énergie donnée E₀ est souvent préférée à celle K car ayant plus d'intérêt physique et s'en déduit simplement, $F = \int_{E_0}^{+\infty} F(E) dE = K E_0^{-\Gamma+1} / (\Gamma - 1) .$

Figure 19 Panneau du haut: Distribution en loi de puissance du modèle utilisé. Panneau du bas: Courbe d'exposition en fonction de l'énergie des photons pour 3C 454.3 dans la semaine 196.

Tableau présentatnt quelques événements intéressants

Nom	Туре	Heure début/durée	Semaine	Date	RA	Dec	z/D	Article
GRB 130427A	Sursaut gamma	07:47:06/20h	256	27/04/13	173,15	27,71	Z=0.34	http://arxiv.org/pdf/1311.5623v2.pdf
GRB 080916C	Sursaut gamma	00:12:45/23'	15	16/09/08	119,85	-56,64	Z=4.35	http://arxiv.org/pdf/0907.0714v1.pdf
GRB 090510	Sursaut gamma	00:22:59	49	10/05/09	333,55	-26,6	Z=0.90	http://arxiv.org/pdf/1005.2141v1.pdf
GRB 090902B	Sursaut gamma	11:05:08	65	02/09/09	264,94	27,32	Z=1.82	http://arxiv.org/pdf/0909.2470v2.pdf
GRB 090926A	Sursaut gamma	04:20:26	69	26/09/09	353,4	-66,32	Z=2.11	http://arxiv.org/pdf/1111.4129v1.pdf
Soleil	Flare	0h00/8h00	196	06/03/12	348	-5	1 UA	
M1 (Crabe)	Flare	6 jours	149	12/04/11	82,71	13,55	1,9 kpc	http://arxiv.org/pdf/1105.5028.pdf
V407 Cyg	Novae	19 jours	93	11/03/10	315,54	45,78	2,7 kpc	http://arxiv.org/pdf/0912.4029v2.pdf
PKS 1502+106	Blazar		196		226,1	10,49	Z=1.84	http://arxiv.org/pdf/1004.5099v1.pdf
4C +71.07	Blazar	7 jours	148		143,54	34,43	Z=2.21	http://arxiv.org/pdf/1005.2141v1.pdf
3C 454.3	Blazar	5 jours	128-129	17- 22/11/10	343,5	16,15	Z=0.86	http://arxiv.org/pdf/0909.2470v2.pdf