Search for Young, Gamma-quiet Pulsars

D. Dumora¹, D. Eismann¹, D.A. Smith¹, D. Parent², L. Guillemot³ ¹Centre d'Etudes Nucleaires de Bordeaux-Gradignan (CNRS / In2p3 / CENBG, France) ² George Mason University, and Space Science Division, Naval Research Laboratory, Washington DC, USA ³ Max-Planck-Institute für Radioastronomie, Bonn, Germany

For the Fermi-LAT collaboration

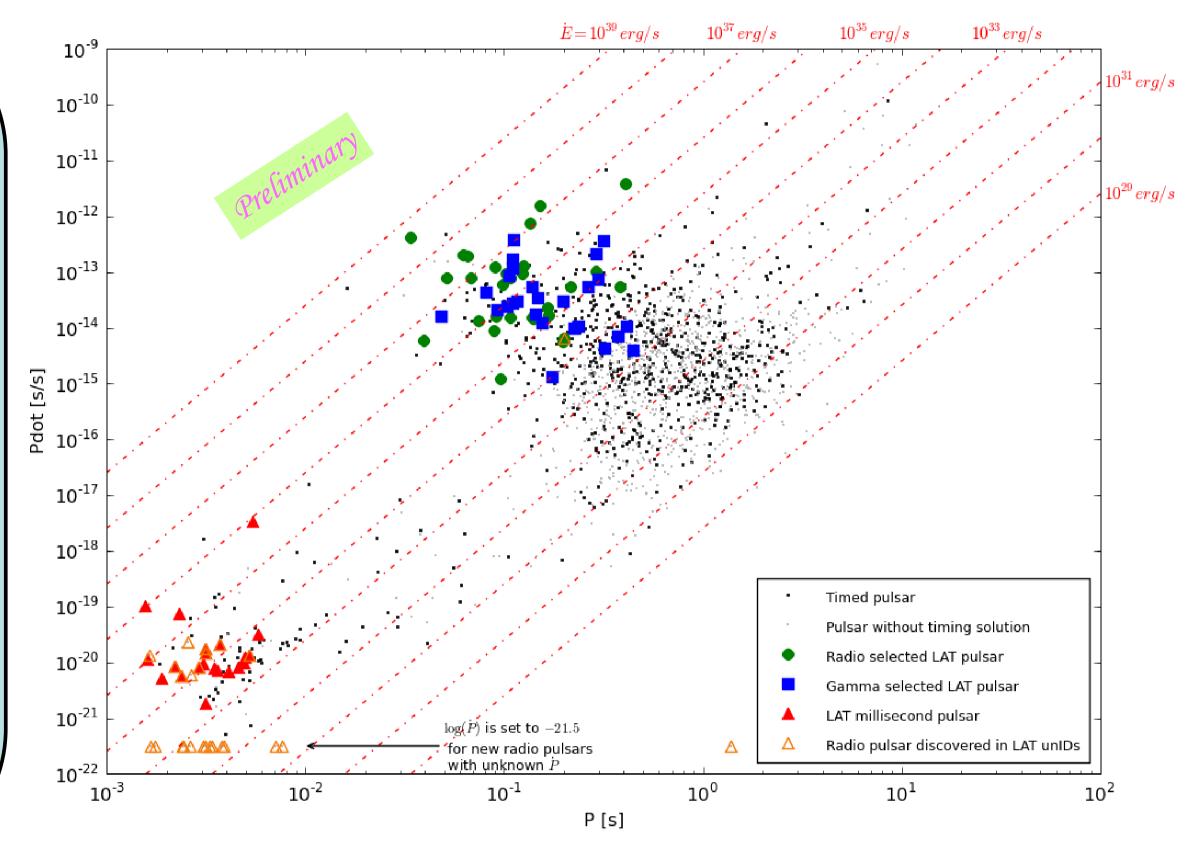
Introduction: GeV gamma-ray pulsations from 77 pulsars have been seen using the Large Area Telescope (LAT) on NASA's Fermi satellite [1], and more show possible signals approaching detection threshold as the all-sky survey continues. Radio ephemerides enabled 52 of the detections, the rest were discovered in blind period searches. Of the 214 pulsars with spin-down power $\dot{E} > 1E34$ erg/s targeted for sustained timing before launch [2], <u>we see 22 of the top 50 pulsars, ranked by $\sqrt{E/d^2}$, a simple but effective figure-of-merit for gamma-detectability [2].</u>

Why don't we see them all? This poster explores 3 possible reasons:

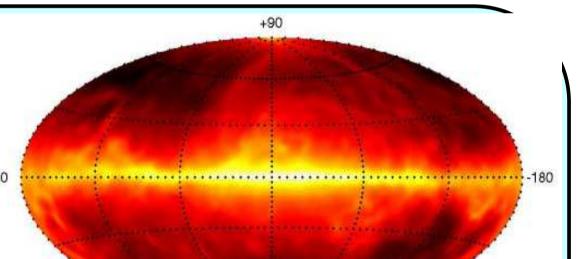
1. Low S/N -- the distance d may be underestimated, and/or low galactic latitude leads to high diffuse gamma-ray backgrounds; 2. Difficulties with the timing ephemerides ;

3. Beam geometry! We can test emission models by studying pulsars for which the radio beam sweeps the Earth, but the gamma-ray beam does not.

What are the high E black & gray dots?


Gamma-ray

pace elescope


The Pdot-P diagram at right shows (colored points) all the gamma-ray pulsars detected with the *Fermi* LAT to date, as well as 14 radio pulsars discovered in deep searches of unidentified *Fermi* sources for which gamma pulsations have not (yet?) been seen. Even at the highest E's (red diagonals), uncolored dots persist.

The two **black dots** with E>1E38 erg/s are in the LMC, presumably too far to be easily seen. For 1E37<E<1E38, three dots are black (we have ephemerides), but these, J1437-5959, J1747-2809, and J1930+1852 are apparently far and at very low latitude where the diffuse gamma background is intense. Two other dots are gray: J1617-5055 has a weak radio signal and terrible timing noise, while J1813-1749 can only be timed in X-rays.

Tracking down nearby large È pulsars unseen in gamma-rays a) makes sure our gammasearches are effective and b) may identify "gamma-quiet" radio pulsars to test emission model predictions [5].

#1 Low signal-to-noise? \\\Delta\/d2 is sensitive to often unreliable distances, d. VLBI parallax studies are underway for all LAT pulsars [4]. Improved Galactic electron distribution models

#2 Good pulsar timing? X-ray and radio timing for Fermi has been very productive. Nevertheless, a few pulsars with strong timing noise could benefit from additional observations, for example PSR J1617-5055 in a **HESS TeV PWN.**

would also be welcome.

Also, LAT sensitivity varies widely, mainly with -8 -7.9 -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 -7.2 -7.1 galactic latitude. We will improve the $\sqrt{\dot{E}/d^2}$ Aitoff projection of LAT 5 σ sensitivity (log photon flux, ph /cm²/s) for 6 months of sky-Figure-of-Merit by including the modeled survey, for pulsar spectra with typical differential photon indices and exponential diffuse emission at all pulsar positions. cutoff energies. (This is Figure 9 from [1].)

High Ė, near-ish pulsars without	Rank	PSRJ	Edot (erg/s)	Dist1 (kpc)	b (deg)
clear LAT detections	14	J1740+1000	2.3E35	1.2	20.3
Rank by $\sqrt{\dot{E}}/d^2$ for ATNF [7] pulsars with		J1357-6429	3.1E36	2.5	-2.5
	13	J1524-5625	3.2E36	2.8	0.35
\dot{E} >3E33 & P0 > 10 ms. Those unseen,	23	J0940-5428	1.9E36	2.9	-1.3
with E>1E35, from the Top Fifty.	24	J1930+1852	1.2E37	5.0	0.27
	25	J1302-6350	8.2E35	2.8	-0.99
	29	J1846-0258	8.1E36	5.1	-0.24
11257 8 11617 are bard to time 11011	31	J1826-1334	2.8E36	3.9	-0.69
J1357 & J1617 are hard to time. J1811	32	J1809-1917	1.8E36	3.5	0.08
& J1846 are timed with RXTE. J1302 is	34	J1811-1925	6.4E36	5.0	-0.35
	36	J1803-2137	2.2E36	3.8	0.15
an eclipsing binary (HMXB). None have	38	J0117+5914	2.2E35	2.2	-3.5
a radio interpulse. J1803 and J1809	43	J1617-5055	1.6E37	6.8	-0.28
-	47	J1913+1011	2.9E36	4.8	-0.17
have two peaks $\Delta \phi \sim 0.15$ apart.	49	J1739-3023	3.0E35	2.9	0.34
	50	J1831-0952	1.1E36	4.0	-0.13

#3 – Physics! (beam geometry)

A piece of (α, ζ) space is near the magnetic axis: you see the radio beam, but only weak or zero γ emission at such high magnetic latitude.

Watters & Romani's recent paper [5] says that as pulsars age and E decreases, the outer gap grows and γ emission is increasingly equatorial. The narrower γ beam can make them RLGQ.

Comparing tallies of *predicted* vs *observed* radio-loud gamma-quiet ("RLGQ") pulsars is thus a good test of emission models, and thus of population syntheses.

RLGQ's tend to not have radio interpulses, so polarization constrains (α , ζ) weakly. We'll try anyway to explore the geometry of the high FoM pulsars that have reliable d and good .par's, but no LAT signal, hoping to stress models (e.g. via predictions of f_{0} .)

PSR J1740+1000 has a single peak with strong polarization, and is far off the plane. PSRJ1524-5625 has a close-double radio peak, both with large \sqrt{E} /d². Candidates?

Conclusions: We list 16 young, nearby pulsars with E>1E35 erg/s that do not show clear GeV gamma-ray pulsations in Fermi LAT data at this time. Timing difficulties may explain two. J1302-6350 should "turn on" (unpulsed?) at periastron in mid-December. Three indicate weak pulsations, and another overlays a steady LAT source: these may be confirmed as the LAT accumulates data. A signal from most of the remaining 10 may simply be overwhelmed by diffuse emission, although J1357-6429 & J0117+5914 are \geq 2.5° off the plane. All but two have single radio pulses and polarization data will not easily constrain the magnetic and rotation inclinations. We will thus continue this search to lower E and/or farther distances to attempt to identify truly "gamma quiet" pulsars.

[1] 46 detections are described in the "First Fermi Catalog of Gamma-ray Pulsars", Abdo et al 2010, ApJ Suppl 187, 460. Eight additional blind-search pulsars are described in Saz Parkinson et al, Ap J accepted. The remaining 22 pulsars have either been published recently, or are in preparation.

[2] "Pulsar Timing for Fermi", Smith, Guillemot, et al (2008) A & A 492, 923.

[3] Ransom et al, ApJ accepted. Cognard et al ApJ submitted. Keith et al MNRAS to be submitted. Roberts et al, in prep. Kerr et al, in prep.

[4] Cycle 3 *Fermi* Guest Investigator proposal: S. Chatterjee et al.

[5] "Galactic Population of Young Gamma-ray Pulsars", Watters & Romani (2010) ApJ submitted.

[6] "Precise Gamma-ray Timing and Radio Observations of 17 Fermi Pulsars", Ray et al., ApJ to be submitted

[7] <u>http://www.atnf.csiro.au/research/pulsar/psrcat/expert.html</u> and Manchester et al., AJ, 129, 1993-2006 (2005)

Radio pulsars: An astrophysical key to unlock the secrets of the Universe Sardinia, Italy, 10-15 October 2010