

7. Neutronique et physique des réacteurs

Définition

La neutronique (ou transport des neutrons) est une branche de la physique qui a pour objectif de décrire des phénomènes physiques intégrant les aspects microscopiques (interaction neutron-matière) et macroscopiques (déplacement de neutrons dans un cœur de réacteur nucléaire. Fondamentalement, c'est la description d'interactions et de déplacements des neutrons dans la matière.

Sur le principe physique, la neutronique dérive donc de la physique nucléaire. Cependant, la population de neutrons étant très nombreuse (de l'ordre de 10¹⁴ neutrons libres/cm² /s dans un REP), on est amené à traiter les interactions neutrons/noyaux de manière globale, en l'assimilant à un fluide comme en mécanique des fluides. L'étude de la neutronique se ramène alors au traitement de l'équation de Boltzmann appliquée à des neutrons.

Principaux domaines d'application de la neutronique

Les *études d'ingénierie* ou d'*applications neutroniques qui seront* évoquées ici sont relatives à des installations qu'on trouve dans différents organismes de recherche et/ou de sociétés industrielles.

On compte quatre grands domaines d'études relatifs aux réacteurs nucléaires :

- physique du cœur,
- radioprotection,
- sûreté/criticité
- l'instrumentation nucléaire.

Installations	Type de problèmes/finalités	Grandeurs physiques d'intérêt			
	Détermination de la puissance du réacteur. Obtention des grandeurs de dimensionnement du cœur, de la distribution fine de puissance, des taux d'irradiation et des paramètres critiques (cote et efficacité des barres de commande , concentration), usure des poisons consommables . Contrôle de l'état du coeur, de la criticité en cours de chargement. Réponses des détecteurs in-core et ex-core (chambres à fission)	Facteur de multiplication effectif k _{eff} Taux de réaction. Distribution de puissance (crayons, assemblages) Réactivité Concentrations isotopiques Échauffements gamma			
Réacteurs de	Étude de situations incidentelles et accidentelles (Cinétique, transitoires)	Facteur de multiplication effectif <i>keff</i> Pic de puissance			
puissance	Durée de vie de la cuve et des structures internes du réacteur.	Fluence neutronique Dommages			
	Accessibilité dans différentes zones de l'installation, études de situations incidentelles et accidentelles.	Débits de dose			
	Sûreté de l'installation, dimensionnement des dispositifs pour l'évacuation de la chaleur résiduelle (circuits de refroidissement, piscine).	Puissance résiduelle			
	Instrumentation nucléaire : conception de dispositifs expérimentaux, d'expériences. Interprétation d'expériences	Taux de réaction Activités			
Démantèlement	Activation des structures. Contribution à l'élaboration de scénarios de démantèlement d'une installation nucléaire. Classement des structures irradiées en termes de déchets.	Activités Concentrations isotopiques Radiotoxicités Débits de dose <i>gamma</i>			

Installations	Types de problèmes / Finalités	Grandeurs physiques d'intérêt
Installations du cycle du combustible ; enrichissement, fabrication retraitement	Criticité et analyse de sûreté. Dimensionnement des installations vis-à-vis de la maîtrise du risque de criticité, études de situations accidentelles pour la gestion de crise, définition des normes, qualification. Dimensionnement des installations pour la protection des hommes et des matériels	Facteur de multiplication effectif Activités Concentrations isotopiques Débits de dose (<i>gammas</i> , neutrons, particules chargées)
Château de transport combustible	Conception/dimensionnement d'un château de transport . Sûreté/criticité en situations incidentelles ou accidentelles	Facteur de multiplication effectif Débits de dose (gammas, neutrons)
Colis de déchets radioactifs	Dimensionnement de colis de déchets. Détermination de leur contenu (spectrométrie gamma, interrogation neutronique). Étude de la radiolyse dans le conteneur ou la roche d'accueil du site de stockage. Sûreté/criticité d'un entreposage, d'un stockage de déchets	Facteur de multiplication effectif Activités Débits de dose (<i>gammas</i> , neutrons) Échauffements <i>gamma</i>
Médecine : dispositifs d'irradiation, sources	Traitement de cancers (boroneutrothérapie). Optimisation de la collimation des rayonnements et de leurs spectres en énergie. Diagnostics médicaux (traceurs radioactifs).	Débits de dose (<i>gammas</i> , neutrons, particules chargées) Activités
Spatial	Conception des coeurs de propulsion. Protection des astronautes, intégrité des matériels (électronique).	Grandeurs neutroniques Débits de dose (neutrons, <i>gammas</i> , particules chargées) Dommages

7-1-1 Originalité du neutron

Contrairement aux particules chargées (p, d, α ,...), le neutron peut s'approcher d'un noyau cible même à très faible vitesse. Etant une particule neutre, il est insensible à la répulsion coulombienne.

Le neutron obéit à la statistique de Fermi-Dirac.

Il possède un spin intrinsèque $S_n = 1/2$, une parité $P_n = +1$ positive et un moment magnétique négatif $\mu_n = -1, 9\mu_B$ qui est à l'origine de l'interaction électromagnétique du neutron.

Le neutron libre est une particule instable (T_{1/2}=10,4 min): $n \rightarrow p + e^- + \overline{v_e}$

il ne peut exister sur Terre qu'en pénétrant à l'intérieur d'un noyau cible.

7-1-2 Interaction neutron-matière

Plusieurs processus peuvent entrer en compétition :

<u>A) Diffusion</u>: On entend par diffusion, la modification de la trajectoire et de l'énergie du neutron incident après un choc avec un noyau.

Neutrons incidents

Noyau cible

Neutrons diffusés

B) Absorption

On entend par absorption la formation d'un système <u>composé du neutron incident et du noyau</u> <u>cible</u>. Le neutron incident se mélange avec ceux du noyau cible et forme ensemble un système dans un état excité. Cette excitation est dû à l'apport en énergie sous forme <u>cinétique et de</u> liaison par le neutron incident. Finalement, le noyau composé se désexcite par différents modes.

B-1) réaction de capture

Les modes que l'on englobe sous le terme de capture sont les suivants :

• Capture radiative ${}^{A}X(n, \gamma) {}^{A+1}X$. Le neutron est définitivement capturé, l'énergie en excès est émise sous forme d'un rayonnement γ .

Exemple: capture par l'Indium de neutrons d'énergie 1.46 eV

$$^{115}_{49}$$
In + n $\rightarrow ^{116}_{49}$ In + γ

- émissions de particule chargées légères ^X (n, p) ^Y , ^X (n, α) ^-3Y

Les réactions (n,p) sont fréquemment induite par neutron dans la gamme d'énergie 0.5-10 MeV Assez souvent Q>0 du au fait que Mn>Mp. Le neutron doit avoir également suffisamment d'énergie Cinétique pour que le proton éjecté puisse franchir la barrière coulombienne.

$${}^{32}_{16}S + n \rightarrow {}^{32}_{15}P + p$$
$${}^{14}_{7}N + n \rightarrow {}^{14}_{6}C + p$$

La seconde réaction à un Q=0.6 MeV (exoénergétique) succeptible de se produire même avec des Neutrons thermiques de basse énergie.

Ces réactions se produisent en général pour des neutrons d'énergie incidente > 10 MeV

B-2) réaction de fission

Cas de la fission spontanée

Ne se produit que pour certains noyaux lourds avec une énergie d'excitation suffisante. Le noyau fissionne en deux fragments de masse pouvant être à peu près égale (fission dite symétrique) ou très inégale (fission dite asymétrique).

Le modèle de la goutte liquide peut être utilisé pour expliquer le phénomène de fission.

Soit un noyau avec 200X.

Chaque nucléon se déplace dans un potentiel crée par les 199 autres.

Sachant que la force nucléaire est de très courte portée ~ 10^{-15} m, un nucléon n'agit qu'avec ses plus proches voisins.

Vibrations de surface d'une goutte liquide (nucléons en mouvement)

Bilan énergétique de la réaction de fission

$$n + {}^{235}_{92}U \to {}^{A_1}_{Z_1}X + {}^{A_2}_{Z_2}Y + xn + E_{\gamma}$$
$$Q_f = Mn + M({}^{235}_{92}U) - M({}^{A_1}_{Z_1}X) - M({}^{A_2}_{Z_2}Y) - x \cdot Mn$$

$$Q_f + T(n) = T({}^{A_1}_{Z_1}X) + T({}^{A_2}_{Z_2}Y) + x \cdot < T(n) > +E_x^* + E_Y^*$$

- Indétermination des énergies d'excitations des fragments
- Indétermination du spin des fragments

B-2-1 Distribution en masse des fragments de fission

La figure ci-contre montre que l'asymétrie de masse dans des réaction de fission induitent par des neutrons thermique, du noyau ²²⁹Th au ²⁵⁴Es est une caractéristique générale des Actinides.

On peut faire également deux remarques :

- 1° pour toutes les réactions, le fragment lourd apparait à partir de A~130. Le numéro atomique correspondant est le nombre magique Z=50. La masse moyenne du fragment reste constante indépendamment de la réaction de fission étudier. La masse du fragment léger, suit rigoureusement la masse du noyau père fissionnant.
- 2° La courbe des rendements en masse n'est pas toujours lisse et présente des structures. Elle sont plus prononcées pour des noyaux fissionnant de Z pair.

Exercice d'application

- Pour un noyau donné ${}^{z}_{z}X_{\scriptscriptstyle N}$, on sait que le rapport N/Z est conservé lors du phénomène de fission.
- Quels sont les isotopes produits lorsque l'un des deux fragment à un nombre de masse égale à 140 dans la fission de $^{235}\mathrm{U}$ par neutrons

thermiques.

Quels sont pour cet exemple les 2 isotopes que l'on retrouvera dans les déchets nucléaires?

N	NDC	(Ch	ar	t o	of I	۱u	cli	de	S							
			10 110					C	lick	on a	a nu	cleu	is fo	or in	forn	nati	on
C	olor coo Q _{β-n}	ie Ha E	BE/A	(BE-L	ay Mod DM Fit)	e /A E	Qβ- 1st ex.	QE st. E2	<u>c Qβ+</u> + E ₃ -	Sn E4+ I	S _p E ₄₊ /E ₂ .	Q _α + β ₂	B(E2)	S _{2n} 42/B(E)	2) ₂₀	S _{2p} σ(n,γ)	Q _{2β} - σ(n,F)
z	136Ce	137Ce	138Ce	139Ce	140Ce	141Ce	142Ce	143Ce	144Ce	145Ce	146Ce	147Ce	148Ce	149Ce	150Ce	151Ce	152Ce
	135La	136La	137La	138La	139La	140La	141La	142La	143La	144La	145La	146La	147La	148La	149La	150La	151La
56	134Ba	135Ba	136Ba	137Ba	138Ba	139Ba	140Ba	141Ba	142Ba	143Ba	144Ba	145Ba	146Ba	147Ba	148Ba	149Ba	150Ba
	133Cs	134Cs	135Cs	136Cs	137Cs	138Cs	139Cs	140Cs	141Cs	142Cs	143Cs	144Cs	145Cs	146Cs	147Cs	148Cs	149Cs
54	132Xe	133Xe	134Xe	135Xe	136Xe	137Xe	138Xe	139Xe	140Xe	141Xe	142Xe	143Xe	144Xe	145Xe	146Xe	147Xe	148Xe
	1311	1321	133I	134I	1351	1361	137I	138I	1391	140I	141I	142I	1431	144I	1451		
52	130Te	131Te	132Te	133Te	134Te	135Te	136Te	137Te	138Te	139Te	140Te	141Te	142Te	143Te			
	129Sb	130Sb	131Sb	132Sb	133Sb	134Sb	135Sb	136Sb	137Sb	138Sb	139Sb	140Sb					
50	128Sn	129Sn	130Sn	131Sn	132Sn	133Sn	134Sn	135Sn	136Sn	137Sn	138Sn						
	78		80		82		84		86		88		90		92		N

B-2-2 Evolution de la distribution de masse en fonction de l'énergie des neutrons

B-2-3 Neutrons de fission

La réaction de fission 235 U(n,f) produit typiquement 2 à 3 neutrons. Cette quantité (en moyenne 2,45) est symbolisé par la lettre grecque V.

La figure ci-dessus représente l'expression empirique de la densité de probabilité d'émettre un neutron c^{∞}

à l'énergie
$$E_n$$
: $P(E_n) = 0.453 \cdot e^{-1.036 \cdot E_n} \cdot Sinh(\sqrt{2.29 \cdot E_n})$ avec $\int_0^{\infty} P(E_n) \cdot dE_n = 1$

L'énergie la plus probable pour un neutron de fission est légèrement inférieure à 1 MeV. Peu de neutrons seront émis au-delà de 10 MeV.

La distribution angulaire des neutrons de fission est isotrope. Il n' y a pas de direction privilégiée.

Explication du phénomène « dents de scie »

$$\begin{split} \overrightarrow{v_{e}} &= \overrightarrow{v_{e}^{*}} + \overrightarrow{v_{cm}} \implies \overrightarrow{v_{e}^{*2}} = \left(\overrightarrow{v_{e}^{*}} + \overrightarrow{v_{cm}}\right)^{2} & (\overrightarrow{v_{cm}}) \\ \frac{1}{2}m \, \overrightarrow{v_{e}^{*2}} &= \frac{1}{2}m \left(\overrightarrow{v_{e}^{*2}} + 2 \, \overrightarrow{v_{e}^{*}} \, \overrightarrow{v_{cm}} + \overrightarrow{v_{cm}^{*2}}\right) \\ T_{e} &= T_{e}^{*} + \frac{m^{2} v_{e}^{*} v_{p}}{m + M} \cos \theta_{e}^{*} + \left(\frac{m}{m + M}\right)^{2} T_{p} \\ T_{e} &= T_{e}^{*} + \frac{\sqrt{2mT_{e}^{*}} \, \sqrt{2mT_{p}}}{m + M} \cos \theta_{e}^{*} + \left(\frac{m}{m + M}\right)^{2} T_{p} \\ T_{e} &= \left(\frac{M}{m + M}\right)^{2} T_{p} \\ T_{e} &= \frac{m^{2} + 2 \, m \, M \cos \theta_{e}^{*} + M^{2}}{(m + M)^{2}} T_{p} \\ \hline pour \, \theta_{e}^{*} &= 0 \quad T_{e} = T_{p} \\ \hline pour \, \theta_{e}^{*} &= \pi \quad T_{e} = \left(\frac{M - m}{M + m}\right)^{2} T_{p} = \alpha T_{p} \quad avec \ \alpha &= \left(\frac{M - m}{M + m}\right)^{2} \\ T_{e}^{*} &= \frac{M}{m + M} T_{p} = T_{e}^{*} + T_{r}^{*} \\ \alpha T_{p} &\leq T_{e} \leq T_{p} \quad pour \quad \theta_{e}^{*} \in [0, \pi] \end{split}$$

Probabilité pour qu'un neutron diffuse

Probabilité pour qu'un neutron diffuse

$$T_{e} = T_{p} \frac{M^{2} + m^{2} + 2mM \cos \theta_{e^{*}}}{(M + m)^{2}}$$
Supposons que l'on ait N neutrons qui diffusent en G.
On définit une sphère de rayon r et de centre G. On peut ainsi
introduire une densité surfacique de neutrons diffusés ayant traverse
la surface S=4\pir^{2} de la sphère par N/S.
Si la diffusion est isotrope dans le CM alors on doit avoir :

$$\frac{dN}{dS} = \frac{N}{S} = \text{constante}$$
Intéressons nous maintenant à un angle $\theta_{e^{*}}$ donné.
Question : quelle est le nombre de neutrons diffusés traversant
Une surface dS comprise entre $\theta_{e^{*}}$ et $\theta_{e^{*}} + d\theta_{e^{*}}$
En coordonnées sphériques, $dS = 2\pi r^{2} \sin \theta_{e^{*}} d\theta_{e^{*}}$
 $dS = -2\pi r^{2} d \cos \theta_{e^{*}}$
Or $\frac{dN}{dS} = \frac{N}{S} = \text{constante} \Rightarrow \frac{dS}{S} = \frac{dN}{N}$

Or ceci représente la fraction de neutrons qui pourront traverser la surface dS. En d'autres termes cela représente la probabilité qu'à un neutron de diffuser entre 0 = c + 0 + d0

$$\theta_{e^*}$$
 et $\theta_{e^*} + d\theta_{e^*}$

Par conséquent
$$\frac{dS}{S}$$

$$\frac{\mathrm{dS}}{\mathrm{S}} = \frac{-2\pi r^2 d\cos\theta_{e^*}}{4\pi r^2} = -\frac{1}{2}d\cos\theta_{e^*}$$

Comme l'énergie T_e est reliée à l'angle θ_{e^*} on a : $dT_e = T_p \frac{2mM}{(M+m)^2} d\cos\theta_{e^*}$

Donc
$$\frac{dS}{S}$$
 représente aussi le nombre de neutron d'énergie comprise entre $T_e \,\mathrm{et} \, T_e + dT_e$
D'où $\frac{dS}{S} = -P(T_e) \, dT_e$ $T_e(\theta_{e^*} = 0) = T_p > T_e(\theta_{e^*} = \pi) = \alpha T_p$
 $-P(T_e) \cdot dT_e = -P(T_e) \, T_p \, \frac{2mM}{(M+m)^2} \, d\cos\theta_{e^*} = -\frac{1}{2} \, d\cos\theta_{e^*}$
 $P(T_e) = \frac{(M+m)^2}{4mM \cdot T_p} = \frac{(M+m)^2}{[(M+m)^2 - (M-m)^2]} T_p$
 $P(T_e) = \frac{1}{[1-\alpha] \cdot T_p}$

On vérifie bien que :

Quelle est l'énergie moyenne des neutrons diffusés :

Par définition

$$\overline{T_e} = \int_{\alpha T_p}^{T_p} T_e P(T_e) \cdot dT_e = \int_{\alpha T_p}^{T_p} T_e \frac{1}{[1-\alpha] \cdot T_p} \cdot dT_e$$

$$\overline{T_e} = \frac{1}{[1-\alpha] \cdot T_p} \cdot \int_{\alpha T_p}^{T_p} T_e \cdot dT_e = \frac{1}{[1-\alpha] \cdot T_p} \frac{1}{2} T_p^2 [1-\alpha^2] = \frac{1}{2} T_p [1+\alpha]$$

$$\overline{T_e} = \frac{1}{2} T_p [1+\alpha]$$

Le décrément logarithmique en énergie moyenne par collision

Est définit par l'expression :
$$\boldsymbol{\xi} = \overline{\ln\left(\frac{T_p}{T_e}\right)}$$
$$\boldsymbol{\xi} = \int_{\boldsymbol{\alpha} \boldsymbol{\tau}_p}^{T_p} \ln\left(\frac{T_p}{T_e}\right) P(T_e) \cdot dT_e = \int_{\boldsymbol{\alpha} \boldsymbol{\tau}_p}^{T_p} \ln\left(\frac{T_p}{T_e}\right) \frac{1}{[1-\boldsymbol{\alpha}] \cdot T_p} \cdot dT_e$$
$$\boldsymbol{\xi} = \frac{1}{[1-\boldsymbol{\alpha}] \cdot T_p} \cdot \int_{\boldsymbol{\alpha} \boldsymbol{\tau}_p}^{T_p} \ln\left(\frac{T_p}{T_e}\right) \cdot dT_e$$
On pose $X = \frac{T_e}{T_p}$ d'où $dX = \frac{1}{T_p} dT_e$
$$\boldsymbol{\xi} = \frac{1}{[1-\boldsymbol{\alpha}] \cdot T_p} \cdot \int_{\boldsymbol{\alpha}}^{1} \ln\left(\frac{1}{X}\right) \cdot T_p \cdot dX = \frac{1}{[1-\boldsymbol{\alpha}]} \cdot \int_{\boldsymbol{\alpha}}^{1} - \ln(X) \cdot dX$$
$$\boldsymbol{\xi} = -\frac{1}{[1-\boldsymbol{\alpha}]} \cdot [X \ln(X) - X]_{\boldsymbol{\alpha}}^{1} = 1 + \frac{\boldsymbol{\alpha}}{1-\boldsymbol{\alpha}} \ln \boldsymbol{\alpha}$$

En prenant M=A et m=1

$$\alpha = \frac{(M-m)^2}{(M+m)^2} = \frac{(A-1)^2}{(A+1)^2} = \left(\frac{A-1}{A+1}\right)^2 \quad \text{d'où} \qquad \xi = 1 + \frac{\left(\frac{A-1}{A+1}\right)^2}{1 - \left(\frac{A-1}{A+1}\right)^2} \ln\left(\frac{A-1}{A+1}\right)^2$$

$$\xi = 1 + 2\frac{(A-1)^2}{4A} \ln\left(\frac{A-1}{A+1}\right)$$

$$\xi = 1 + \frac{(A-1)^2}{2A} \ln\left(\frac{A-1}{A+1}\right)$$

Approximations :

Pour A>10
$$\xi \approx \frac{2}{A + \frac{2}{3}}$$

Pour A >>1
$$\xi \approx \frac{2}{A}$$

L'utilité de ce paramètre est d'être indépendant de l'énergie du neutron diffusé.

Quel est le nombre moyen N de collision dans un modérateur pour passer d'une énergie $\mathrm{T_p}$ à $\mathrm{T_e}$:

$N = \frac{\ln\left(\frac{T_{p}}{T_{c}}\right)}{\xi}$	

Nombre moyen de collisions pour abaisser l'énergie d'un neutron de 1,5MeV à l'énergie thermique de 0,025eV

	Nombre de	*	Nbre de		
Element	masse A	ζ	collisions		
н	1	1	17,9098551		
D	2	0,72534693	24,6914331		
He	4	0,42532117	42,1090137		
o	16	0,11994665	149,315174		
Pb	208	0,00958464	1868,59969		

Dans le cas d'un corps composé de la forme X_mY_n, le paramètre de ralentissement se calcule suivant l'expression : $\boldsymbol{\xi} = \frac{\boldsymbol{m} \cdot \boldsymbol{\xi}_{X} \cdot \boldsymbol{\sigma}_{X}^{d} + \boldsymbol{n} \cdot \boldsymbol{\xi}_{Y} \cdot \boldsymbol{\sigma}_{Y}^{d}}{\boldsymbol{\xi}_{X} \cdot \boldsymbol{\sigma}_{X}^{d} + \boldsymbol{n} \cdot \boldsymbol{\xi}_{Y} \cdot \boldsymbol{\sigma}_{Y}^{d}}$

5 -	$\boldsymbol{m}\cdot\boldsymbol{\sigma}_X^d+\boldsymbol{n}\cdot\boldsymbol{\sigma}_Y^d$
avec	
m, n	nombre stochiométrique
$\boldsymbol{\xi}_{X}, \boldsymbol{\sigma}_{X}^{d}$	le décrément et la section efficace de diffusion du noyau X
${oldsymbol{\xi}}_{\scriptscriptstyle Y}, {oldsymbol{\sigma}}_{\scriptscriptstyle Y}^d$	le décrément et la section efficace de diffusion du noyau Y

On définit également deux quantités importantes pour caractériser un modérateur :

-Le pouvoir de ralentissement $\xi \Sigma_d$

7-2 Les Sources neutrons

Pour démarrer la réaction en chaîne, il faut une «allumette» c'est à dire une source de neutrons externe au cœur du réacteur.

Il faut donc un bon mélange {Ra,Be} pour <u>optimiser</u> le rendement de la réaction en <u>neutrons</u> Typiquement un rapport des masses Ra/Be = 1/5.

lg de ²²⁶Ra → 4 Ci d' α soit 1,5 10⁷ n/s 0,025 eV <E_n <10 MeV le spectre est plutôt rapide Inconvégnient: émission importante de γ et β⁻.

7-2-1-2 Source (Po,Be)

 $^{210}_{84} Po \longrightarrow \alpha$ de 5,305 MeV

T _{1/2} = 138,4 j

<u>Avantage</u>: Cette source n'émet ni γ ni β ⁻ Rendement : 2,5 10⁶ n/s/Ci de Po

7-2-1-3 Source (Pu,Be)

 $^{239}_{94} Pu \longrightarrow \alpha$ de 5,15; 5,13 et 5,10 MeV

 $T_{1/2} = 24\ 110\ a$

<u>Avantages</u>: source n'émet pas beaucoup de γ .

Inconvégnient : son rendement est de 8,5 10⁴ n/s/1g de Pu

<u>Rem1</u>: Le ¹²⁴Sb est produit artificiellement à partir du ¹²³Sb stable par capture neutronique.

$\gamma + {}^9\text{Be} \longrightarrow {}^8\text{Be} + n$	Rendement : 10^7 n/s/Ci de E $\gamma = 1,692 \text{ MeV}$
$\gamma + {}^{2}H \longrightarrow {}^{1}H + n$	Possible à partir de $E\gamma > 2,21$ MeV

<u>Rem2</u>: Ces 2 réactions jouent un rôle important dans le fonctionnement d'un réacteur utilisant le Be ou l'eau lourde comme modérateur.

7-2-3 Source de neutrons de fission

Le ²⁵²Cf se désintègre par radioactivité naturelle par deux processus :

Chaque fission s'accompagne en moyenne de 3,67 neutrons

7-2-4 Neutrons produits par réaction nucléaire

On utilisera des accélérateurs de particules chargées pour provoquer une réaction nucléaire.

* (α ,n) ⁹Be Q=(5,704); ¹¹B (Q=0,138); ⁷Li (Q=-2,790) * (d,n) ²H Q=(3,265); ³H (Q=17,588); ⁷Li (Q=15,023); ¹²C (Q=-0,282) * (p,n) ³H (Q=-0,764); ⁷Li (Q=-1,646)

7-2-5 Neutrons produits par un réacteur nucléaire

Dans le cœur d'un réacteur se produit des réactions en chaine de fission de ²³⁵U.

 $n + 235U \longrightarrow 236U^* \longrightarrow X + Y + \overline{v}$

 \overline{V} : Nombre moyen de neutrons produits. De 2,4 à 2,9 neutrons de 2e génération

Un réacteur à haut flux produit 10¹⁵ n.cm⁻² s⁻¹

Classement des neutrons en fonction de leur domaine d'énergie

7-3 Sections efficaces – Taux de réactions

La quantité de chaleur (Q) dégagée par une réaction nucléaire (exoénergétique) de fusion ou de fission n'est pas le seul critère entrant en jeu dans le calcul d'un bilan énergétique, il faut également et surtout tenir compte de la probabilité pour qu'une telle réaction ait lieu.

7-3-1 Définition d'un flux

Cette notion s'applique généralement aux particules incidentes. Si on suppose que ces particules forment un faisceau monocinétique de vitesse \vec{v} et de section S

Le flux Φ représente alors le nombre de particules qui traversent par unité de temps (1 s) une surface de 1 cm² perpendiculaire à la direction de propagation.

Les particules qui traverse S en 1s sont donc contenues dans un volume égal à $l \ge S$. Soit N ce nombre.

 Φ est par définition ce nombre N de particules par cm² et par seconde $\Phi = N \text{ cm}^{-2} \text{ s}^{-1}$

Si on suppose que le noyau cible est une sphère rigide de rayon r, seules les particules contenues dans un cylindre de section πr^2 sont susceptible d'interagir avec le noyau.

Le nombre de collisions par seconde N_c est égal au produit du flux Φ incident par la surface apparente πr^2 du noyau cible.

 $N_c = \Phi \pi r^2$

 π r² est noté \mathbf{O} et prend l'appellation de section efficace est s'exprime en cm²

<u>Exemple</u>: ²³⁵U: $r = r0 A^{1/3} = 1,2 (235)^{1/3} = 7,4 \text{ fm} = 7,4 10^{-13} \text{ cm}$ $\sigma = \pi r^2 = 1,72 10^{-24} \text{ cm}^2 = 1,72 \text{ barn}$ (1 barn = 10⁻²⁴ cm²) Dans un réacteur à haut flux (2 10^{15} n cm⁻² s⁻¹ à ILL de Grenoble) le nombre d'interactions par seconde ou taux d'interactions sur un noyau ²³⁵U est :

Nc = $\Phi \sigma$ = 2 10¹⁵ n cm⁻² s⁻¹ x 1,72 10⁻²⁴ cm² = 3,4 10⁻⁹ collisions /s

il faut attendre 10 ans pour avoir une seule collision.

7-3-3 Section efficace macroscopique

Imaginons maintenant un flux Φ_0 incident frappant perpendiculairement une cible d'épaisseur finie contenant n atomes par cm³

Par unité de surface (cm²), n dx représente le nombre d'atomes par cm². En physique nucléaire les épaisseurs de matériaux μ sont le plus souvent données en gramme/cm²

 $\rho = m/v = m/(s.dx) \implies m = \rho \ s \ dx \implies m/s = \rho \ dx$ $\mu = \rho \ dx$

$$N = m N_A/M \qquad N = \rho s dx N_A/M \qquad N/s = n dx = \rho dx N_A/M$$

$$n = (\rho N_A/M)$$

La diminution du flux dans l'épaisseur dx est donné par la relation suivante :

7-3-4 Additivité des sections efficaces

La section efficace microscopique dont nous avons donné une image géométrique s'apparente à la notion de <u>probabilité d'interaction totale</u> entre la particule incidente et le noyau cible sans préciser le type d'intéraction. Ainsi, on associera à chaque type d'interaction possible (diffusion élastique, inélastique, capture radiative etc ...) une section efficace microscopique partielle.

Les sections efficaces microscopiques d'un même noyau s'ajoutent si l'on veut considérer une somme de réactions dont les probabilités sont indépendantes.

Dans le cas d'un mélange de noyaux (milieu hétérogène), c'est la section efficace macroscopique qu'il faut considérer. Cette dernière s'obtient par l'addition des sections efficaces des constituants pour une réaction donnée:

$$\Sigma = N_1 \sigma_1 + N_2 \sigma_2 + \dots$$

N₁, N₂,... nombre d'atomes de type 1, 2, ...

Exemple UF_2 $\Sigma = N_U \sigma_U + N_F \sigma_F$

7-3-5 Libre parcours moyen

Le libre parcours moyen λ est défini comme l'inverse de la section efficace macroscopique $\lambda = 1/\Sigma$ (cm).

Comme cela a été dit précédemment, Σ représente la probabilité d'interaction par centimètre de matière. Le libre parcours moyen λ est donc la distance moyenne que peut parcourir un neutron dans la matière avant de subir un type donné d'interaction. On parlera donc de libre parcours moyen de diffusion, d'absorption etc ...

Les valeurs des sections efficaces pour les différentes interactions avec chaque noyau et en général dépendant de l'énergie des neutrons incidents.

A l'échelle des phénomènes nucléaires que nous avons à considérer, <u>on ne peut dissocier</u> l'aspect corpusculaire du neutron de son aspect ondulatoire. La longueur d'onde associée au neutron dépend de son énergie cinétique.

$$E = \frac{1}{2} m_n v^2 \qquad p = m_n v = \frac{h}{\lambda} \qquad h = 6,626 \ 10^{-34} (J.s) \text{ constante de Planck}$$

$$E = \frac{p^2}{2m_n} \implies E = \frac{h^2}{2m_n\lambda^2} \implies \lambda = \frac{h}{\sqrt{2m_nE}}$$

$$\lambda = \frac{2,86 \ 10^{-9}}{\sqrt{E}} \qquad \text{E en (eV) et } \lambda \text{ en (cm)}$$

Pour un neutron rapide (E=1 MeV) $\rightarrow \lambda$ =3 10⁻¹² cm ordre de grandeur de la dimension du noyau.

Pour un neutron lent (E=1/40 eV) $\rightarrow \lambda$ =1,8 10⁻⁸ cm ordre de grandeur de la dimension d'un atome.

A - Sections efficaces de diffusion

Les sections efficaces de diffusion ne varient pas beaucoup en fonction de l'énergie des neutrons. Pour l'ensemble des noyaux, le domaine de variation et de 1 à 10 barns. On peut également signaler une augmentation de cette section efficace pour tous les noyaux d'un

facteur : $(2 + 1)^2$

à très basse énergie (En < 1 eV).

Le cas particulier de diffusion sur l'hydrogène a été intensivement étudié est révèle une section efficace anormalement élevée à savoir de l'ordre de 20 barns de 1 à 10^4 eV et très faible à haute énergie (> MeV).

Ces caractéristiques propres de l'hydrogène ont des conséquences importantes sur les caractéristiques des réacteurs à eau ordinaire.

B - Sections efficaces d'absorption

Au contraire des précédentes, les section efficaces d'absorption varient considérablement d'un noyau à l'autre et suivant les domaines d'énergie des neutrons.

Exemple: Calcul de la section efficace macroscopique pour un mélange H₂O à une énergie neutron donné. En déduire le libre parcours moyen. Données $\sigma_{H} = 0,33 \text{ barns}$ $\sigma_{O} = 0,2 \text{ mbarn}$ $\rho_{H2O} = 1g/cm^{3}$ Solution: La section efficace macroscopique est donnée par la relation : $\Sigma = n_{H} \sigma_{H} + n_{O} \sigma_{O}$ $n_{H} \text{ et } n_{O} \text{ nombre d'atomes/cm}^{3}$ $M=18g \text{ d'eau} \longrightarrow N_{A}=6,022 \text{ 10}^{23} \text{ molécules}$ $m = 1 \text{ g} \longrightarrow N_{mol}$ $N = N_{mol}' (volume= 1 \text{ cm}^{3}) = (m /volume) . (N_{A}/M) = \rho_{H2O} N_{A}/M$

$$\begin{split} n_{H} &= 2 \ N \\ n_{O} &= N \\ \Sigma &= \rho_{H2O} \ (NA/M) \ . \ (2 \ \sigma_{H} + \ \sigma_{O}) = 0,022 \ cm^{-1} \\ \lambda &= 1/\Sigma = 45,4 \ cm \end{split}$$

Exemple: Calcul de la section efficace d'absorption macroscopique de l'Uranium naturel pour des neutrons thermiques. En déduire le libre parcours moyen. Données

 $\begin{array}{ll} \mbox{Composition de l'uranium naturel : 1 noyau ^{235}U pour 139 noyau ^{238}U ^{235}U : $\sigma_C = 108$ barns $$\sigma_f = 580$ barns $$^{238}U$: $\sigma_C = 2,75$ barns $$\sigma_f = 0$ barns $$ \end{tabular}$

 $\rho_{\rm U} = 19 {\rm g/cm^3}$ M_{Unat} = 238,029 g

Sol: et $\rho = \frac{m}{v}$ avec m = 19g et $v = 1cm^3$ $M_{Unat} \rightarrow N_{Avo}$ $m \rightarrow N = \frac{m}{M_{Unat}} N_{Avo} \Rightarrow n = \frac{N}{v} \Rightarrow n = \rho \frac{N_{Avo}}{M_{Unat}}$ atomes d'Unat/cm³ $n_{U5} = \frac{1}{140}n$ et $n_{U8} = \frac{139}{140}n$ $\Sigma = n_{U5} (\sigma_c + \sigma_f)_{U5} + n_{U8} \sigma_{cU8} = \rho \frac{N_{Avo}}{140 M_{Unat}} (\sigma_{cU5} + \sigma_{fU5} + 139 \sigma_{cU8})$ A.N: $\Sigma = 19 \frac{6,022 \cdot 10^{23}}{140 \cdot 238,029} (108 + 580 + 139 \cdot 2.75) \cdot 10^{-24} = 0.367 \ cm^{-1}$ $\lambda = 2,72 \ cm$

7-3-7 Variation des sections efficaces avec l'énergie - Résonances

- Niels Bohr a supposé que la plus part des réactions nucléaires (projectile+cible) s'effectuaient en deux temps : - dans une première phase la particule incidente et le noyau cible s'unissent pour former un ensemble unique regroupant les nucléons du projectile et de la cible qu'on appelle noyau composé
- Le noyau composé est hautement excité et se désexcite au bout d'un temps $> 10^{-22}$ s

