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Abstract

Hadronic background rejection is an issue for GLAST as the final expected rejection
rate is to be 10 to 1. Most hadronic events will be rejected by the ACD that vetoes
charged particles, but more evolved trigger and analysis algorithms are required
to reach such a rejection factor. Monte-Carlo simulations play a key role in the
development and tuning of hadronic background rejection algorithms and until now,
most of them are based on the Geant4 tool kit using the LHEP model (from the
GHEISHA code) for hadronic cascade simulations. Actually more hadronic cascade
models are available in Geant4, such as the Bertini intra-nuclear cascade model and
the Binary Cascade model under 10GeV, and a few QGS ( Quark Gluon String )
based models over 20GeV. These models propose very different distributions as far
as nuclear reaction products are concerned. Benchmarking these models using beam
test data should help us to determine, first, if the default LHEP model reproduces
well our variables and second, if one model is better than the others.

During the GLAST-GSI beam test, we had 1.7GeV proton and 3.4GeV deuteron
beams on the Engineering Model, that we use to benchmark hadronic cascade models
at low energy. The high energy part is covered by data from the GLAST-CERN beam
test where we had 10GeV /¢ and 20GeV /c hadrons on a GLAST like CsI calorimeter.
Benchmarking simulations is done by comparing data and simulations for some basic
variables such as the energy deposit and the number of logs hit per layer and for the
whole calorimeter, but also for more evolved variables, e.g. maximum energy deposit
in a layer etc... We will be sensitive mostly to the global shape of the distributions
that can give us hints that the topology of hadronic cascades is well reproduced, or
not, by simulations.

This study concludes that at low energy, i.e. under 10GeV, all the simulations
painfully reproduce the calorimeter energy sum under 200MeV. However the Bertini
model has to be put forward as it proposes distributions significantly closer to the
data. The Bertini intra-nuclear cascade model should be used instead of LHEP to
generate event sets dedicated to hadronic background rejection. At high energy, i.e.
over 10GeV, the LHEP model gives good results and the only small discrepancy
pointed out concerns the energy deposit dispersion. Actually this small discrepancy
a priori cannot have bad consequences for background rejection algorithms. So the
LHEP model should still be used over 10GeV to generate hadronic cascades.
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Introduction

This note presents results from a study aiming at benchmarking Geant4 hadronic
cascade simulations in a GLAST like calorimeter by comparing some pertinent out-
put variables with real data from the GLAST-GSI and GLAST-CERN beam tests
lead in 2003.

The first part briefly recalls the issue of hadronic background rejection for GLAST
and the key role played by Monte-Carlo simulations in the development and tuning
of rejection algorithms.

A review of the different hadronic cascade models available in Geant4 [7][26]
is then proposed, trying to point out the main differences between their nuclear
reaction product properties.

The third part refers to the GLAST-GSI beam test and details the experimental
setup and the data analysis that leads to two clean sets of 1.7GeV protons and
3.4GeV deuterons data. Both data sets are used to benchmark the results of low
energy Geant4 Monte-Carlo simulations.

The fourth part deals with the GLAST-CERN beam test during which we had
10GeV /c and 20GeV /¢ mixed hadrons and electrons beam hit a GLAST like Csl
calorimeter. These data are used to compare hadronic cascades and electromagnetic
showers and to validate Geant4 high energy hadronic cascade simulations from a
GLAST oriented point of view.






1 Hadronic background rejection

1.1 GLAST Hadronic background rejection

When in space, most of GLAST triggers will be due to cosmic rays, so that hadronic
background rejection is a key step to the mission success [21] [16]. The required
rejection rate is 10° to 1 according to the specifications, but actually, the ultimate
goal is nothing else than 10° to 1, the rate reached for EGRET. The ACD Ant:
Coincidence Detector veto that detects charged particles will reject most of hadronic
events. Coupling the ACD, calorimeter and tracker information together in an on-
board filter will enhanced the rate of real gamma events sent to the ground. The
emission band width is limited to about 40H z, and only half of these events are
gamma rays. Consequently, the ground analysis also needs for powerful and efficient
algorithms to discriminate gamma and hadronic events.

As far as the on-board filter and the ground analysis are concerned, all the
hadronic rejection algorithms are developed and tuned relying on GlastRelease
which is the official GLAST Monte-Carlo simulation. GlastRelease is based on the
GEANT4 simulation tool kit that uses the LHEP (GHEISHA) model for hadronic
cascade simulations. Besides, cosmic rays cover a wide range of energy from a couple
hundreds of MeV to tens of GeV and hadronic cascade are completely different kind
of events when they are peripheral or central reactions.

Hadronic cascade simulation on such a wide range is challenging so that we really
need to check how well they can reproduce real data. A common goal of both the
GLAST GSI and CERN beam test was to measure some real hadronic cascades in
GLAST like calorimeters to benchmark the LHEP model used in GEANT4 for the
variables we are interested in. The aim is really to make the most straight forward
comparison between data and simulation, to determine which hadronic model we
should use in GEANT4 for GLAST hadronic studies purpose.

1.2 Variables of interest

1.2.1 First order

For our GLAST like calorimeters, energy deposits from each side of each CDE are
the only data we have, but there are many ways to combine them. Our goal is
to characterize hadronic cascades and to check if the simulated one present the
same features. Let’s first have a look to some typical hadronic and electromagnetic
cascades from the CERN beam test. Figure 1.1 show the mean energy deposit per
CDE, and the number of time each CDE has been hit (i.e. received more than
50MeV) for electromagnetic and hadronic cascades for 20GeV/c incident particles.
A primary feature of electromagnetic showers, obvious on the left side of figure
1.1, is the energy deposit longitudinal profile that is very well described by a I’
function. As opposed to this, hadronic cascades do not show any particular feature,
one can just expect a strong energy deposit when a strong nuclear reaction occurs
in a layer (e.g. central collision). Consequently, the first variable we want to test
is certainly the energy deposit per layer. The cascade spatial development in the
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Figure 1.1: Mean energy deposit profile and number of hits for each CDE in CERN
GLAST-like calorimeter : on the left, for 20GeV/c incident electrons and on the
right for 20GeV/c pions - 10000 events from beam data.

calorimeter presents the same kind of features. Whereas electromagnetic showers
develop early and progressively in the calorimeter, hadronic cascades have not such
a common feature as the number of hits per logs on the right side of figure 1.1
shows. To characterize the cascade spatial development, the second variable is to
be the number of logs hit per layer. From a global point of view, electromagnetic
showers have strong common features with little dispersion compared to hadronic
cascades.

To complete the first two variables and test for layer correlations, we are also
going to test the total energy deposit and the total number of logs hit in the whole
calorimeter.

1.2.2 Reconstruction : Longitudinal profile fitting

As it’s already been said, the longitudinal profile of energy deposit for electro-
magnetic showers is reasonably well described by a I' function between 1GeV and
100GeV (see [19]). One of the GLAST energy reconstruction methods consists in
fitting the energy deposit profile sampled by the calorimeter with an appropriate
function to get the energy of the incident photon as shown on figure 1.2. As only
electromagnetic showers show this feature, one can expect the x? of the fit to be
a very interesting variable to discriminate hadronic and electromagnetic cascades.
However, the profile fitting only works above a few GeV so that we will test it only
for the CERN beam test data at 10GeV/c and 20GeV/c.
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Figure 1.2: Energy deposit longitudinal profile fitted by a I' function on one event
e~ 20GeV . Error bars correspond to the stochastic error on the energy deposit, thus

are in \/ALE;.

I coded the profile fitting method for the energy deposit sampled in the 8 layers
of the calorimeter, the same way it’s done in the CalRecon package of GlastRelease.
Let the equation (1.1) define the energy deposit sampled in the i layer of the
calorimeter :

(1 + dX,) * Bx, (i+dX0)*BX0+1))

AE; = —FEj * <F(a, ;) ) — (e, ;) (1.1)

where o Ej is the incident particle energy in MeV.

e [' is the generalized gamma function.

o o = 2.65 % e0-154109(F0/1000.) parametrized in [23]

o )\ = 2.29 x ¢~ 0:031xl0g(E0/1000) parametrized in [23]

e By, = 15292 is a constant to switch to unit of CsI log thickness
from the radiation length in Csl

The fit has two free parameters : Ej, the energy we are looking for and d.Xj, that
refers to the starting point of the shower. The parameters o and A are linked to
the Csl intrinsic properties and the geometry of the calorimeter [19]. To compute
the x2, the error chosen on the mean energy deposit per layer AE; is /AE; that
corresponds to the stochastic error on the energy deposit.

So, the fit outputs are Ej, d X, and the x2, three new and useful variables propos-
ing a different way to compare data and simulations of hadronic cascades.
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1.2.3 Hadronic oriented variables

The main feature of hadronic cascades is that they are very different one from each
other. A peripheral nuclear reaction will have very different energy deposits from a
central one. For instance, a peripheral reaction is probably to have a quite smooth
energy profile with slowly increasing energies, whereas a central reaction will cause
just a very high energy deposit in the layer where it takes place. Moreover, the same
kind of nuclear reactions can engender very different energy profiles depending on
the layer where they occur.

These statements lead us to test three more variables that try to characterize
these features of hadronic cascades. The raw RMS of layer energy deposits (the
energy profile RMS) helps us to test that the simulation reproduces the great di-
versity of hadronic cascades. Then, we will have a look to the maximum energy
deposit in a layer along the longitudinal profile (the energy profile maximum) that
is linked to the power and the development of hadronic cascades in the calorimeter.
In association, the layer number of the energy profile maximum is also to be tested.

All the variables introduced here constitute the basis of the benchmark :

e energy deposit per layer : Eprgyer

number of logs hit per layer : multiplicity per layer Mzqye,.

total energy deposit in the whole calorimeter : Eg,p,.

sum of logs hit in the whole calorimeter : total multiplicity Mgum,.

profile fitting variables : reconstructed energy and starting point, x?.
e energy profiles RMS.
e energy profiles maximum F);,., and corresponding layer index Jgmqaz-

Of course, along the analysis we might be willing to check some other variables to
improve our understanding of some unexpected features.



2 Hadronic cascade simulations in GEANT4

2.1 Overview

Before entering the cascade simulation itself, the first step is to get the inelastic
scattering cross section of protons on Csl. For this purpose, GEANT4 uses a re-
engineered piece of code inherited from GHEISHA, that is able to compute the cross
sections by interpolating on tabulated data. The inelastic scattering cross section of
1.7GeV protons on Csl processed by GEANT4 is 1308mb what is compatible with
the literature [25].

Different hadronic cascade models are proposed by the GEANT4 tool-kit [8],
however, all of them are more or less based on the intranuclear cascade scheme
introduced by Serber [22| in 1947 and presented on figure 2.1. Serber early noticed
that for high energy hadron-nucleus interactions, the de Broglie wave length of the
incident particle is small in front of the characteristic length of nucleons within the
nucleus. The consequence is that hadron-nucleus interactions can be described as
multiple interactions of the incident particle with the individual nucleons of the
nucleus. This assumption gives a low energy limit around 200MeV hadrons for all

intranuclear cascade models.
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Figure 2.1: The intra-nuclear cascade model : the incident proton interacts with the
nucleons inside the nucleus. Any particle, primary or secondary, that can escape
from the first nucleus is also allowed to interact with other nucleus to generate an
internuclear cascade.

Hadronic cascades can be well described in three steps :

e intranuclear cascade : the bullet interacts individually with the nucleons within
the nucleus, generating secondary particles (protons, neutrons, pions, deuterons

11
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etc...) that are also able to interact with other nucleons within the same nu-
cleus or with an other nucleus then creating an inter-nuclear cascade.

e pre-equilibrium : the target nucleus, excited by the intranuclear cascade, is
far from the thermodynamical equilibrium and part of the nucleons, called
excitons, have a high kinetic energy. The nucleus thermalizes emitting excitons
and light nuclei, till alpha particles.

e break up/evaporation : the thermalized nucleus still have a high residual ex-
citation energy that can be dissipated by a change of state and  emission or
by evaporation of one or more nucleons. If the residual energy is high enough,
heavy nuclei can even break up. The work of Weisskopf and Ewing are the
reference for these processes [24].

Now let’s have a quick tour of the main hadronic cascade models available in
GEANT4 in the energy range 100MeV to 100GeV. In order to check for the main
characteristics of each model, we will rely on a few features of nuclear reaction
products :

e Multiplicity : Number of secondary particles.
e Charge : Charge distribution of secondary particles..
e Px : Momentum distribution of secondary particles along the beam axis.

e Angle :Angular distribution of secondaries with respect to the beam axis, 0°
is forward, 180° is backward.

The following plots have been obtained with GEANT4, simulating a 1.7GeV proton
beam at normal incidence on a GLAST like calorimeter. All the hadronic models ac-
cept many different hadrons as input, but none is able to simulate hadronic cascades
generated by deuterons or other light nuclei.

2.2 LHEP model

LHEP is GEANT4 default model when one just turns on hadronic processes. It’s
based on GHEISHA, a hadronic cascade code developed by H. Fesefeldt [5][28] since
1978. LHEP modeling parametrizes the final states of hadronic interactions from
fits on real data but the great number of free parameters with hazardous physical
interpretation entails that it can only be used as an hadronic event generator. The
implementation of GHEISHA in GEANT4 actually separates in two branches : LEP
from 100MeV to 20GeV and HEP from 20GeV up to 10TeV. This wide energy range
is a real advantage of the LHEP code that is known to reproduce average quantities
well in short computation time.

The charge distribution on figure 2.2 shows up that nuclear reaction products
are only light ions, heavy ions one can see are only target nucleus of the material.
This feature is not physical as one would expect to see quasi-target nucleus but let’s
wait and see if this has a strong effect on our variables. Besides, the same features
can be observed with 20GeV incident protons.
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Figure 2.2: Main features of nuclear products for the LHEP model : number of
secondaries, charge distribution, momentum along the beam axis and angle with
respect to this axis. Simulation of 1.7GeV protons on a GLAST like Csl calorimeter,
features are equivalent at higher energies.
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2.2.1 LHEP-GN model

The LHEP model can be enhanced at low energy (under 3GeV') by taking into ac-
count gamma-nuclear and electro-nuclear interactions. The main effect is an increase
of the number of secondaries emitted backward. However, the consequences on our
variables are so small that we will not present the results obtained with this model.

2.3 Bertini intra-nuclear cascade model : BERT model

The Bertini intra-nuclear cascade model is probably one of the oldest as the first
results were published by H.W. Bertini in 1963 [2] at low energy and then in 1969 [3]
and 1971 [4] for energies from 300MeV a 3000MeV. Bertini’s original idea was to
model the nucleus by a central spheres and two shells, each region with each its
own nuclear density. The implementation of this model in GEANT4 is valid for
proton, neutron and pion bullets with kinetic energy ranging from 100MeV up to
10GeV. The code takes into account the Bertini intra-nuclear cascade model with
excitons [10] [11] , a precompound model, a simple nucleus explosion model, a fission
model and an evaporation model.

The charge distribution of secondaries shown on figure 2.3 really looks great
with nice distributions of quasi-target nucleus with less and less charge starting
from Cs and 1. Quasi-targets are created by very peripheral nuclear reactions when
the incident particle just knock a couple of nucleons out of the nucleus.

2.4 Binary cascade : BIC model

The binary cascade model develops an original approach as it propagates primary
and secondary particles in a 3D nucleus [6]. Moreover, for the disintegration, the
model takes into account the resonances using tabulated cross sections when they
exist. Pre-equilibrium and des-excitation problems are not treated by the model
itself but by general GEANT4 modules. Actually, the binary cascade model is really
part of GEANT4 and evolves quickly and constantly trying to answer the willing of
the LHC detectors teams. This model covers the same energy range as the Bertini
model, from 100MeV to 10GeV . It’s tuned to compute the best cross sections within
hadronic interaction as it’s mainly used for spallation problem calculations, but the
drawback is that computation times are are known to be long.

Figure 2.4 presents quite a nice distribution of charge with quasi-target nucleus,
about the same as for the Bertini model, but one can also notice that there are less
particles at high angles.

2.5 High energy models : QGS models

At high energy, three more models are available : QGSP, QGSC and FTFP. These
theory driven models use quark gluon string models for the punch-through inter-
actions of the projectile with a nucleus. They are valid for incident hadrons from
10GeV up to 107eV so, I tested them against 20GeV hadrons from the GLAST
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Figure 2.3: Main features of nuclear products for the BERT model : number of
secondaries, charge distribution, momentum along the beam axis and angle with
respect to this axis. Simulation of 1.7GeV protons on a GLAST like Csl calorimeter.
Charge distribution shows up with nice quasi-target nucleus.
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Figure 2.4: Main features of nuclear products for the BIC model : number of secon-
daries, charge distribution, momentum along the beam axis and angle with respect
to this axis. Simulation of 1.7GeV protons on a GLAST like CsI calorimeter. Charge
distribution shows up with nice quasi-target nucleus but few particles at high angles.
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CERN beam test. As far as our variables are concerned, the results from these par-
ton string models for 20GeV protons are comparable within a few percents to the
LHEP simulations. Consequently, I will not describe these models in details and the
results will be presented in appendix A.1 only.



3 GLAST GSI beam test

3.1 Experimental setup

3.1.1 FRS line

The GSI [27] beam test was performed on the FRS * line. For proton and light
ion runs, we had a '?C primary beam, accelerated to 1.7GeV in the SIS (the ion
synchrotron), at the entry window of the FRS, see figure 3.1. The carbon ions hit a
target generating nuclear reactions, then the secondaries follow the path through the
fragment separator : only particles with the selected properties will go out of the line
and enter the calorimeter. The FRS line is equipped with scintillators for triggering

Taraet Scintillators MWPC
g MWPC Time of flight Wire Chamber
Wire Chamber /
SIS - Beam
HIEAE] | cuast
: H_H U LI E.M.
MUSIC |
SEETRAM . lonization Calorimeter
Flasion | Chamber

pradacts Degrader

Figure 3.1: The FRS Fragment Separator : Primary ions from the SIS hit the
target, nuclear reaction products will go through the whole FRS magnet optical
path only if they have the selected properties (energy, charge to mass ratio).

and time of flight measurements, multi-wire proportional chambers for tracking and
ionization chamber for energy loss. However, these detectors are designed to work
with heavy ions so that they are useless for proton and deuteron analysis. For the
trigger we had to add our own thick plastic scintillator to enhance the triggering
efficiency.

3.1.2 E.M. GLAST like calorimeter

During this beam test, the N.R.L." provided us with the Engineering Model 1 (EM).
The EM has nearly all the features of a flight tower calorimeter [12]| [13] as it is
equipped with flight CDEs, a flight carbon structure and flight like electronic circuits.
We had no tracker in order to have a minimum of material in front of the calorimeter.
As shown on picture 3.2, the EM was placed a mobile table, it could move in the
plane orthogonal to the beam axis, and a rotating system enabled the EM to face
the sky to collect cosmic muons.

*Fragment Separator
tNaval Research Laboratory
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Figure 3.2: The E.M. in place on his moving table, facing the FRS beam.

19
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3.2 Data analysis

3.2.1 FRS settings

I will briefly describe here how we used the FRS for particle selection, more details
can be found in [9]. Let a particle of charge q, with a momentum p(GeV /c) moving
in a magnetic field B, the gyration radius p is given by :
p(GeV)

Br="43, (3.1)
The optical path of the FRS line gives the limits of the radius p in each of both turns
so that equation 3.1 shows that setting the magnetic field B is selecting the particles
with a defined ratio ’—; ~ %. Moreover, between the two sets of bending magnets,
an achromatic degrader is responsible for an energy loss that is different for each
isotope as it goes like %2. Consequently, the isotopes will be spatially separated in
the final focal plane. By setting the two sets of bending magnets, one is able to
select particles with defined % and g ratios at the center of the final focal plane.

For instance, during the light ion runs, we wanted to select particles with % =2in
order to have « particles and we also had deuterons.

For protons runs, FRS settings were somewhat special as protons are the only
particles for which A = Z = 1. The selection is, a priori, very strong, however
relativistic protons can easily generate nuclear reactions within the line, and part of
nuclear products may get out so that we don’t know how much pure is the proton
beam.

3.2.2 E.M. energy calibration

The EM energy calibration has been done by S. Checktman using cosmic muons and
charge injection runs. Charge injection consists in applying a define and well known
set of voltages on each channel in order to quantify the electronic gain response
function. For perfect electronic circuits, the response is linear, but GLAST electronic
shows up non-linearities that rise to more than 10% for low voltages and high gains.
So the response functions are used to inter-calibrate channels on a same diode taking
account for non-linearities.
The equation 3.2 define the energy calibration for LEX8 directly from cosmic
muon data.
LEX8(MeV) = (LEX8(bin) — Ped(bin)) x Gain (3.2)

where @ LEX8(MeV) is the measured energy in LEX8 in MEV.

e LEX8(bin) is number of bins read by the ADC for LEXS.

e Ped(bin) is the pedestal calculated for LEXS8 in bins.

e GGain is the conversion factor in ADC bins per MeV for LEXS,
determined from the ionization energy deposit of cosmic muons in the Csl log.

Pedestal are calculated by fitting a Gaussian on the peak seen in ADC channels
for logs not hit by any particle. To define the right conversion factor from ADC
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bins to MeV, we use cosmic muons that are merely minimum ionizing particle so
that the energy deposit distribution follows a Landau with a most probable value
around 11.2MeV for 19.9mm of Csl. As cosmic muons have an angular distribution, a
selection is done on good trajectories, using crossing logs, to reduce the broadening of
the Landau distribution. The energy calibration of other gains is done with respect
to LEX8. The method can be summarized as follow :

e LEXS : direct calibration from cosmic muons.

e HEXS8 : HEXS has a special muon mode HEX8, which gain is multiply by 10.
First, the muon gain mode is inter-calibrated with LEX8 using cosmic muon
data. Second, charge injection calibration of HEXS8, over HEXS is achieved.

e LEXI : charge injection calibration over LEXS8
e HEX1 : charge injection calibration over HEXS8

With this energy calibration method, all channels have been calibrated. Besides,
1.7GeV protons of the FRS beam can also be used to check this calibration as they
are also minimum ionizing particle when they do not generate hadronic cascades.
All the logs have not seen the primary protons, that’s why we could not use them
for the whole calibration.

To check the calibration, we superpose a GEANT4 simulation of the energy
deposit of 1.7GeV protons in our calorimeter to the beam data, and this reveals a
4% discrepancy on the most probable value of Landau distributions. For consistency,
I correct for this systematic error by applying the appropriate correction factor on all
channels. Eventually, the agreement is almost perfect between data and simulation
as shown on figure 3.3 for the first four layers. Moreover, 1.7GeV protons and 3.4GeV
deuterons data do not show energy deposit per log greater than 1GeV, so that for
the analysis, we will only use the first two gains : LEXS8 up till 100MeV and LEX1
over 100MeV. We also set a threshold of 5MeV per log : above 5MeV, the log is said
to be hit and it’s energy is summed in the energy deposit per layer.

Last but not least, one must keep in mind that this calibration is not valid for
heavy ions because of scintillation quenching [17][18] which was the main goal of the
GSI beam test [15]. For instance, energy deposits of secondary ions from nuclear
reactions are obviously badly measured and this possibly sets a limit on the expected
agreement between data and simulations.

3.2.3 Cuts

Among the many runs taken during the GSI beam test, two are of interest for our
analysis. The first one is run 165 with 1.7GeV protons, the second is run 178 that
contains 3.4GeV deuterons. As already explained, the FRS line is not suited for such
light ions, so that we can only rely on the calorimeter for the particle identification.
A set of cuts is applied to both runs in order to make a strong selection and keep
only good proton events from run 165 and deuteron events from run 178, as shown
on figure 3.4. The first two cuts select events for which the energy deposit in the
entry log of the first layer is between 8MeV and 20MeV, this entry log being the only
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Figure 3.3: Checking the energy calibration for the first four layers of the calorimeter
after the correction for a 4% systematic error. Data are in continuous line and
simulation in dashed line. The great agreement shown here is used as a reference
for the following comparisons between data and simulations on hadronic cascades.
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one in the first layer to be hit. The third cut ensures that at least one log is hit in
the second layer in order to avoid events going through the gaps between logs.
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Figure 3.4: Set of cuts on the first two layers to select MIPS : before cuts on the left
and after cuts on the right. The upper plot shows the cut on the energy deposit in
the entry log of the first layer, the middle one shows that only one log is hit in the
first layer and the lower one shows that at least one log is hit in the second layer to
avoid gaps. Beam test data 1.7GeV protons

One has certainly noticed on figure 3.4 that the cuts are strong and get rid of a
quarter of all events. In addition to this, simulations show that the events removed
by the cuts are mainly hadronic cascades ! Actually, nuclear reactions generate back-
splash, i.e. particles emitted backward, and back-splash effects are quite strong at a
few GeV. For instance, we know from simulations that half of the reactions that took
place in the second layer are responsible for energy deposits greater than 20MeV in
the first layer, these reactions are cut. The consequence is that one can expect the
cuts to remove particularly nuclear reactions with strong back-splash. To check if it
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is not a too important bias for our analysis one can have a look to the total energy
deposit in the whole calorimeter as show on figure 3.5. Energy distributions before
and after the cuts are presented. The conclusion is that the cuts do not change the
shape of this distribution dramatically.
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- RMS 209.8
4
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10° =
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Figure 3.5: Simulation (BERT model) : cuts impact on the total energy deposit in
the whole calorimeter. Histogram in plain line before the cuts, and in dashed line
after the cuts. The shape of the original distribution is preserved by the cuts.

3.3 Simulation and results for 1.7GeV protons

3.3.1 1.7GeV protons simulation

Simulations have been set up using the GEANT4 tool kit version v6.2p02.The ge-
ometry takes into account 8 crossed layers of 12 Csl logs, a carbon structure and the
aluminum cover plate. The FRS detectors have also been considered as they are a
possible cause of energy loss or nuclear reactions. We do not have much information
about the beam profile, but energy distributions in the different logs of the first layer
led us to use a 3D Gaussian beam extending over 3 logs. Eventually, it’s interesting
to notice that a much simpler geometry with Csl logs and a punctual beam only,
gives the same results.

Using this setup, 53000 protons are generated at normal incidence with 1.7GeV
kinetic energy. The same cuts are applied on this simulated run as on the beam
data in order to have consistent comparisons.
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3.3.2 Data and simulation comparisons

For all the comparisons, histograms from the simulations are normalized to his-
tograms from the data using the number of events. The norm factor is usually
around 1. as the number of event simulated is somewhat equal to that of real
events. The issue is to compare the shape of the distributions to make sure that
the simulation reproduces well all the different sorts of events. Moreover, table 3.1
reports the values of the first two moments (mean and RMS) of all the simulated and
real distributions in order to give more quantitative results. Variable names used
in table 3.1 are those reported in section 1.2.3 page 10. For the energy deposit and
multiplicity per layer, mean and RMS of the fourth layer are given as representative
values for all layers. This table should only be considered as a help to quantify
differences between simulated and real distributions, and no conclusions should be
drawn without a closer look to histograms themselves.

Mean of distributions for data and LHEP and BERT models
Variables Elayer Mlayer ESum MSum EMa:c JEmaw RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV

data 28 1.1 | 201 | 89 | 23 | 38 | 23
LHEP | 32 12 | 211 | 90 | 25 | 3.7 | 25
Arupp | 4 0.1 10 | 01 2 | 0.1 2
BERT | 26 12 | 182 | 90 | 23 | 3.9 18
Apprr | -2 01 | -19 | 01 | 22 | 0.1 5

RMS of distributions for data and LHEP and BERT models
Variables Elayer Mlayer ESum MSum EMa:c JEmaw RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV

data 62 0.6 220 2.5 36 2.2 43
LHEP 68 0.6 231 2.6 40 2.2 45
Arggep -6 - 11 0.1 4 - 2
BERT 49 0.6 181 2.6 33 2.3 32
ABrRrr -13 - -39 0.1 -3 0.1 -11

Table 3.1: 1.7GeV protons from GSI data. Differences between the first two mo-
ments of both the real and simulated distributions : for a variable X, Apggp =
Xruep — Xdata €6 Apprr = XBERT — Xdata

Energy deposit and hit multiplicity per layer

Figures 3.6 and 3.7 display the comparisons between data and simulations for energy
deposit and multiplicity per layer : plain lines are data, dashed lines are LHEP
simulation and dotted lines are BERT simulations. The first bin is hidden for a
better look on the distributions and is well reproduced by both simulations within a
few percent. The agreement shown between data and both simulations is very good
on the overall, despite the lack of a few high energy events for the Bertini model
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that entails a 20% difference on the RMS of the energy deposit per layer (only 0.5%
of events are concerned anyway).

Energy sum and total hit multiplicity

Figure 3.8 displays the comparisons between data and simulations for the total en-
ergy deposit and the total hit multiplicity. It’s striking to see on the energy plot that
the simulated energy distributions dramatically lack of events between 100MeV and
200M eV, worst case being for the LHEP model. In details, the bins corresponding
to MIPs (80MeV < Egym < 100MeV and 8 logs hit) are well reproduced by both
simulations, within 10%, but for the following bins (Egy, > 100MeV and 9 logs
hit) the difference reaches 40%. Between 100M eV and 200M eV, the integrated lack
of events is a factor of 5 for the LHEP model and around 20% for the BERT model.
This feature might have to be linked to what we said about peripheral nuclear re-
actions in section 2.3 : the LHEP model does not produce peripheral reactions and
these are low energy deposit events. For the total multiplicity, the same feature is
present again. If it’s less striking, there is a real lack of events with 9 and 10 logs
hit. Moreover the simulated distribution are so different from the real ones that here
one cannot report to the mean and RMS to get to the right conclusion.

As the LHEP and BERT model have some difficulties here, we should have a
look to the Binary Cascade model. As shown on figure 3.9, the BIC model seems
to propose a better total energy deposit distribution at low energy at least. But
in the mean time, the total multiplicity distribution shows off that these low en-
ergy deposits are associated with high multiplicities, a feature not seen in the data.
Looking at the correlation between total energy deposit and multiplicity, see figure
3.10, reveals that the BIC model correlation is very different from the one seen in
the data. This correlation characterizes the topology of hadronic cascades, their ex-
tension in the calorimeter, so that it rules out the BIC model from further studies.
The energy-multiplicity correlation is presented on figure 3.11 for the BERT and
LHEP models : these two models reproduce well the correlation seen in the data for
the most important part of the energy range, i.e. from 0 to 800MeV where almost
all events are.

Energy profile maximum and RMS, index of the layer with the maximum
energy deposit

The first comparisons revealed discrepancies between data and simulations, we need
to look at more variables to understand them better. Figure 3.12 displays the distri-
butions for the energy profile maximum, the index of the layer with this maximum
and the raw RMS of the energy profile. On the energy distributions, the same lack
of low energy events shows up, it’s obviously the same feature as for the total energy
deposit. This confirms the idea that this lack of event in the simulations is really a
global effect. The BERT model distribution are closer to the data than LHEP ones,
but the lack of high energy events is the reason for the 20% discrepancy on the first
two moments of the profile RMS distribution. Besides, the index of the layer with
the maximum energy, that is linked to the development of the cascade along the
calorimeter, is quite well reproduced.
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Figure 3.6: Protons 1.7GeV. Energy deposit per layer : plain lines are data, dashed

lines are LHEP simulation and dotted lines are BERT simulations.
events, data and simulations agree well.

For most of
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Figure 3.7: Protons 1.7GeV. Multiplicity per layer : plain lines are data, dashed lines
are LHEP simulation and dotted lines are BERT simulations. For most of events,
data and simulations agree well.
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Figure 3.8: Protons 1.7GeV. Total energy deposit and total multiplicity : plain lines
are data, dashed lines are LHEP simulation and dotted lines are BERT simulations.
Simulated distributions do not reproduce the data for low energy deposit (Erota; =~
200MeV) and for low multiplicities (9 or 10 logs hit).
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Figure 3.10: Protons 1.7GeV. Correla- Figure 3.11: Protons 1.7GeV. Correlation
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the BIC model is different from the one relation is fine from 0 to 800MeV where
observed for the data. almost all events are.

Maximum energy deposit per layer and associated multiplicity

For a deeper study of hadronic cascades, we use the maximum energy deposit to
tag the layer where it happens. LHEP simulations show that for 80% of nuclear
reactions, the index of the energy profile maximum corresponds to the layer where
the reaction took place (this rate is 63% for the BERT model). Maximum energy
deposit are to be compared layer by layer : for each event, the histogram of the layer
with the maximum energy is filled with this energy if it’s greater than 20MeV.

Figures 3.13 and 3.14 present the maximum energy deposit per layer and the
corresponding multiplicities for the data (plain line), LHEP model (dashed line)
and BERT model(dotted line). Here the multiplicities do not show any particular
feature, nonetheless the maximum energy deposit distributions change as we go
deeper in the calorimeter. The main feature seen on the data, is that the last two
layers distributions have lower energy than the first ones. The effect is strong on
the very last layer. The LHEP simulation does not reproduce this feature at all
and shows the same distribution in all the layers. The energy distributions from the
BERT simulation reproduce quite well this feature even if one could argue that the
width of the simulated distribution is too low.

An explanation might be that if the nuclear reaction happens in the last layer
then the maximum energy deposit will automatically be in the last layer, which is
not the case for a hadronic cascade that develops early in the calorimeter and let
it’s maximum energy deposit in one of the following layer. This would mean that
the Bertini model offers a better simulation of the development of hadronic cascade
in the calorimeter.
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Figure 3.12: Protons 1.7GeV. Energy profile maximum, index of the layer with this
maximum and RMS of the energy profile for data (plain line), LHEP model (dashed
line) and BERT model(dotted line).
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3.4 Simulations and results for 3.4GeV deuterons

3.4.1 3.4GeV protons simulations

None of the hadronic cascade models available in GEANT4 is able to generate nuclear
reaction for deuterons. However, this is not really a problem as it’s been shown
experimentally that at a few GeV proton and deuteron hadronic cascades have the
same properties, what is far more complex to explain theoretically. So, we will
compare 3.4GeV deuteron beam test data with proton simulations at 3.4GeV of
kinetic energy.

3.4.2 Data and simulation comparisons

The same method as the one previously used is followed for the comparisons and
table 3.2 reports the first two moments of the distributions for data and LHEP and
BERT simulations.

Mean of distributions for data and LHEP and BERT models
Variables Elaye'r Mlayer ESum MSum EMaa: JEmaw RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV
data 45 1.3 273 10.0 32 4.0 39
LHEP 37 1.2 244 9.6 30 3.8 29
ArLHEP -8 -0.1 -29 -0.4 -2 -0.2 -10
BERT 37 1.3 241 9.9 31 3.9 27
ABERT -9 - -32 -0.1 -1 -0.1 -12
RMS of distributions for data and LHEP and BERT models
Variables Elayer Mlaye'r ESum MSum EMaa: JEmam RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV
data 109 0.9 328 4.1 59 2.2 68
LHEP 86 0.8 310 3.7 51 2.2 56

ALgEp -23 -0.1 -18 -0.4 -8 - -12
BERT 82 0.9 306 4.2 54 2.2 o1
ABERT =27 - -22 0.1 -5 - -17

Table 3.2: 3.4GeV deuterons from GSI data. Differences between the first two
moments of both the real and simulated distributions : for a variable X, Argpp =

Xeuep — Xdata € Apeprr = Xgerr — Xdata

Energy deposit and hit multiplicity per layer

Figures 3.15 and 3.16 display the comparisons between data and simulation for en-
ergy deposit and multiplicity per layer : plain lines are data, dashed lines are LHEP
simulation and dotted lines are BERT simulations. From a global point of view,
the energy deposit distributions present a nice agreement between data and both
simulation, however one can notice a small lack of events in the simulations around
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100M eV energy deposit per layer. Moreover, the difference on the first two moments
of these distributions reaches 25% and is that high because the simulated distribu-
tions also lack a few high energy events. The multiplicity per layer distributions
present the same kind of features with a lack of events with 2 or 3 logs hit but with
no consequence on the mean and RMS as shown on table 3.2. Besides a quick look
to figure 3.6 is sufficient to see that the gap between LHEP and BERT simulations
is smaller at 3.4GeV than at 1.7GeV.

Energy sum and total hit multiplicity

Figure 3.17 displays the comparisons between data and simulations for the total
energy deposit and the total multiplicity . For both distributions, the same feature
seen for 1.7GeV protons is observed : there is an important lack of events with low
energy deposit (around 200MeV) and low multiplicity (9 or 10 logs hit) , in the
simulated distributions compared to beam test data. Again, the BERT model is
better than LHEP even if the difference between both model at 3.4GeV is smaller
than at 1.7GeV .

Energy profile maximum and RMS, index of the layer with the maximum
energy deposit

Figure 3.18 displays the distributions for the energy profile maximum, the index
of the layer with this maximum and the raw RMS of the energy profile. On the
energy distributions, the same lack of low energy events shows up, it’s obviously the
same feature as for the total energy deposit. The same scenario is played here as
for 1.7GeV protons. However, again, the discrepancies between the LHEP and the
BERT model are smaller at 3.4GeV than at 1.7GeV .

Maximum energy deposit per layer and associated multiplicity

Figures 3.19 and 3.20 present the maximum energy deposit per layer and the cor-
responding multiplicities for the data (plain line), LHEP model (dashed line) and
BERT model(dotted line). Maximum energy deposit distributions are not well re-
produced by both simulations, even the BERT model distributions are not good as
they were at 1.7GeV. But the most striking discrepancy comes from the multiplic-
ities : in all the layers, the main peak is at one log hit in the data and at two logs
hit in the simulations. The maximum energy deposit often corresponds to the layer
of the nuclear reaction and we have to keep in mind that the bullets we use in the
simulation are protons and not deuterons as in the data. The conclusion is that we
might see here the limit of comparing deuteron hadronic cascade data with proton
hadronic cascade simulations for our specific variables.
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Figure 3.15: Deuterons 3.4GeV. Energy deposit per layer :
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plain lines are data,

dashed lines are LHEP simulation and dotted lines are BERT simulations. Please
note that histograms are in log scale to show the full distributions. For most of
events, data and simulations agree well. Data are from 3.4GeV deuterons and sim-
ulations from 3.4GeV protons.
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Figure 3.16: Deuterons 3.4GeV. Multiplicity per layer : plain lines are data, dashed

lines are LHEP simulation and dotted lines are BERT simulations.

For most of

events, data and simulations agree well. Data are from 3.4GeV deuterons and sim-
ulations from 3.4GeV protons.
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4 GLAST CERN beam test
4.1 The beam test

4.1.1 Experimental setup

The beam test took place at CERN in august 2003 on the H6 line. As shown on
figure 4.1, the experiment was set up as follow :

e Plastic scintillators (S1 and S2) : S1 measures 4cm x 4cm and S2 should mea-
sure 2cm X 2cm but more likely 2em x 2.5em from tracker data. S1 and S2
are used in coincidence to trigger the DAQ only on beam particles.

e Tracker (T1 and T2) : the tracker, brought to us by Italian collaborators [20],
consists in two modules with two 410um thick silicon XY planes each. The
active window measures 9.5 x 9.5 cm?.

e Lead plate : we had the possibility to add a lead plate of known thickness
upstream from the calorimeter in order to be able to sample the longitudinal
profile of electromagnetic showers. It was also useful to emulate the thickness
of GLAST tracker that is equivalent to 1.4 radiation length.

e Calorimeter (C1 and C2) : the calorimeter is split into two modules : C1 is
composed of 8 layers of 6 horizontal flight CDEs and C2 is composed of 3
layers of 5 horizontal small CsI logs with only one diode at each side, lent by
the NRL* . The calorimeter was placed on a rotating plate on a moving table.
As of now, the calorimeter will only refer to C1, the main calorimeter, also
known as the minical.

Let’s follow a beam particle through our experiment : it first goes through both
scintillators that trigger the DAQ, and then goes through the tracker that measures
its position on both silicon planes. The particle then goes through the lead plate
and finally enters the calorimeter where it can, depending on its nature, make a
simple ionization energy deposit or generate an electromagnetic shower, or generate
a hadronic cascade.

4.1.2 Beams and electronic

During the experiment, we could have 10 full days of beam from the H6 line on the
SPS. The primary beam was a 450GeV/c proton beam from which we had several
high energy primary positron beams from 50GeV/c up to 200GeV/c and secondary
beams at 10GeV/c and 20GeV /¢ with a mixture of electrons, muons, pions and other
particles. Hadrons from 10GeV/c and 20GeV/c runs will be used to test hadronic
cascade simulations. We also had some 20GeV/c muon beam for calibration and
localization tests purposes.

A few words about the calorimeter electronic may be useful. The Csl logs are
true flight CDEs with the same wrapping, diodes and bonding, but the main part of

*Naval Research Laboratory
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Figure 4.1: Main elements on the beam line.

the electronic chain was designed in Bordeaux and is specific. First, the big diodes
have a high gain preamplifier and the small diodes, a low gain preamplifier. Second,
we have two sets of amplifiers : one with a gain x1, that is the muon gain, and
another with gain x1/20 for a general purpose. We had also attenuators to be used
for the high energy beam runs. Besides, 7 CAEN V785 VME modules were used to
code the 192 + 30 channels of the calorimeters : each module has 32 channels able
to code 4000mV over 4096 bins.

4.2 Data analysis

4.2.1 Calibrating the tracker

The tracker has two original features : on-line zero suppression so that only hit
strips are recorded, and floating strips that are not connected to the ASIC but that
increase the detector sensitivity [14].

The tracker data reduction is done by a program written by the Italian team
([20], [1]) and follow this procedure :

e pedestal subtraction : dedicated pedestal runs are done by forcing the trigger
when there is no particle in the detector.

e common mode subtraction consists in subtracting the mean value of the num-
ber of bins read for each strips on one ASIC.

e particle position reconstruction in each silicon plane using full analogical in-
formation from all the hit strips.
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The expected position resolution with respect to the center of the tracker plane is
around 40um using the analogical information [1]. As the distance between T1 and
T2 is about 10cm and the distance between T2 and the front of the calorimeter
is about 150cm, one can deduce that the position resolution on the entry point of
particles in the calorimeter is less than 1mm. This means that the position resolution
is good enough so that we will be able to select events entering the calorimeter in a
chosen log. For instance, figure 4.2 displays the beam profile limited to the width of
the smallest plastic scintillator, in both tracker modules.

Figure 4.2: Beam profile for 20GeV/c particles in both tracker modules : upper left,
X vs Y in T1 and upper right, X vs Y in T2. The two lower plots show the correlation
between X1 and X2, lower left, and between Y1 and Y2, lower right.Good events
are on the diagonal.

4.2.2 Calibrating the calorimeter

Picture 4.3 shows the calorimeter made of 8 layers of 6 horizontal flight CDEs.
The calibration has been done by B. Lott and then controlled and improved by
S. Svensson, a Swedish student during an internship in Bordeaux. A 20GeV/c
monocinetic muon beam is used for calibration purpose as the ionization energy
deposit of muons in Csl is very well known. Equation (4.1) summarizes the energy
calibration for each channel of the calorimeter :

E;,=(C; — Ciy + b; x e_(ci_c"o)“i) X a; X att; X gain; X gdpd,; (4.1)
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Figure 4.3: The calorimeter waiting to see the CERN SPS beam.

where o F; is the energy measured in MeV for channel i.

e (; is the number of bins read by the ADC for channel i.

e (C;, is the pedestal in bins for channel i

e a;, b; are two factors used to take account for non linearities observed for
low ADC values .

e ¢; is the energy conversion factor from bins to MeV, deduced from muon
beam data. For each big diode, the energy deposit spectrum of muons
is fitted to the same spectrum simulated with GEANT4 to get the conversion factor.

® gain; is the inter-calibration factor between muon gain amplifiers and
beam gain amplifiers.

e att; is the gain of the attenuator added on channel i to prevent saturation
during high energy runs, i.e. over 50GeV/c.

e gdpd; is the inter-calibration factor between big diodes and small diodes
for channel i.

The calibration procedure now goes as follow : each big diode channel is directly cal-
ibrated using the muon energy deposit and a fit to simulation, then inter-calibration
of muon gain amplifier over beam gain amplifier is done using charge injection runs,
eventually small diodes are inter-calibrated over big diodes using beam data.

The final conversion factors have a distribution peaked around 1MeV per bin for
the big diode and 7MeV per bin for small diodes. The energy calibration resolution
for each log is around 3% if one uses big diodes up to 2GeV and small diodes over
2GeV to avoid saturation and non-linearities.
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4.2.3 Cuts
Tracking cuts

The beam is quite wide but is already cut by the scintillators, the smallest one
measures ~ 2cm X 2.5em according to figure 4.2. However, the beam entering
the calorimeter covers the two central logs so that some particles go through the
1.5mm gap between them. The events concerned are very hard to reproduce by the
simulation so that it’s far better to remove them using tracker information, before
the analysis.

What we need is to map at least the two central logs of the calorimeter in the
tracker, in order to be able to select particles not going through gaps. The idea is to
use the muon runs again as the position of the calorimeter was the same as for the
data runs we are interested in. With muon runs, the two central CDEs are mapped
using the correlation between the energy deposit and the position reported by each
module of the tracker, as shown on figure 4.4. If the particle hit the log properly
then the energy deposit is to be around 12MeV. On the upper left plot on figure
4.4 for instance, the energy is around 12MeV when the position is between 4cm and
4.6cm that defines the intersection of the beam, the smallest scintillator and the Csl
log. Taking into account all the correlations, the two central logs are located in the
vertical direction.

For 20GeV/c runs, the statistic is great so that a cut is applied to select only
events that enter properly the third log of the first layer. For 10GeV/c runs, there
are less events so that the cut is less restrictive and keeps events entering properly
the third and the fourth logs, without the gap between both of course.

Cuts on minimum ionizing particles

The tertiary beams at 10 and 20G'eV/c contain at least electrons, muons and pions,
but maybe also anti-protons or other hadrons. For the calorimeter, all the minimum
ionizing particles (MIPS) look like the same when they are of charge 1. As we cannot
reproduce the unknown composition of the beam with the simulation, it’s better to
cut all the MIPS before the analysis in order to focus on hadronic cascades only.

All the MIPS let around 12MeV per layer, that is around 100MeV for the 8
layers of the calorimeter. The problem is that we need the cut to be efficient on
beam data taken with the low gain amplifiers, remember that with these, even the
big diode channels do not show the muon peaks. The idea is to use the muon runs
again to adjust a cut on the total energy deposit in the calorimeter. The threshold
on the total energy deposit has to be high enough to cut all the MIPS and to be
efficient with small gain amplifiers, but not too high not to cut on too many hadronic
cascades.

The right threshold is 200MeV of total energy deposit in the calorimeter. Sim-
ulations show that no MIPS can let more than 200MeV and the same number of
MIPS is kept as the cut is applied on the energy sum processed from big diodes with
muon gain amplifiers, or with small diodes for which the electronic gain is equivalent
to the big diodes with low gain amplifiers. For the hadronic cascades study, all the
minimum ionizing events will be removed by applying a threshold of 200M eV on



46 CHAPTER 4. GLAST CERN BEAM TEST

Energy B3 vs X1 Energy B3 vs Y1
10 100 g 10
G G
g ° I 9
X >
8 8
7 , 7
10°
6 6
5 5
4] 4
3 10 3
2 2|
1 1
0 o) =P
0 5 10 15 25 30 35 40 0 5 10 15
Energy B3(MeV) Energy B3(MeV)
Energy B4 vs X1 Energy B4 vs Yl
e oy 10
e S,
2 100
8
7 10°
6
10°
5 —
4
10
3
10 2
1
[I—— 0 i | I 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Ener gy B4(MeV) Energy B4(MeV)

Figure 4.4: Energy deposit in logs 3 and 4 of the first layer as a function of the
position given by T1 on both axis. For the log B3, the muon peak at 12MeV is
located between 4cm and 4.6¢m along X1 and between 4cm and 7em along Y1. For

the log B4, the muon peak at 12MeV is located between 4.8cm and 5.4cm along X1
and between 4cm and 7cm along Y1.
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the calorimeter energy sum.

Separating hadronic and electromagnetic showers

After the MIPS have been removed from the data, two categories of events are left
: hadronic cascades and electromagnetic showers. Of course, the first step of the
analysis is to separate them into two well defined sets of events. Electromagnetic
showers are well known and well simulated, so that will use them as a reference to
benchmark some features of our simulation before going on to a deep analysis of
hadronic cascades.

One of the official method to reconstruct an electromagnetic shower energy con-
sists in using the correlation between the energy deposit in the last layer and the
total energy deposit in the calorimeter. Plotting this correlation for our 20GeV/c
beam data gives figure 4.5 where one can see two distinct populations.
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Figure 4.5: Total energy deposit in the calorimeter as a function of the energy deposit
in the last layer. Hadronic cascades and electromagnetic shower are well separated.

Simulations of the same correlation for pions (figure 4.6) and electrons (figure
4.7) are used to confirm that high energy deposit events are electrons and low energy
deposit events are hadronic cascades. We have also used simulations to optimize the
cut, shown on figure 4.5, to separate hadrons and electrons, so as to remove as many
electromagnetic showers as possible without removing too many hadronic cascades.
However, it’s interesting to notice that both populations are well separated so that
the cut efficiency is high and stable when tuning parameters. We will refer to this
cut using the last layer correlation as the LLC cut : LLC is true for electrons and
false for hadrons.

Table 4.1 displays the efficiency of the cuts according to the simulation realized
with monocinetic beams with different momenta and different particle types. Cuts
efficiencies are high and are the same at 10GeV/c and 20GeV/c.
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Figure 4.6: Total energy deposit in the Figure 4.7: Total energy deposit in the
calorimeter as a function of the energy de- calorimeter as a function of the energy
posit in the last layer : 20GeV/c hadrons. deposit in the last layer : 20GeV/c e .

name simulated | MIPS Cascade selection
cut particle | rejection | hadronic | electromagnetic
Etotal>200MeV pion 100% 72% none
not LLC pion 0% 99.5% none
LLC electron none none 99.5%

Table 4.1: Summary of the cuts applied on CERN beam test data, and their effi-
ciency

4.3 Simulations

The GEANT4 simulation calls the LHEP model which is somewhat the only one
available in this energy range. The geometry takes account for : the tracker, sim-
ulated by a silicon plane 0.04.X, thick', a lead plate 1.5X, thick and a calorimeter
built with 11 layers of 6 horizontal CDEs. The last three layers are simulated be-
cause of possible back-splash effects, but actually none has been observed for these
energies. Moreover, the length between layers is 15mm and the gap between logs
within a layer is 1.5mm. The thickness of the lead plate and the gap length have
been adjusted using electromagnetic showers data, as we expect their longitudinal

profile to be reproduced by the simulation within a few percents, as shown on figure
4.8.

The beam profile is Gaussian as suggest the profile shown in the tracker, and
cuts to select only events entering the calorimeter properly by one log are applied as
for the data. Choosing a particle type is more problematic as we do not really know
their nature in data. Actually, the fact is that we are interested in benchmarking
proton simulation as GLAST will be mostly hit by protons. Moreover, simulations
show that pions and protons give the same results in our calorimeter, the main
change is for the inelastic interaction cross section but we do not care. So we will
simulate hadronic cascades from 10GeV/c and 20GeV/c pions.

tX0 is the radiation length, 1.85cm in CsI, about the thickness of a CDE.
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Figure 4.8: Mean energy longitudinal profile of electromagnetic showers at 20GeV/c
: comparison between data and simulation. Error bars show the width of the energy
deposit per layer distributions.

4.4 FElectrons versus hadrons at 20GeV/c

The very first interesting study is to compare electromagnetic showers and hadronic
cascades at 20GeV/c in our calorimeter.

Figure 4.9 displays the energy deposit per layer, for hadronic cascades (dashed
line) and electromagnetic showers (plain line). The first bin peak has been knowingly
cut for the display, and corresponds to the hadrons that have not yet generated a
nuclear interaction. It’s interesting to notice that this peak is getting smaller and
smaller as particles goes deeper in the calorimeter. Besides, electromagnetic showers
globally develop earlier in the calorimeter and have their maximum energy deposit
in the 6" layer.

For 20GeV/c events, a log is said to be hit when its energy is greater than 50MeV
and the thresholds has been lowered to 30MeV for 10GeV/c events. When a log
is hit, its energy is summed into the layer energy deposit. Figure 4.10 presents the
distribution of the number of logs hit per layer, for hadronic cascades (dashed line)
and electromagnetic showers (plain line). On this plot, electromagnetic showers show
a higher number of logs hit than hadronic showers but with much less dispersion.
The number of hadrons hitting one log only, decreases layer after layer as nuclear
reactions happen.

Figure 4.11 displays the total energy deposit and the total number of logs hit
(total multiplicity) for the whole calorimeter for hadronic cascades (dashed line)
and electromagnetic showers (plain line). What is most striking is that hadrons
and electrons with the same impulsion have very different total energy deposits and
multiplicities : electromagnetic showers develop more rapidly and leave a lot of
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Figure 4.9: 20GeV/c beam data. Energy deposit per layer, for hadronic cascades
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Figure 4.10: 20GeV/c beam data. Number of logs hit per layer, for hadronic cascades
(dashed line) and electromagnetic showers (plain line).
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energy compared to hadronic cascades. However, it’s as easy to check with simu-
lations that 20GeV/c hadronic cascades leave about the same energy as a 5GeV/c
electromagnetic shower.
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Figure 4.11: 20GeV/c beam data. Total energy deposit and total multiplicity for
hadronic cascades (dashed line) and electromagnetic showers (plain line).

Figure 4.12 displays the results from the longitudinal energy profile fitting by a
I' function as described in section 1.2.2. The upper plot shows the reconstructed
energy : the distribution is quite thin and peaked around 20GeV for electromagnetic
cascades (plain line), but is broad and peaked around 5GeV for hadronic cascades
(dashed line). The middle plot shows the reconstructed starting point of the shower
: again, the distribution for electrons is peaked around 0 and the distribution for
hadrons has a strong dispersion. The lower plot shows the fit x? distributions : the
distribution is narrower and closer to 0 for electromagnetic showers than for hadronic
cascades, however, the overlap between both distributions is quite broad. Actually,
many hadronic cascades really look like electromagnetic showers of another energy
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and their identification as part of the background will be hard to achieve.
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Figure 4.12: 20GeV/c beam data. Results from the longitudinal energy profile fitting
by a I' function for hadronic cascades (dashed line) and electromagnetic showers
(plain line).
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4.5 20GeV/c pions hadronic cascades

20GeV/c data will be presented first, as the statistic is greater than for 10GeV/c
data, it’s easier to see and understand the distribution properties. The comparisons
between data and the LHEP simulation are lead the same way as it has been done
for the GSI data. Table 4.2 reports the values of the first two moments (mean and
RMS) of all the simulated and real distributions for 20GeV/c incident particles.
Only histograms of data and simulated pions hadronic cascades will be shown in
the following, however table 4.2 also show the values for simulated proton induced
hadronic cascades to demonstrate that results do not depend upon the bullet choice
for our variables.

Mean of distributions for data and the LHEP model
Variables Elaye'r Mlayer ESum MSum EMaa: JEma:c RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV
data 333 1.7 2404 | 12.1 786 4.7 258
pions 318 1.8 2237 | 12.4 630 5.2 205
Apion -15 0.1 -167 0.3 -156 0.5 -53
proton 304 1.6 2109 | 12.0 589 5.1 191
Aproton -29 -0.1 -295 | -0.1 | -197 0.4 -67

RMS of distributions for data and the LHEP model

Variables Elaye'r Mlayer ESum MSum EMaa: JEma:c RMS

unit MeV | logs | MeV | logs | MeV | logs | MeV
data 352 1.5 1614 7.4 416 2.3 138
pion 310 1.4 1604 7.8 334 2.0 113
Apion -42 -0.1 -10 0.4 -82 -0.3 -25
proton 309 1.5 1626 7.9 327 2.0 109
Aproton -43 -0.1 12 0.4 -89 -0.3 -29

Table 4.2: 20GeV/c CERN data. Differences between the first two moments of both
the real and simulated distributions : for a variable X, Apion, = Xpion — Xdata €t

Apv‘oton = Aproton — Xdata-

Energy deposit and hit multiplicity per layer

Figures 4.13 and 4.14 show the energy deposit and hit multiplicity per layer for
data (plain line) and LHEP simulation (dashed line). The global shape of the
distributions ( and the main parameters (mean, RMS) ) are quite well reproduced
by the simulation, for both the energy deposit and the multiplicity. According to
table 4.2, the difference on the mean of the simulated and real distributions is only
around 15MeV on 300MeV . The difference on the RMS reaches 40MeV, what is a
consequence of a lack of a few high energy events (Erqyer > 1500MeV) in association
with a slight excess of low energy events (Epqyer < 200MeV) in the simulation.
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Figure 4.13: 20GeV/c hadrons. Hadronic cascades energy deposit per layer for data
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95



o6

CHAPTER 4. GLAST CERN BEAM TEST

Ml t Layer 0 [E ey e 1) Wil t Layer 1
9000E Entries 12658 8000 Entries 12658
8000 Mean 0.5525 |  7000F Mean 0.8574
7000F- RVB 1053 | sooof- RVB 1.305
6000F- 5000F-
5000 4000F-
4000F- E
E 3000F-
3000F- E
2000F- 2000¢-
1000F- 1000F-
% I £ 57
Miltiplicity Miltiplicity
Miltiplicity Layer 2 MJItLayerZ [Mirtiplicity Layer 3§ NuItLayer3
E Entries 12658 5000 Entries 12658
6000 ___ Mean 1.127 Mean 1.417
5000F- RV 1.413 4000 RMVB 1. 472
4000F- 3000F-
3000F- F
E 2000f
2000F b
1000 1000
oE L L L fTeas y 0: n L L L :
0 1 2 5 6 0 1 2 3 5 8
Miltiplicity Ml tiplicity
Ml t Layer 4 [MiTfiplicity Tayer 5§ Mil t Layer 5
3500 Entries 12658 3000 FEEEEE Entries 12658
S I Mean 1.712 E : Mean 2.022
3000F- : RVB 1. 489 2500 [ 77T RVB 1. 449
2500F 2000F----+
2000F- e
E 1500 f
1500 F
E 1000F-
1000F- E
500F- S00F-
of ok . \ | \
0 1 2 5 6 7 0 1 2 3 3 5 6 7
Miltiplicity Miltiplicity
Miltiplicity Layer 6 Ml t Layer 6 [MiTTiplicity Layer 7} Ml t Layer 7
00F Entries 12658 | 3500 Entries 12658
3000F  Loeoo  feee-- Mean 2.16 S R Mean 2.257
3 RVB 1.374 | 3000F 1.328
2500F 2500F
2000¢ 2000 | |t
1500 1500F-
1000F" "7 1000F
500; """ 500; """
ok L L L L 0E L L L L
1 2 4 7 0 1 2 3

Figure 4.14: 20GeV/c hadrons. Multiplicity per layer of hadronic cascades for data

SMJHig icity

(plain line) and LHEP simulation (dashed line).

5NLI|(\E|iCI|y



4.5. 20GEV/C PIONS HADRONIC CASCADES o7

Energy sum and total hit multiplicity

Figure 4.15 presents the calorimeter energy sum and the total hit multiplicity for
data and the LHEP model. The agreement between data and simulation is good for
the full energy and multiplicity ranges. In particular, no lack of high energy or high
multiplicity events shows up. In details, for three bins around FEg,,, ~ 500MeV,
there are less event in the data than in the simulation, the difference reaching about
25%. This slight discrepancy has no consequence on the very good agreement over
the mean and RMS of the distributions shown on table 4.2.
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Figure 4.15: 20GeV/c hadrons. Total energy deposit and total multiplicity of
hadronic cascades for data (plain line) and LHEP simulation (dashed line).

I’ profile fitting

Comparisons for the profile fitting variables are more surprising at first sight though,
as shown on figure 4.16. Both the reconstructed energy and the shower starting point
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distributions are well reproduced by the simulation as they present the same shape
and features, meanwhile the x? distributions are obviously different. The simulated
and real x? distributions have the same (and expected) exponential shape but with
two different slopes, the slope from the simulation being steeper.

Looking into a couple of those low x? events, I could found a significant difference
on the energy of the longitudinal profile maximum. Actually, this discrepancy exists
for all kind of events, as shown on figure 4.17, the mean and RMS of the simulated
distribution of the energy profile maximum are 20% smaller than in the data. To go
further, one need to notice that here the reconstruction x? is a measure of dispersion
on the energy deposit per layer. Then, comparing the distribution of raw longitudinal
energy profile RMS presented on figure 4.18, shows that the dispersion is greater for
data than for simulations. This would not be surprising if the same plot done for
electromagnetic showers does not show such a discrepancy (the agreement is better
than 5%) , so that we can deduce that the observation is a feature of hadronic
cascades only and not of the whole experiment. The idea is finally to calculate again
the energy profile RMS without taking account for the layer with the maximum
energy as displayed on figure 4.19. The agreement between real and simulated RMS
distributions is then really good.

The conclusion is that the energy profile maximum of hadronic cascades is not
well reproduced by the simulation and a consequence is that the reconstruction x?
is smaller in the simulation than in the data. Besides, one can infer that central
collisions with a very high energy deposit in one layer are specifically not well sim-
ulated, and that’s probably why there is a lack of events at high energy deposit per
layer in the simulation.

From a global point of view, the LHEP simulation reproduces well the shape
of our variables for 20GeV/c hadronic cascades. The energy profile maximum is
underestimated by more than 20% and a direct consequence is that the y? of the
profile fitting reconstruction is also underestimated as the exponential distribution
is steeper with nearly a factor of 2 on the slope. However, this feature does not
appear to be an issue as far as rejection algorithms are concerned : if algorithms
are efficient on simulations they have to be at least as efficient on real data with a
greater dispersion.
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Figure 4.17: 20GeV/c hadrons. Energy profile maximum and index of the layer with
this maximum of hadronic cascades for data (plain line) and simulation (dashed line).
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4.6 10GeV/c pions hadronic cascades

For 10GeV/c hadronic cascades, the threshold per log has been lowered down to
30MeV in order to obtain a slightly better agreement on electromagnetic showers.
Moreover, our statistic is unfortunately down by a factor of three with respect to
20GeV/c data, despite looser cuts on the particle position in the tracker.

Table 4.3 reports the values of the first two moments (mean and RMS) of all the
simulated and real distributions for 10GeV/c incident particles. Only histograms of
data and simulated pions hadronic cascades will be shown in the following, however
table 4.2 also show the values for simulated antiproton induced hadronic cascades
to demonstrate that a possible contamination of the beam by antiprotons is not an
issue.

Mean of distributions for data and the LHEP model
Variables Elayer Mlaye'r ESum MSum EMa;c JEmaz RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV

data 228 1.7 1606 | 12.2 o972 4.1 186
pion 185 1.9 1294 | 12.8 382 4.7 125
Apion -43 0.2 -312 0.6 -190 0.6 -61

antiproton | 193 1.9 1337 | 13.2 404 4.6 132
Aantiproton | -39 0.2 -269 1.0 -167 0.5 -54

RMS of distributions for data and the LHEP model
Variables Elayer Mlaye'r ESum MSum EMa;c JEmaz RMS
unit MeV | logs | MeV | logs | MeV | logs | MeV

data 241 14 900 6.2 311 24 101
pion 175 1.5 818 7.1 182 2.2 61
Apion -66 0.1 -82 0.9 -129 | -0.2 -40

antiproton | 184 1.5 843 7.2 200 2.2 64
Aantiproton | -97 0.1 -57 1.0 -111 -0.2 -37

Table 4.3: 10GeV/c CERN data. Differences between the first two moments of both
the real and simulated distributions : for a variable X, Apion, = Xpion — Xdata €t

Aantiproton antiproton — Xdata-

The agreement between data and simulation for the energy deposit and the
multiplicity per layer displayed on figures 4.20 and 4.21 is quite good with only a
slight lack of high energy deposit event in the simulation. However, the agreement
is not as good as it was at 20GeV/c and this shows up again when comparing
the total energy deposit and the total multiplicity as presented on figure 4.22. On
this figure, one can also notice that some electrons probably survived the cuts for
Egym ~ 2200MeV and Mgy, ~ 17.

For the reconstruction, see figure 4.24, both the energy and the shower start-
ing point are well reproduced and the discrepancy on the x? distribution has the
same origin as the one noticed at 20GeV/c. The maximum energy deposit distri-
bution, shown on figure 4.23, is not reproduced by the simulation very well with a
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discrepancy reaching 40% on the first two moments.

From a global point of view, the study at 10GeV/c confirms what has been seen
at 20GeV /c, the agreement being a little worse though. However it’s difficult to
really conclude definitely as the statistic is low and so are the energy deposit in the
calorimeter what is another cause of errors.
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Figure 4.20: 10GeV/c hadrons. Energy deposit per layer of hadronic cascades for
data (plain line) and LHEP simulation (dashed line).
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Figure 4.22: 10GeV/c hadrons. Total energy deposit and total multiplicity of
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Figure 4.23: 10GeV/c hadrons. Energy profile maximum and index of the layer
with this maximum of hadronic cascades for data (plain line) and LHEP simulation
(dashed line).
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Figure 4.24: 10GeV/c hadrons. Results from the longitudinal energy profile fitting
by a I' function of hadronic cascades for data (plain line) and LHEP simulation

(dashed line).
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Conclusion

Hadronic background rejection algorithms are developed and tuned over Monte-
Carlo simulations based on Geant4. Different hadronic cascade models are available
within Geant4, the default one being LHEP coming from the GHEISHA code. We
have benchmarked the different hadronic cascade models at different energies over
data from GSI and CERN beam tests.

At low energy, comparisons with 1.7GeV protons and 3.4GeV deuterons from
GSI show a good agreement between data and simulations for the energy deposit
and the multiplicity per layer for both the LHEP and the Bertini models. On the
opposite, the calorimeter energy sum distribution is not well reproduced by the
simulations that present a lack of low energy deposit events (Er, < 200MeV).
The Binary Cascade model shows a very strange feature, with low energy deposits
corresponding to high multiplicities, not seen in the data. This feature rules out
the Binary Cascade model, at least with respect to the default LHEP model. The
Bertini model presents less important discrepancies with the data than the LHEP
model : the lack of low energy events is less dramatic but is important though. The
main conclusion from the low energy study is that the Bertini intra-nuclear cascade
model should be used instead of LHEP to generate the sets of events dedicated to
hadronic background rejection.

At high energy, comparisons with 10GeV /¢ and 20GeV /¢ hadrons from CERN
show a good agreement between data and simulation for almost all the studied vari-
ables for the LHEP model. QGS based models do not show a far better agreement
and are known to require longer processing time so that it’s not recommended to
use them. The only discrepancy observed concerns the dispersion on energy deposits
that has a consequence on the x? of the profile fitting reconstruction. But, this dis-
crepancy is small and should not have bad effects on the development of rejection
algorithms. Actually, at high energy, the LHEP model give satisfying results and
should still be used for hadronic cascade simulations.
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A High energy models
A.1 QGSC model : comparisons for 20GeV /c pions

The QGSC model seems to provide a little bit more energy to nuclear reactions
than the other tested models. A consequence is that, as shown on table A.1, all the
distributions are slightly better reproduced by the QGSC model compared to the
LHEP model.

Mean of distributions for data and the LHEP and QGSC models

Variables Elayer Mlayer ESum MSum EMa:c JE‘maw RMS

unit MeV | logs | MeV | logs | MeV | logs | MeV
data 332 1.7 2404 | 12.1 785 4.7 258
LHEP 318 1.8 2237 | 124 629 5.2 204
ArLgEP -14 0.1 -167 0.3 -156 0.5 -53

QGSC 344 1.8 2489 | 13.0 738 2.0 236
Agasc 12 0.1 -85 0.9 -47 0.3 -22

RMS of distributions for data and the LHEP and QGSC models

Variables Elayer Mlayer ESum MSum EMaz JEmax RMS

unit MeV | logs | MeV | logs | MeV | logs | MeV
data 352 1.5 1614 7.4 415 2.3 137
LHEP 310 1.4 1604 7.8 333 2.0 113
Apuep -42 -0.1 -10 0.4 -82 -0.3 -24
QGSC 339 1.4 1702 8.1 |363.0| 2.1 121
Agasc -13 -0.1 88 0.7 -52 -0.2 -16

Table A.1: 20GeV/c CERN data. Differences between the first two moments of both
the real and simulated distributions : for a variable X, Argepr = Xenep — Xdata €t
Agesc = Xgasc — Xdata- Particles used in simulations are pions.

On figures A.1 to A.5, data are in plain lines, results from the LHEP model in
dashed lines and results from the QGSC model in dotted lines. The energy sum
distribution shown on figure A.3 and the energy profile maximum on figure A.4 are
very well reproduced by the QGSC model and are probably the most convincing
plots. However, the improvement proposed by the QGSC model is not that great
that it succeeds in reproducing the slope of the profile fitting x? distribution, shown
on figure A.5. The use of the QGSC model is consequently not really required
for the GlastRelease purpose. Moreover the computation time is increased by 45%
comparing to the default LHEP model.
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Figure A.1: 20GeV /c hadrons. Energy deposit per layer of hadronic cascades for
data (plain line), LHEP simulation (dashed line) and QGSC simulation (dotted line).
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Figure A.2: 20GeV /c hadrons. Multiplicity per layer of hadronic cascades for data
(plain line), LHEP simulation (dashed line) and QGSC simulation (dotted line).
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Figure A.3: 20GeV/c hadrons. Total energy deposit and total multiplicity of
hadronic cascades for data (plain line), LHEP simulation (dashed line) and QGSC
simulation (dotted line). These distributions look significantly better for the QGSC
model than for the LHEP model.
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layer and energy profile RMS of hadronic cascades for data (plain line), LHEP
simulation (dashed line) and QGSC simulation (dotted line).
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B GlastRelease
B.1 GlastRelease v5rOp2 with BERT model

Following Francesco Longo advice, I was able to turn on the Bertini intranuclear
cascade model in GlastRelease vbrOp2 : modifications are into the G4GENERATOR
package so it could actually be done on any newer version of GlastRelease without
any problems. The aim is first to check that the BERT model is really used instead
of the default LHEP model, and second to check if the results would be comparable
to the GSI data despite all the differences in the geometry. So, we compare here
results from GlastRelease vbrOp2 with BERT model and 1.7GeV proton induced
hadronic cascades from GSI data.

Tests have been quite successful. Results presented on the following plots from
B.1 to B.4, show that the agreement between the GlastRelease simulation with the
BERT hadronic cascade model and the GSI data is about as good as it was with
GEANT4 standalone.
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Figure B.1: 1.7GeV protons. Energy deposit per layer of hadronic cascades for data
(plain line), GRv5r0p2 with BERT model (dashed line).



78 APPENDIX B. GLASTRELEASE

mcHi t Layer 0 LLIIGT V7 TEVEr 0| mcHit Layer 1
8000E ——, Entries 7989 00 Entries 7989
700 Mean 1 43 Mean 1.063
4
R . 3267
600 I3 0 o RV 0.326
500 30
400 25!
300 ig
200 1o
100 5
2 2 3 3 10 12 0 B 10 12
Logs Logs
icity Layer 2 m:HilLayerZ [MiItiplicity Cayer 3§ rrcHtLayer3
Entries 7989 S00g Entries 7989
Mean 1.112 Mean 1.152
: RVE 0. 4832 RVB 0.5928
. , . . . . . L
2 4 6 8 10 12 8 10 12
Logs Logs
ncHi tLayer 4 CAEHCTEy ATy T ncHi t Layer5
Entries 7989 1000 Entries 7989
90 Mean 1.168 90 Mean 1.185
80 RVG 0. 6403 80 RVE 0.6974
70! 708
60 60
50 50
40 40
30 30
20! 20!
10 10
oE I ! L ! L oE I ! L ! L
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Logs Logs
mcHit Layer 6 LU mcHit Layer 7
Entries 7989 1000 Entries 7989
90 Mean 1.185 90 Mean 1.159
80 RVB 0.7321 80 RVB 0.7123
70 70
60 60
50 50
40 40
30 30!
20
10
. . . 0 2 . .
3 10 12 ] 10 12
Logs Logs

Figure B.2: 1.7GeV protons. Multiplicity per layer of hadronic cascades for data
(plain line), GRv5r0p2 with BERT model (dashed line).
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Figure B.3: 1.7GeV protons. Total energy deposit and total multiplicity of hadronic

cascades for data (plain line), GRv5rOp2 with BERT model (dashed line).
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