

GLAST-LAT

Contribution à l'étalonnage en énergie du calorimètre du GLAST-LAT et qualification des modèles de cascade hadronique dans GEANT4.

Johan Bregeon

• Astronomie γ

- \checkmark Emission de photon- γ
- Blazars
- GLAST et EGRET
- GLAST
- Etude du quenching de la scintillation du CsI(TI)
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4

Astronomie γ

GLAST

- Large Area Telescope
- LAT : étalonnage en énergie
- LAT : identification des γ
- Etude du quenching de la scintillation du CsI(TI)
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4

- Astronomie γ
- GLAST

- Etude du quenching de la scintillation du Csl(Tl)
 - Scintillation du CsI(TI) et effets de quenching
 - Mise en oeuvre du faisceau-test au GANIL
 - Analyse des données
 - Bilan des mesures
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4

- Astronomie γ
- GLAST

- Etude du quenching de la scintillation du CsI(TI)
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4
 - Cascades hadroniques et Simulations
 - Observables
 - Etude basse énergie (faisceau-test GSI)
 - Etude haute énergie (faisceau-test CERN)

Emission de photons γ

Emission non-thermique : $E_{\gamma} > 1 MeV$

processus électromagnétique

pour un e^- relativiste de facteur de Lorentz γ

rayonnement synchrotron dans un champ magnétique B

J diffusion Compton inverse dans un champ de photon ν_s

•
$$\nu_{IC} \simeq \frac{4}{3} \gamma^2 \nu_s$$

processus hadronique

Désintégration de π_0

•
$$\pi^0 \rightarrow \gamma + \gamma$$

sources

restes de supernovae

pulsar

blazars : exemple choisi

Blazars

- galaxie avec un trou noir super-massif
- disque d'accrétion en rotation et jets ultra-relativistes

Blazars

- galaxie avec un trou noir super-massif
- disque d'accrétion en rotation et jets ultra-relativistes
- émission variable à large spectre

- 93 blazars dans le 3ème catalogue d'EGRET
- GLAST devrait en observer plusieurs milliers.

GLAST vs EGRET

Caractéristique/Mission	EGRET	GLAST-LAT	
Durée	1991-2000	2007	
Champ de vue (sr)	0.5	2.4	
Résolution Angulaire (1)	1.3°	0.4°	
Surface Effective $^{(2)}$	$1100 cm^{2}$	$10000 cm^2$	
Sensibilité ⁽³⁾	10^{-7}	3×10^{-9}	
Résolution en énergie $^{(2)}$	20%	10%	
Gamme d'énergie	30 MeV - 30 GeV	30MeV - 300GeV	
Temps Mort	100 ms/evt	$30 \mu s/evt$	
Précision de la datation	$100 \mu s$	$\leq 3\mu s$	

Comparaisons des caractéristiques attendues pour le télescope spatial GLAST-LAT, avec

celles de son prédécesseur EGRET :

$$(1)$$
 à 1 GeV pour 1 photon

(2) à 100MeV

(3) $\gamma cm^{-2} s^{-1}$ au-dessus 100MeV sur 1an.

- Astronomie γ
- GLAST
 - Large Area Telescope
 - LAT : étalonnage en énergie
 - LAT : identification des γ
- Etude du quenching de la scintillation du CsI(TI)
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4

GLAST-LAT

- \checkmark photons γ de 30 MeV à 300 GeV
- **9** 16 modules identiques : carré 4×4

GLAST-LAT

- **•** photons γ de 30MeV à 300GeV
- **9** 16 modules identiques : carré 4×4

Bouclier

anti-micrométéorites

Simulation d'un γ traversant le LAT

Vue du LAT

Trajectographe 16*(2 XY Si + W) + 2*(2 XY) = 1.3 X0

Détecteur en anticoincidenc

> segmenté 89 tuiles

GLAST-LAT : CsI

CDE : Cristal Detector Element

- cristal de Csl(Tl) : $326 \times 26.7 \times 19.9mm$
- double photodiode à chaque extrémité
- enveloppé d'un film réfléchissant

amplificateurs de gain fort et faible pour chaque photodiode

• effets de quenching dans le CsI, pour un ion $(^{Z}_{A}X, E)$

30 septembre 2005 - p.9/33

• effets de quenching dans le CsI, pour un ion ($^{Z}_{A}X, E$)

 $E_{Mesuree} \propto \text{Lumière} \not\propto E_{Deposee}$

• effets de quenching dans le CsI, pour un ion $(^{Z}_{A}X, E)$

Mesures existantes seulement pour E < 100 MeV/n

• effets de quenching dans le CsI, pour un ion $(^{Z}_{A}X, E)$

Mesures au GSI à 1.7 GeV/n et au GANIL à 73 MeV/n

GLAST-LAT : Identification des γ

Le flux de rayons cosmiques est très intense en comparaison du flux de photons- γ .

Taux de déclenchement de GLAST

Déclenchement	Taux moyen		
Niveau 1	>4000Hz		
Niveau 3	$\simeq 300 Hz$		
Taux de γ	$\simeq 10 Hz$		

Identifi cation des γ

- fi ltrage à bord
- analyse au sol
 - \Rightarrow Le taux de rejet recherché est de $10^6 : 1$
- algorithmes basés sur les simulations Monte-Carlo

⇒ Contrôle de la simulation des cascades hadroniques

- Astronomie γ
- GLAST
- Etude du quenching de la scintillation du Csl(Tl)
 - Scintillation du CsI(TI) et effets de quenching
 - Mise en oeuvre du faisceau-test au GANIL
 - Analyse des données
 - Bilan des mesures
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4

Scintillation et quenching

Etude des matériaux scintillants par Birks (1951) :

$$\frac{dL}{dx} \propto \frac{S \overline{dx}}{1 + K \frac{dE}{dx}}$$

• Facteur de quenching : $\Omega = \frac{dL}{S} \propto \frac{S}{S}$

$$U = \frac{dE}{dE} \propto \frac{S}{1 + K \frac{dE}{dx}}$$

Colonna (1992) et INDRA (2000)

lons	Carbone		
E(MeV/n)	$rac{L}{E} Colonna $	$\frac{L}{E} INDRA $	
5	0.28	0.28	
10	0.38	0.43	
20	0.44	0.58	
30	0.46	0.65	

Scintillation et quenching

GANIL : Dispositif expérimental

- Production d'ions de nature et d'énergie différentes
- \Rightarrow Faisceau de ⁷⁸Kr à 73MeV/nucléon et cibles d'épaisseurs différentes
- Identifi cation des ions (Z,E)
- \Rightarrow Télescope : ΔE_{Si} (linéaire) E_{CsI} (quenching)
- \Rightarrow Temps de vol de la particule

Schéma du dispositif Barreau du Haut 89 mu 89 mu 500 mu T1 T2 T5 Faisceau Barreau du Bas 84 mu 89 mu 500 mu T3 T4 T6 silicium

Détecteur en place dans la cuve à vide

GANIL : Etalonnage en énergie

Détecteurs Silicium

- Pics élastiques : ^{78}Kr
- Source alpha 3 pics
- accord à 5% près

- Détecteurs Csl
 - \checkmark Source ^{22}Na
 - Pics à 1.275MeV et
 1.786MeV (coincidences)
 - Simulation Monte-Carlo

30 septembre 2005 - p.14/33

GANIL : Détermination du quenching

Interpolation

<u>Méthode</u>

- Détermination des lignes de Z
 - Calculs des dépôts d'énergie
- Interpolation de $E_{Deposee}$ à partir de $L_{Mesuree}$ pour un même ΔE_{Si}

 $\Rightarrow L_{Mesuree} = F(E_{Deposee})$

GANIL : Détermination du quenching

Données Tel1 GDHs Calib mybihist1 Entries 2341082 dE in Si (MeV) 08 00 217.8 15.24 Vean v 238.8 23.22 Z=12-1Ŏ Z=8 1Ő 40 10 20 0 200 400 600 800 1000 Light in Csl (MeV)

Interpolation

<u>Méthode</u>

- Détermination des lignes de Z
- Calculs des dépôts d'énergie
- Interpolation de $E_{Deposee}$ à partir de $L_{Mesuree}$ pour un même ΔE_{Si}

 $\Rightarrow L_{Mesuree} = F(E_{Deposee})$

30 septembre 2005 – p.15/33

GANIL : Fonctions de lumière Si minces

- ions lourds $Z \ge 6$
- 0 < E < 73 MeV/nuc
- bon accord entre les différents lots de données

Comparaison T2PDHs vs T3PDBs

Comparaison T2PDHs vs T3PDBs

GANIL : Fonctions de lumière Si épais

- Les courbes de lumière ne passent pas par l'origine.
- ⇒ Problème d'étalonnage, de calcul, d'épaisseur ?
- Détermination empirique des épaisseurs
- ⇒ superposer les fonctions de lumière des télescopes épais sur celles des télescopes minces

GANIL : Etude en temps de vol

- Time to Amplitude Converter: mesure du temps
- Time Generator : pente
- Tps absolu : pic élastique

Tps de vol : Pic Elastique

GANIL : Etude en temps de vol

Tps de vol : Pic Elastique

³⁰ septembre 2005 – p.18/33

GANIL : Temps de vol et quenching

Sélection z = 8

GANIL : Temps de vol et quenching

- \Rightarrow Corrélation (E_{CsI}, TOF)
- Le Temps de vol est utilisé comme référence.

$(E_{CsI}, TOF) z = 8$ Courbes E_CsI vs Temps de vol pour z=8 (su 15 GF 20F 25 30F E-TOF Z=8 quenchin 35 40 45 dataT1 O dataT4 50F Simu 89mu 55 200 400 600 800 1000 0 Energie CsI (MeV) Détecteurs épais

Fonctions de lumiere T6 : z=6 et z=10 (TOF) (MeV) ក្ល ខ្ល ប t0 + 2.5nsə.500 Tumi 400 300 200 100 100 0 200 300 400 500 600 700 800 900 Energie CsI (MeV)

30 septembre 2005 - p.19/33

GANIL : Comparaisons TOF - $E \Delta E$

Détecteurs minces : bon accord global entre les mesures en temps de vol et les mesures en $E\Delta E$

Détecteurs épais : accord obtenu après ajustement du temps absolu

30 septembre 2005 - p.20/33

GANIL : Bilan des mesures

Fonctions de lumière pour les ions légers : $z \le 6$ et $0 \le E \le 73 MeV/n$ (incertitude de 15%)

Fonctions de lumière pour les ions lourds : $6 \le z \le 36$ et $0 \le E \le 73 MeV/n$ (incertitude de 5%)

Mesures à haute énergie au GSI

- Mesures de quenching réalisées au GSI pour des ions relativistes
- $\frac{dL}{dE} > 1$: "antiquenching", pour un même dépôt d'énergie les ions génèrent plus de lumière que les protons
 - fi ltrage de la composante lente du signal par l'électronique ?
 - à haute énergie, la forme du signal est la même pour les protons et ions (contrairement à ce qui est observé à basse énergie)

Mesures à haute énergie au GSI

- Mesures de quenching réalisées au GSI pour des ions relativistes
- $\frac{dL}{dE} > 1$: "antiquenching", pour un même dépôt d'énergie les ions génèrent plus de lumière que les protons

 - fi Itrage de la composante lente du signal par l'électronique ? à haute énergie, la forme du signal est la même pour les protons et ions (contrairement à ce qui est observé à basse énergie)

- utilisation des mêmes détecteurs et de techniques semblables
- + mesures GANIL complémentaires aux mesures GSI
- les données GSI s'inscrivent dans la tendance des mesures GANIL

Mesures à haute énergie au GSI

- Mesures de quenching réalisées au GSI pour des ions relativistes
- $\frac{dL}{dE} > 1$: "antiquenching", pour un même dépôt d'énergie les ions génèrent plus de lumière que les protons
 - fi ltrage de la composante lente du signal par l'électronique ?
 - à haute énergie, la forme du signal est la même pour les protons et ions (contrairement à ce qui est observé à basse énergie)
- ⇒ l'antiquenching et la similitude des signaux proton/ion restent incompris
- ⇒ les mesures réalisées sont valables pour l'étalonnage en vol

- utilisation des mêmes détecteurs et de techniques semblables
- mesures GANIL complémentaires aux mesures GSI
- + les données GSI s'inscrivent dans la tendance des mesures GANIL

- Astronomie γ
- GLAST
- Etude du quenching de la scintillation du CsI(TI)
- Qualification des modèles de cascades hadroniques disponibles dans GEANT4
 - Cascades hadroniques et Simulations
 - Observables
 - Etude basse énergie (faisceau-test GSI)
 - Etude haute énergie (faisceau-test CERN)

Cascades Hadroniques

Cascades Hadroniques

- cascade intranucléaire : processus rapides, interaction nucléaire forte et problème à n-corps
- pré-équilibre, fi ssion, évaporation
 processus lents, importance du
 champ nucléaire moyen
- ⇒ Larges gammes d'énergie et de processus physiques complexes
- \Rightarrow Simuler les cascades hadroniques est difficile

Cascades hadroniques : Simulations

- Modèles disponibles dans GEANT4 v6.2p02
 - Modèle LHEP (GHEISHA): 100MeV < E < 100GeV
 - seule la 1ère interaction est calculé, modèle paramètré
 - Modèle de cascade intranucléaire de Bertini : 100MeV < E < 10GeV
 - noyau=sphère centrale + 2 coquilles sphériques
 - pré-équilibre=paramétrisation de Kalbach
 - fi ssion/évaporation=formalisme de Weisskopf et Ewing
 - Modèle de cascade binaire : 100MeV < E < 10GeV
 - noyau en 3D(Woods-Saxon), résolution numérique de l'éq. du mouvement
 - Modèles hautes énergies QGS : 20GeV < E < 100GeV

Cascades Hadroniques : Observables

- **Dépôt d'énergie par couche :** $E_1, E_2...E_8$
- Multiplicité par couche : $M_1, M_2...M_8$
- Dépôt total d'énergie dans tout le calorimètre

$$\Rightarrow E_{Totale} = \sum_{i=1}^{i=8} (E_i)$$

Multiplicité totale

$$\Rightarrow M_{Totale} = \sum_{i=1}^{i=8} (M_i)$$

Dépôt maximum d'énergie dans une couche

$$\Rightarrow$$
 Emax = $Max(E_1...E_8)$

Variance des dépôts d'énergie dans chaque couche

$$\Rightarrow$$
 variance = $\sqrt{\frac{1}{8} \sum_{i=1}^{i=8} (E_i - \langle E \rangle)^2}$

Faisceau-test GSI

- Etalonnage en muons cosmiques (NRL)
- Coupure 1 MIP couche 0
- \Rightarrow coupure forte !!!

Dépôt d'énergie

Multiplicité

30 septembre 2005 - p.28/33

Energie et Multiplicité totales

30 septembre 2005 - p.28/33

Energie et Multiplicité totales

Conclusions basse énergie

- ⇒ Le modèle de Cascade Binaire est disqualifi é…par rapport à nos besoins.
- Le modèle de Bertini reproduit mieux les données que le modèle LHEP, en particulier les variables globales : Etotale, M_{totale}, E_{Max}, variance

Faisceau-test CERN

		Ligne de faisceau	distances en cm
Donnée	es faisceau	$\longleftrightarrow \begin{array}{c} 300 & 10 \\ \longleftrightarrow \end{array} \begin{array}{c} 10 \\ \end{array} $	$\xrightarrow{2}$
Impulsion	Particules		
10 GeV/c	$e^{-}\left(\mu^{-},\pi^{-} ight)$	-±-イֈ{ֈ{	
20 GeV/c	$e^{-}\left(\mu^{-},\pi^{-} ight)$	P1P2 T1 T2	
20GeV/c	$\mu^{-}(e^{-},\pi^{-})$	Scintillateurs Trajectographe	Plomb C1 C2

plastiques

Calorimètre

- 8 couches de 6 détecteurs
 Csl horizontaux
- amplifi cateurs muons/faisceau

Etalonnage

silicium

dépôt d'énergie des muons

Calorimètre

Csl

inter-étalonnage des amplifi cateurs par injection de charge

Faisceau-test CERN

		Ligne de faisceau	8	distances en	cm	
Donnée	s faisceau	€ 300	$\rightarrow \stackrel{10}{\longleftrightarrow} \leftarrow$	150 	$\stackrel{2}{\longleftrightarrow}$	
Impulsion	Particules		11	ſ	T	
10GeV/c	$e^{-}\left(\mu^{-},\pi^{-} ight)$	-⊻00	┥╢┾╍			
20 GeV/c	$e^{-}\left(\mu^{-},\pi^{-}\right)$	P1P2	ГГ Т2			
20GeV/c	$\mu^- \left(e^-, \pi^- ight)$	Scintillateurs T	raiectograph	Plomb		

plastiques

Calorimètre

- 8 couches de 6 détecteurs
 Csl horizontaux
- amplifi cateurs muons/faisceau

Etalonnage

silicium

- dépôt d'énergie des muons
- inter-étalonnage des amplifi cateurs par injection de charge

CERN : Coupures

Identifi cation lepton/hadron

- coupure ajustée sur les simulations
- effi cace et robuste : reste 2% d'électrons

Trajectographe : sélection des trajectoires traversant proprement les détecteurs

CERN : Etude à 20GeV/c

Dépôt d'énergie

Multiplicite Couche 0 MultCouche0 Entries 12658 Mean 0.5525 RMS 1.053 6 Multiplicite

2 3 4

1 2 3

Entries

Mean

RMS

4

Multiplicité

7000

6000

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

Multiplicite Couche 1

Multiplicite Couche 3

2 3 MultCouche1

6 Multiplicite

MultCouche3

5 6 Multiplicite

MultCouche5

Entries

Mean

5 6 7 Multiplicite

RMS

Entries

Mean

RMS

12658

0.8574

1.305

12658

1.417

1.472

12658

2.022

1.449

Entries

Mean

RMS

CERN : Etude à 20GeV/c

30 septembre 2005 – p.32/33

Le LAT : étalonnage et cascades hadroniques

Simulation des cascades hadroniques

- Energie incidente < 10GeV modèle de Bertini</p>
- Energie incidente > 10GeV modèle LHEP
- + la nouvelle campagne de faisceau-test prévu au CERN (PS et SPS) avec les modules de secours du LAT permettra une validation plus poussée de la simulation Monte-Carlo
- + élaboration des algorithmes d'identifi cation

Etude des effets de quenching dans le Csl(Tl)

- Mesure du quenching pour des ions de 0 à 73MeV/n et z=1-36
- Les mesures réalisées au GSI à haute énergie s'inscrivent dans la tendance des mesures à basse énergie réalisées au GANIL
- Les facteurs de quenching mesurés au GSI sont valables pour permettre l'étalonnage en vol des détecteurs CsI avec les ions lourds du rayonnement cosmique
- + Complèter l'élaboration de l'étalonnage en vol au niveau de la simulation (Monte-Carlo et analyse)