Science goal (8) : constraints/hints on matter composition of γ-ray emitt.jet region

	leptonic j.e.m.	hadronic j.e.m.
matter	e+ e-	e- p
(a) v-emission	no	(more or less) yes
(b) γ-ray emission mechanism	IC	(IC &) syn.
[e.g. in HBLs: (most likely)	SSC	p syn. in ``SPB``,syn. cascades in ``proton blazar``]
(c) B-field	\leq Gauss	> several Gauss
		[e.g. in ``SPB``: typ. several 10 G,
		``neutral beam model``: ~ Gauss,
		``proton blazar``: ~ Gauss]
(d) total jet luminosity	L _{jet,lept} <	< L _{jet,hadr}
variability patterns		(work in progress)

Approach:

- (b) polarization measurements @ GeVs
 - broad-band modeling using competing models [for HBLs: see goal (2)]
- (c) polarization measurements @ GeVs
 - (1) equipartition arguments using low-E peak flux

- (2) width of ACF [assumpt.: rise time E-indep., decay time determ. by radiative cooling]

 $\tau_{ACF} = \tau_0 + \tau_1 E_{phot}^{-\alpha}$ [e.g. $E_{phot} = E_{syn}$ & particle spectr. determ. by syn./EIC cooling: $\alpha = 1/2$, $\tau_1 \sim B^{-3/2}$ $E_{phot} = E_{syn}$ & particle spectr. determ. by SSC cooling: $\alpha = 4 - q/2$, $\tau_1 \sim B^{-q/2}$ q = particle injection spectral index

(*) $E_{phot}=E_{IC}$ & particle spectr. determ. by syn. cooling: $\alpha=1/2$, $\tau_1 \sim B^{-2}$...]

- (3) multi- λ time lags/leads (caused by radiative cooling; assumes co-spatiality for E_{low}, E_{high})

[e.g. $\Delta t_{delay} \sim B^{-3/2} (E_{low}^{-1/2} - E_{high}^{-1/2})$ for low-E comp., syn. cooling, (*) $\sim B^{-3/2} (E_{low}^{-1/2} - E_{high}^{-1/2})$ for high-E comp., syn. cooling,]

(*) requires knowledge of target photon field \rightarrow modeling

(d) See goal (6)

Required data:

(c2) & (c3): - long consecutive data taking

- short sampling time scales (experience from BL Lac: 1hr sampl. time scale @keVs is too short !)

(b) & (c) : For unambiguous model fits both simultaneous broad-band SEDs plus variability information (light curves, hysteresis, ...) are required in equally distributed energy bands. (see lessons from W Comae !).

Targets: (b)&(c):nearby blazars;(a) strong emission line FSRQs (3C273, 3C279, 3C454.3, PKS 0528+134)

Alternative approach:

Test leptonic models !

Any non-expected behaviour calls for alternative model solutions which may be linked with the need for hadronic jet components (see ``orphan flares``, low-E component lagging high-E component, etc.).

 \rightarrow See science goals (2)-(4)

Science goal (9) : Which blazar properties are responsible for ``γ-ray loudness``?

Approach & required data:

statistical studies, comparison with various blazar samples that select on different criteria; SL motion?

Targets:

GLAST blazars, γ-ray blazar candidates