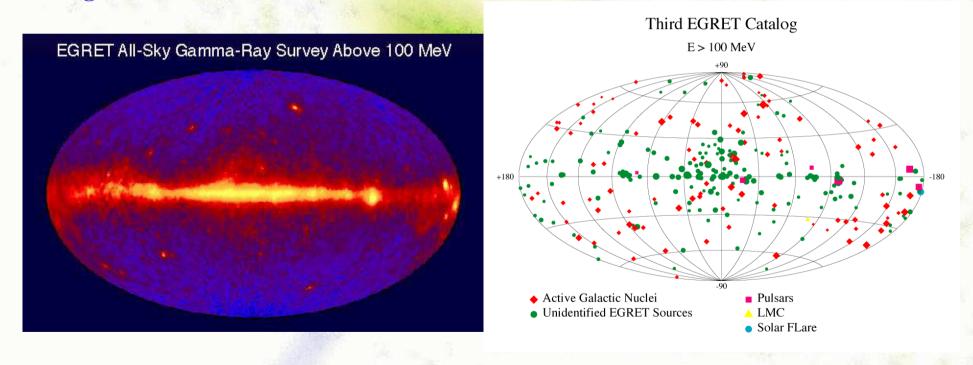
EGRET AGN observed with INTEGRAL and XMM-Newton

Luigi Foschini (INAF/IASF-Bologna)

In collaboration with:

- V. Bianchin, G. Di Cocco, G. Malaguti (INAF/IASF-Bologna)
- E. Pian (INAF/OA Trieste)
- G. Ghisellini, L. Maraschi, G. Tagliaferri, F. Tavecchio (INAF/OA Brera)
- A. Treves (Dept. Physics and Mathematics, University of Insubria, Como)
- C. M. Raiteri, M. Villata (INAF/OA Torino)
- G. Tosti (Dept. Physics, University of Perugia)

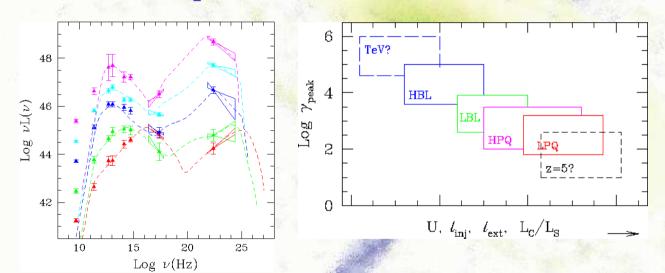
And many others...



GLAST Collaboration Meeting Blazar and other AGN Group Meeting Stockholm (Sweden), 28 August 2006

A bit of history...

- ✓ First detection of γ -rays (50-500 MeV) from an AGN (3C 273) by ESA satellite *COS-B* (Swanenburg et al. 1978);
- ✓ Breakthrough with NASA satellite *CGRO/EGRET*, with 271 point sources detected at E>100 MeV (Hartman et al. 1999), 93 of them identified with **blazars** and 2 with **radiogalaxies**;

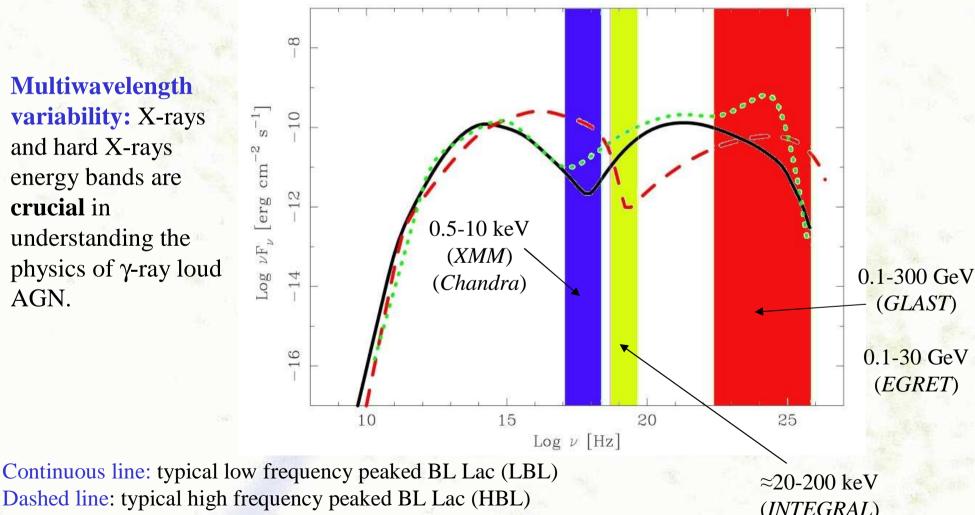


 \checkmark γ-ray loudness strongly biased by EGRET sensitivity and non-uniform exposure map; here we consider "γ-ray loud" an AGN detected by EGRET at E>100 MeV;

A bit of what...

The "blazar standard model": SMBH with a relativistic jet pointed toward the observer with small angles ($<10^{\circ}$); the relativistic motion can account for negligible γ -ray attenuation.

The "blazar sequence" (Fossati et al. 1998; Ghisellini et al. 1998).

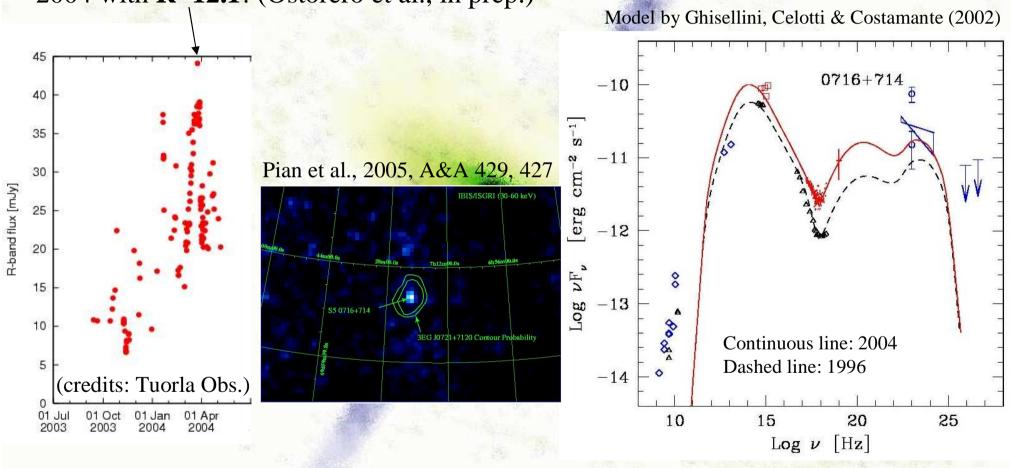

See, however, Padovani et al. (2003).

Open questions concerning the physics of γ -ray loud AGN: γ -ray generation mechanisms and places, dependence on viewing angle (link with radiogalaxies), composition of jets, disk-jet coupling, scaling laws for μ quasar, and many more!

A bit of how...

Multiwavelength variability appears to be a key issue in understanding the blazar phenomenon: it should allow to gain insights on the geometry of the emitting region, acceleration/deceleration processes, test models (SSC, EC, others?), ...

Multiwavelength variability: X-rays and hard X-rays energy bands are crucial in understanding the physics of γ -ray loud AGN.

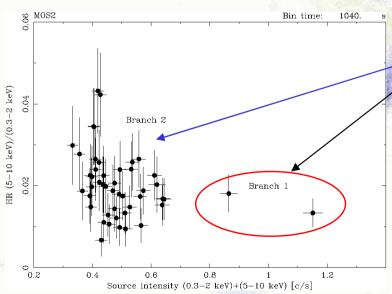

Continuous line: typical low frequency peaked BL Lac (LBL)

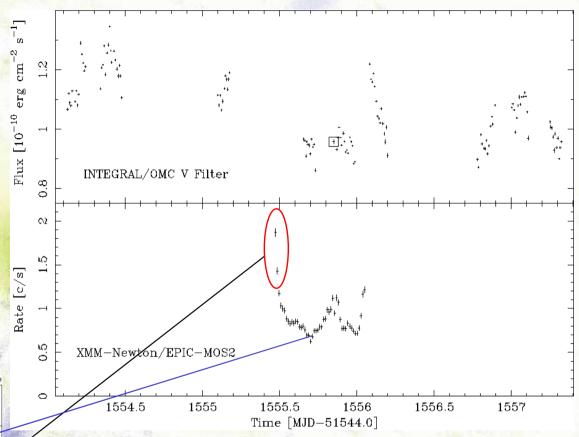
Dotted line: typical flat-spectrum radio quasar (FSRQ)

(INTEGRAL)

TOO activities to observe blazars in outburst: S5 0716+714

Optical outburst at the end of March 2004: **historical peak** recorded on 27 March 2004 with **R=12.1**! (Ostorero et al., in prep.)

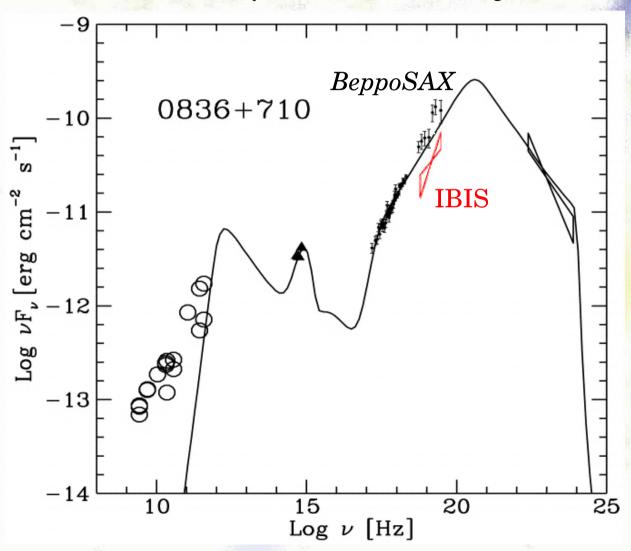

TOO with *INTEGRAL* (PI E. Pian; 2-7 April 2004; 280 ks) and *XMM-Newton* (PI G. Tagliaferri; 4-5 April 2004; 50 ks), but "too" late and the source was declining...


TOO activities to observe blazars in outburst: S5 0716+714

Long term variability (burst to quiescence; branch 1?):

radual decay afterburst probably due to escape of electrons from the processing regions or to a decrease of seed photons.

From quiescence to outburst and viceversa (SED: 1996-2004): minor changes in the model parameters, except for the injected power (2.2×10⁴² erg/s in 1996; 4 ×10⁴² erg/s in 2004).



Short term variability (optical/X-ray flares; branch 2): probably due to changes in the slope of the electrons distribution.

Foschini et al., 2006, A&A 455, 871

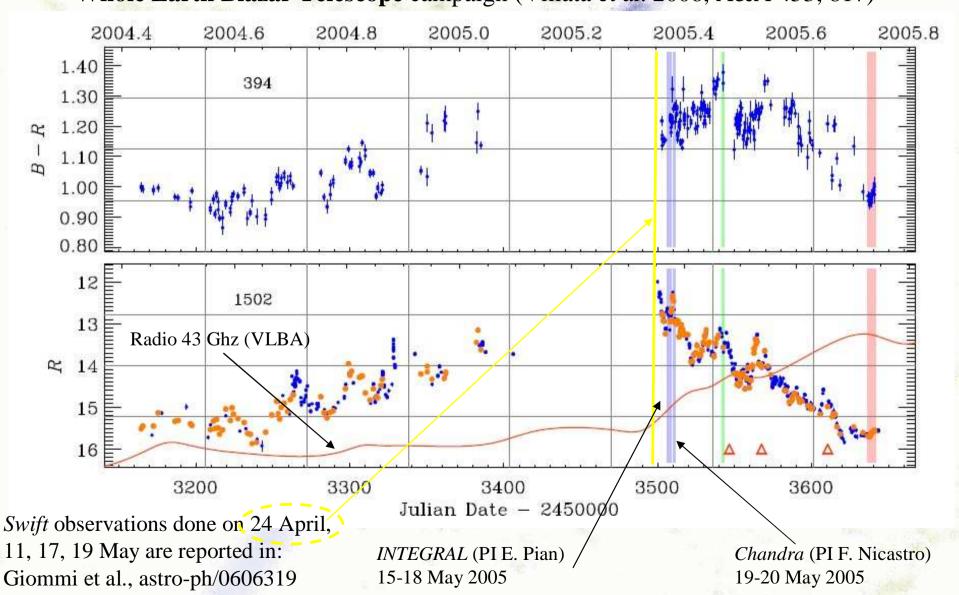
TOO activities to observe blazars in outburst: S5 0836+710

Since the IBIS telescope has a large FOV of IBIS $(29^{\circ}\times29^{\circ})$, it is possible to monitor simultaneously several sources. During the outburst of S5 0716+714, Pian et al. (2005) reported also the detection of S5 0836+710, that is "only" 6° .5 distant from the target source.

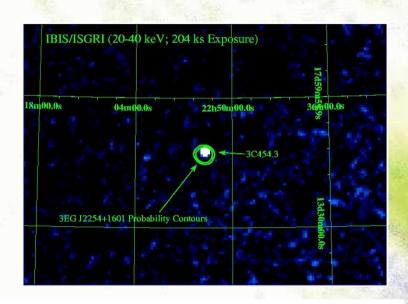
S5 0836+710 is a FSRQ at z=2.172.

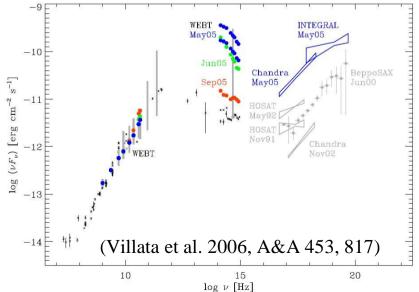
BeppoSAX data from Tavecchio et al. (2000);

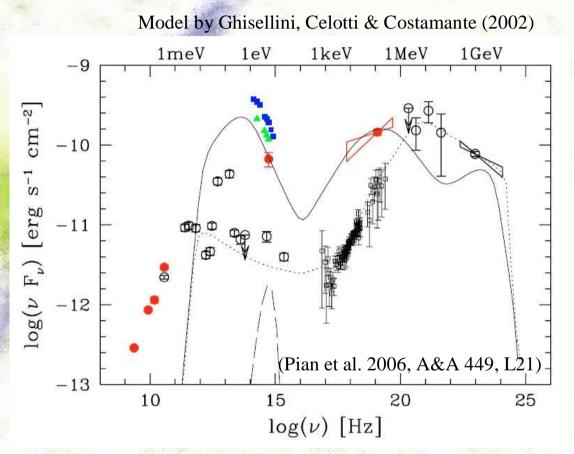
INTEGRAL/IBIS data from Pian et al. (2005).


Γ≅1.3 in both observations, but the flux was a factor 3 lower during the INTEGRAL observation.

TOO activities to observe blazars in outburst: 3C 454.3

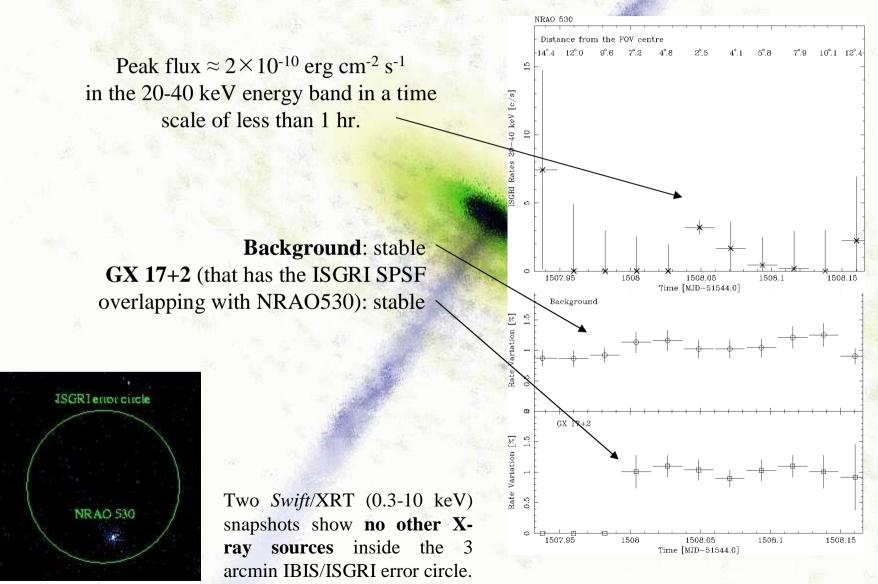

Long outburst of 3C 454.3 in April-May 2005.


Whole Earth Blazar Telescope campaign (Villata et al. 2006, A&A 453, 817)



TOO activities to observe blazars in outburst: 3C 454.3

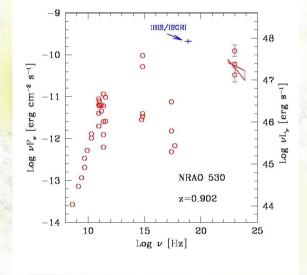
TOO with INTEGRAL (PI E. Pian)



Studies on the **post-outburst** properties: the new **WEBT** campaign on 3C 454.3 with continuous radio to optical monitoring and three *XMM-Newton* pointings. See details at: http://www.to.astro.it/blazars/webt—campaigns

Search into public archives for lost outbursts: NRAO 530

Occurred on 17 February 2004 and detected serendipitously by IBIS/ISGRI on board *INTEGRAL* during the Galactic Centre Deep Exposure (GCDE).

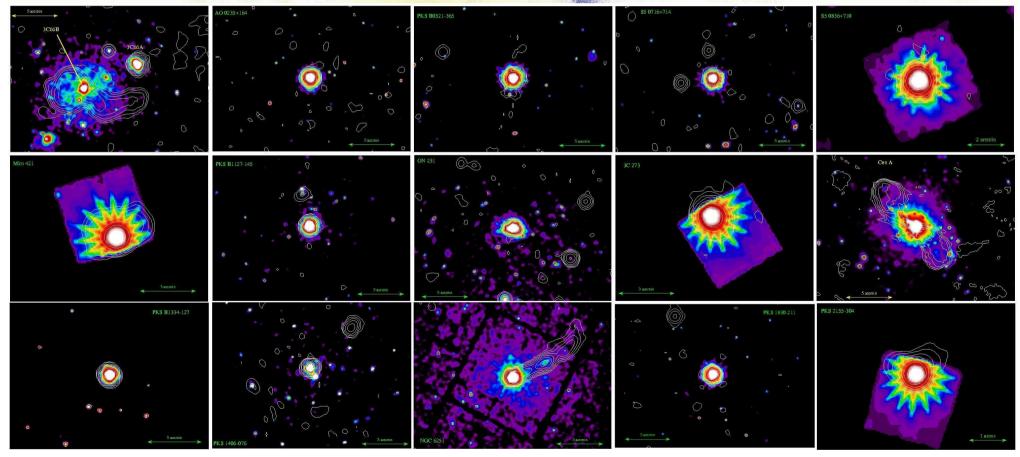


Search into public archives for lost outburst: NRAO 530

▶ NRAO 530 is known to display strong and erratic variability: up to Δ mag \approx 3 at optical wavelengths (Pollock et al. 1979; Webb et al. 1988); up to a factor 6 in flux in the EGRET energy band (Mukherjee et al. 1997).

First event of this type in the hard X-rays (in a FSRQ), exceptional, but still consistent

with the SED.


- Search for simultaneous or nearly simultaneous data at other wavelengths: only one **radio** observation at 2 cm (**MOJAVE Project**, Lister & Homan, 2005, AJ 130, 1389) performed on 11 February 2004 revealed a moderate increase of the **polarization**.
- ➤ Possible explanations: unsteadyness of the jet flow, that might be due to a single non stationary shock (e.g. Hughes et al. 1985) or to a collision of two relativistic plasma shells (internal shock, Spada et al. 2001). Anything else?

For more details: Foschini et al. 2006, A&A 450, 77

Studies on overall properties based on public archival data

Study of a sample of γ -ray emitting AGN (Foschini et al., 2006, A&A 453, 829 – Updated):

- ✓ 2 HBL (Mkn 421; PKS 2155-304)
- ✓ 4 LBL (3C66 A; AO 0235+164; S5 0716+714; ON 231)
- ✓ 8 FSRQ (PKS 0521-365; PKS 0537-286; S5 0836+710; PKS 1127-145; 3C 273; PKS
- 1334-127; PKS 1406-076; PKS 1830-211)
- ✓ 2 RG (Cen A; NGC 6251)

Studies on overall properties based on public archival data Averages on best fits

Name	$N_{ m H}$	Γ/Γ_1	Γ_2	$E_{ m break}$	$N_{ m H}$	Γ/Γ_1	Γ_2	$E_{ m break}$
(1)	(2)	(3)	(4)	(5)	(2)	(3)	(4)	(5)
0219 + 428	Gal.	$2.91^{+0.12}_{-0.08}$	$2.23^{+0.10}_{-0.09}$	1.3 ± 0.2	Gal.	2.22 ± 0.06	<u> </u>	22:
AO 0235 + 164	Gal.	2.33 ± 0.04	2.1 ± 0.1	$3.3^{+0.7}_{-0.5}$	Gal.	2.0 ± 0.1	-	==
PKS 0521 - 365	Gal.	1.95 ± 0.03	1.74 ± 0.03	$1.5^{+0.3}_{-0.2}$	Gal.	1.74 ± 0.02	\$ <u>_</u> \$	<u>00</u> 8
PKS 0537 - 286	$2.6^{+1.2}_{-0.7}$	$1.19^{+0.04}_{-0.02}$	3 20		7.5 ^{+6.4}	$1.46^{+0.14}_{-0.13}$	1 -2	-
S50716 + 714	Gal.	2.70 ± 0.02	$1.98^{+0.08}_{-0.09}$	$2.3^{+0.2}_{-0.1}$	Gal.	2.5 ± 0.2	1.8 ± 0.1	3.0 ± 0.4
S50836 + 710	14 ± 3	1.379 ± 0.007	_	_	78 ⁺⁵⁵ ₋₃₅	1.31 ± 0.02	_	<u>100</u>
Mkn 421	Gal.	2.38 ± 0.09	2.7 ± 0.2	2.7 ± 1.0	Gal.	1.9 ± 0.2	2.3 ± 0.3	1.3 ± 0.8
PKS 1127 - 145	12+2	$1.40^{+0.08}_{-0.05}$	1.22 ± 0.06	$2.7^{+1.0}_{-0.8}$	Gal.	1.42 ± 0.05	<u> </u>	
ON 231	2.5 ± 0.6	2.77 ± 0.04	=	_	Gal.	2.58 ± 0.01	1.52 ± 0.06	2.8 ± 0.2
3C 273	Gal.	2.02 ± 0.08	1.67 ± 0.05	1.44 ± 0.08	Gal.	2.0 ± 0.1	1.603 ± 0.006	0.9 ± 0.3
Cen A	1523 ± 261	2.22 ± 0.06	-	S	Gal.	1.58 ± 0.03	::	1000 1
PKS 1334 - 127	6.7 ± 0.9	1.80 ± 0.04	i 		1020+90	$1.80^{+0.03}_{-0.04}$	2 <u>—</u> 2	77 8
PKS 1406 - 076	Gal.	1.59 ± 0.01	<u> 222</u>	F-8	-	-	-	<u>100</u>
NGC 6251	14 ± 1	$2.11^{+0.08}_{-0.06}$	1.78 ± 0.07	$2.5^{+0.3}_{-0.4}$		s 3	e—.	===
PKS 1830 - 211	63 ± 1	1.00 ± 0.09	1.32 ± 0.06	3.5 ± 0.7	9 ± 1	1.79 ± 0.06		200
PKS 2155 - 304	1.69 ± 0.06	2.9 ± 0.1	=	-	194^{+28}_{-25}	1.09 ± 0.05	8 - 3	=
	Gal.	2.7 ± 0.1	2.94 ± 0.06	2.7 ± 0.7	Gal.	2.3 ± 0.1	2.8 ± 0.1	1.7 ± 0.2

XMM-Newton

2000-2005

(Foschini et al. 2006, A&A 453, 829) Updated with PKS 0537-286 (FSRQ @ z=3.1)

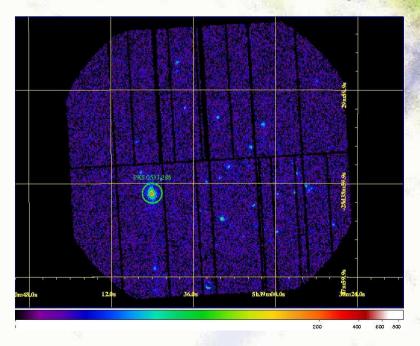
BeppoSAX 1996-2002

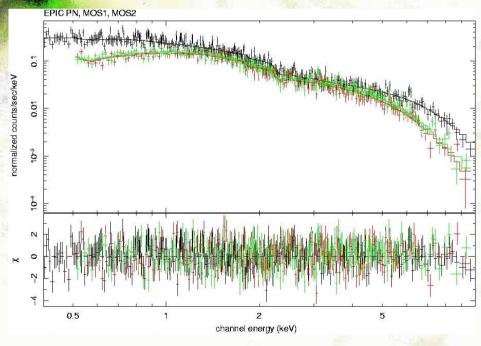
(Giommi et al. 2002; Donato et al. 2005)

Cen A: Grandi et al. (2003);

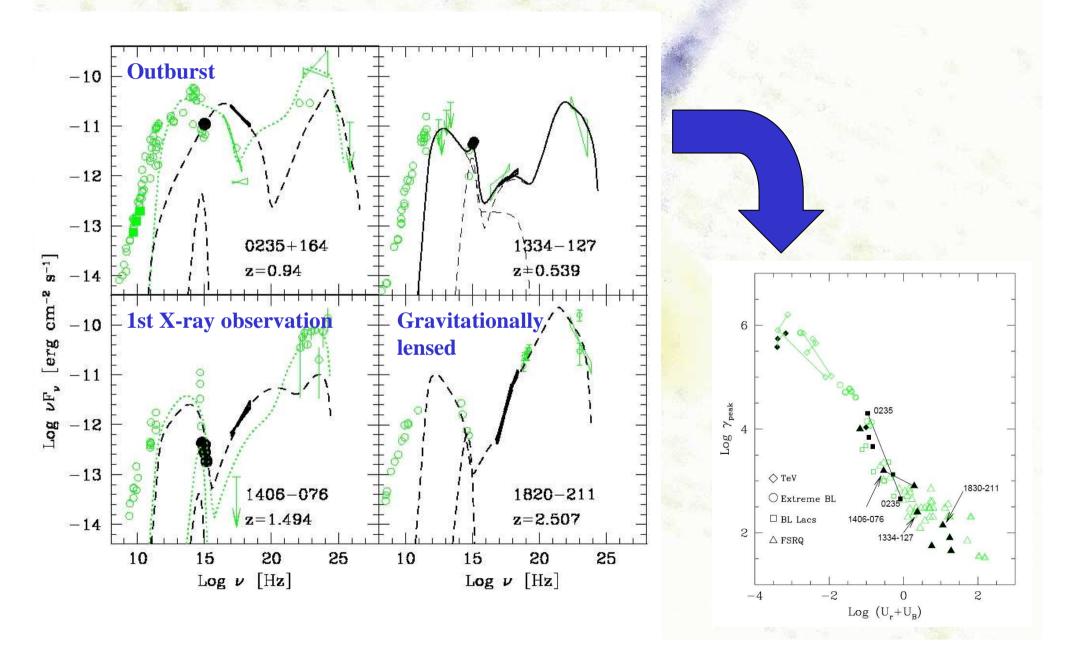
NGC 6251: Chiaberge et al. (2003); Guainazzi et al. (2003)

PKS 1830-211: Chandra+INTEGRAL, De Rosa et al. (2005).


PKS 0537-286: ASCA, Cappi et al. (1997)


Studies on overall properties based on public archival data Update with PKS 0537-286 (=3EG J0531-2940?)

PKS 0537-286 is a FSRQ at z=3.104 associated (low confidence) with 3EG J0531-2940 (Hartman et al. 1999; Sowards-Emmerd et al. 2004). Observed by XMM-Newton in 2005, but with 8.7′ distance from the centre of the FOV (it was not the on-axis source). Data public since 30 June 2006.


Best fit: single power law with $\Gamma=1.19$ and absorption consistent with the Galactic column. Flux $0.4-10 \text{ keV} = 6.12 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$.

Previous observation done in 1994 with ASCA (Cappi et al. 1997) indicated a softer spectrum with Γ =1.46 and lower flux 2.63×10^{-12} erg cm⁻² s⁻¹.

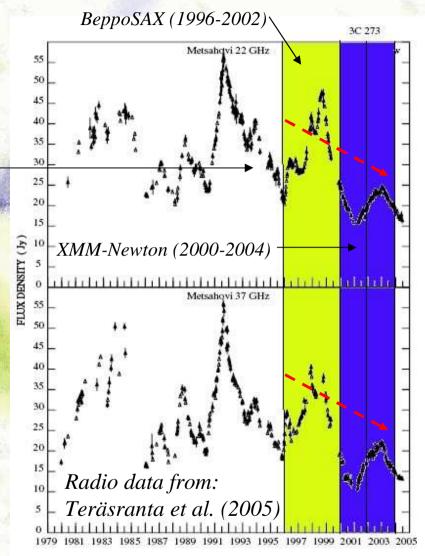
Studies on overall properties based on public archival data New or peculiar SED with respect to Ghisellini et al. (1998)

Studies on overall properties based on public archival data

Grandi & Palumbo (2004, Science 306, 998) **first disentangled** the "thermal" and the "non-thermal" components in 3C273 by using *BeppoSAX* data.

Decreasing trend of the radio flux.

BeppoSAX vs XMM-Newton vs Radio:

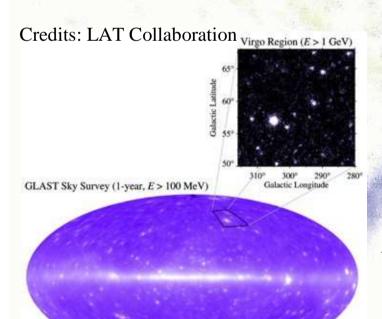

increase of the average "thermal" component, indicated by an increase of the energy break in the broken power law model:

- \triangleright E_{break}(XMM-Newton)=1.44±0.08 keV
- \triangleright E_{break}(*BeppoSAX*)=0.9±0.3 keV

or – in the blackbody model – :

- \rightarrow kT(*XMM-Newton*)=143±6 eV
- ightharpown kT(*BeppoSAX*)=54₋₄+6 eV

(BeppoSAX data from Grandi & Palumbo 2004)



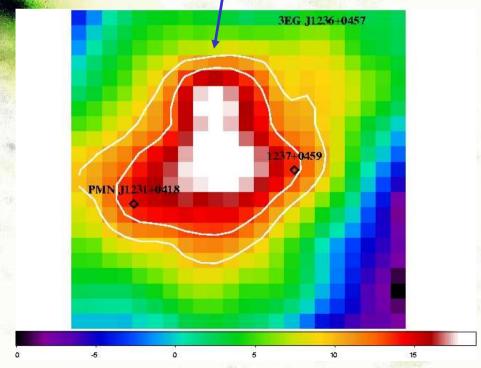
XMM-Newton data are **consistent** with (and support) the picture outlined by Grandi & Palumbo (2004).

Studies on overall properties based on public archival data Jet viewing angle: from FSRQ to RG, with some biases...

Table 5. Parameters useful to understand γ -ray loudness. Columns: (1) Source name; (2) beaming factor δ ; (3) observed flux in the 0.4 – 10 keV energy band [erg cm⁻² s⁻¹]; (4) intrinsic luminosity in the 0.4 – 10 keV energy band [erg s⁻¹]; (5) Confidence of the EGRET detection (high > 95%; low < 95%).

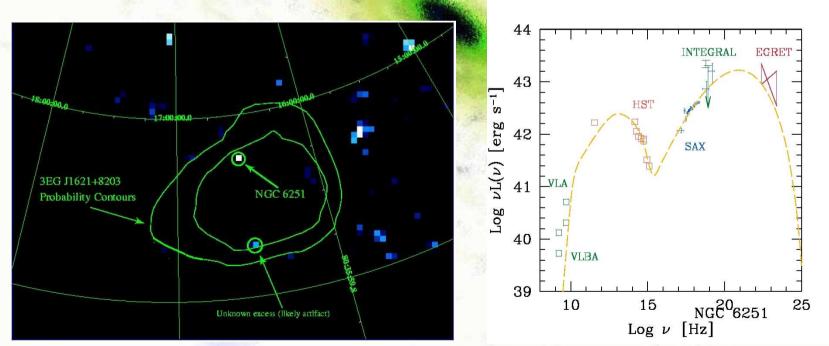
Source	δ	F	L	Conf.
(1)	(2)	(3)	(4)	(5)
3C 273	6.5 - 7	$\approx 10^{-10}$	$\approx 10^{46}$	high
NGC 6251	3.2 - 3.8	$\approx 10^{-12}$	$\approx 10^{43}$	low
PKS 0521 - 365	1.4 - 3	$\approx 10^{-11}$	$\approx 10^{42}$	1ow
Cen A	1.2 - 1.6	$\approx 10^{-10}$	$\approx 10^{41}$	high

Differences in the detection due to instrument sensitivity and distance.

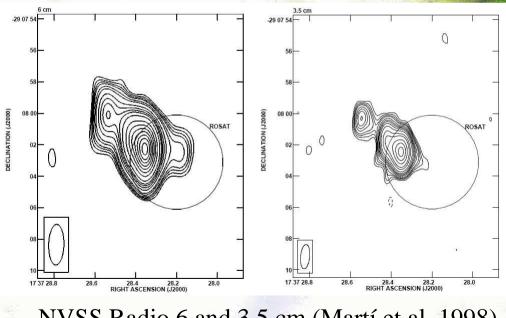

Waiting for *GLAST/Large Area Telescope* (improvement in sensitivity of two orders of magnitudes with respect to CGRO/EGRET) in order to have an unbiased definition of γ -ray loudness.

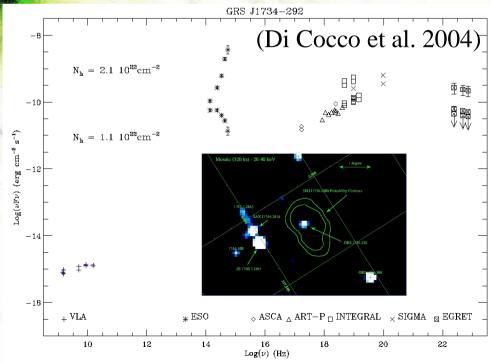
X-ray follow-up of new identifications: 3EG J1236+0457

- In the Third EGRET Catalog (Hartman et al. 1999), the source 3EG J1236+0457 was associated, with **low confidence**, with the blazar 1237+0459 (z=1.76).
- Sowards-Emmerd et al. (2003) proposed a **new association** with the FSRQ PMN J1231+0418 (z=1.03), but there was no X-ray observation at all to date.
- Now, we have found the **first X-ray detection** in the *XMM-Newton Slew Survey* (Read et al. 2005): in an exposure of 8.7 s, the EPIC-PN flux in the 0.2-12 keV energy band was 0.83±0.27 c/s. Here is the **first SED** with the X-ray detection (star point).


• Given the position of the two counterparts inside the EGRET probability contours, perhaps 3EG J1236+0457 is the sum of the γ -ray emission of both blazars...

INTEGRAL AO Observations: 3EG J1621+8203 = NGC 6251


- ✓ Mukherjee et al. (2002, ApJ 574, 693) **first proposed** the association of 3EG J1621+8203 with the FRI radiogalaxy NGC 6251, based on X-ray (*ROSAT*, *ASCA*) observations that covered most (but not all) of the EGRET probability contours.
- ✓ *INTEGRAL* AO2 Observation of the **whole** EGRET probability contour (PI Foschini) revealed **only** NGC6251 inside the error contours, thus **supporting** the Mukherjee's findings.
- ✓ Faint detection (5 σ) of NGC 6251, but **consistent** with the SED as modeled with a SSC.


(for more details, see Foschini et al. 2005, A&A 433, 515)

INTEGRAL Core Programme: The enigmatic case of 3EG J1736-2908 = GRS 1734-292?

- > INTEGRAL observations around the Galactic Centre revealed **only one** source within the probability contours of 3EG J1736-2908, that is the nearby (z=0.0214) AGN GRS 1734-292 (Di Cocco et al. 2004, A&A 425, 89).
- ➤ Originally classified as Seyfert 1, it shows a clear **bipolar jet** at radio wavelengths, with an extension of about 5" but weak flux (23 mJy @ 5 GHz) and spectrum $S_v \propto v^{-(0.75\pm0.03)}$ (Martí et al. 1998, A&A 330, 72).
- \triangleright If this association will be **confirmed** by *GLAST*, then: how is it possible that a Seyfert can generate γ -ray photons with E>100 MeV? Or is this AGN correctly classified? Perhaps it is another radiogalaxy...

NVSS Radio 6 and 3.5 cm (Martí et al. 1998)

