

Data Challenge II

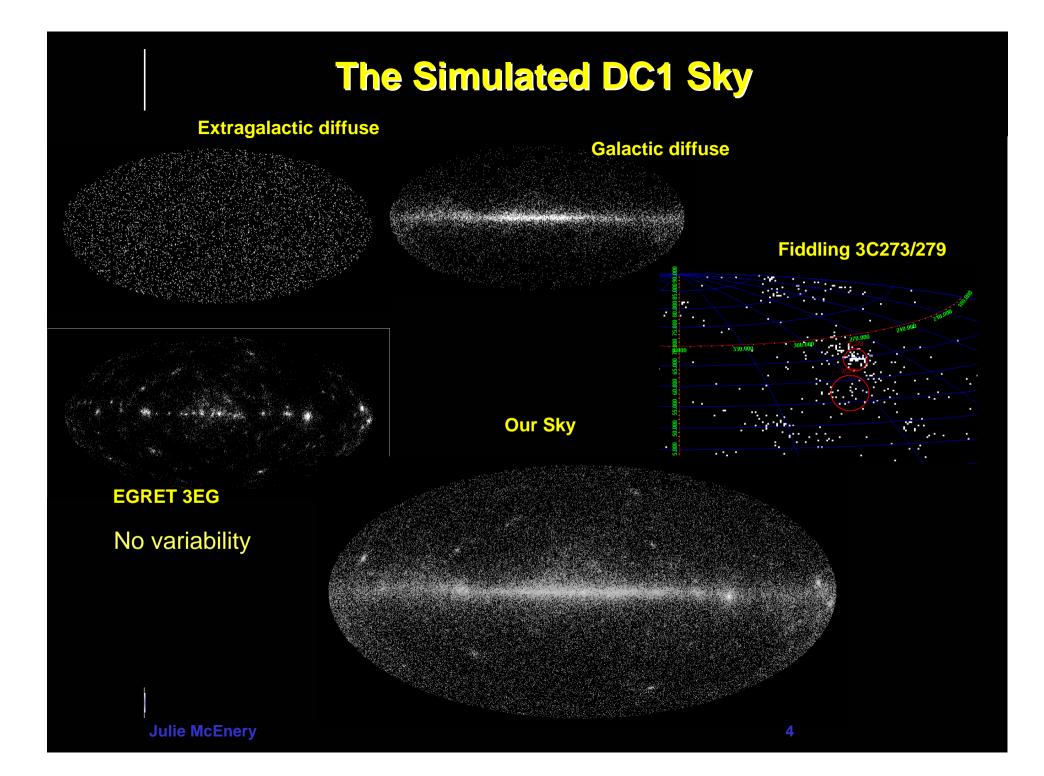
Logo by Stefano Ciprini.

http://www-glast.slac.stanford.edu/software/DataChallenges/DC2/DC2Mail.htm

Julie McEnery

Data Challenges

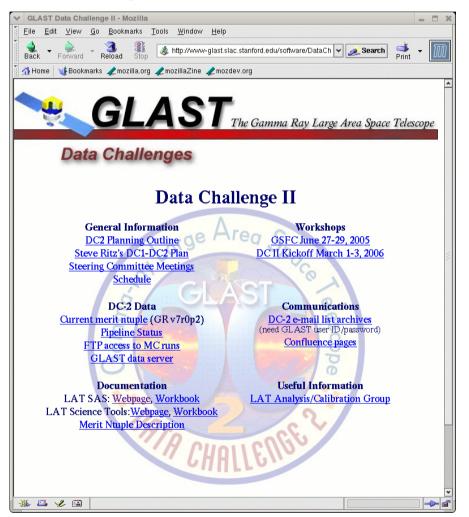
- A series of end-to-end studies:
 - Produce 1 day; one month; three months of simulated LAT data, release this to the collaboration for science analysis.
- Drives instrument performance studies, exercises detector simulation software.
- Science input include in the simulation science/astrophysical features we expect to see in the GLAST gamma-ray sky, verify that the analysis tools can find them.
- Tests data servers, user level documentation and more...
- DC1. Modest goals. 1 simulated day.
- DC2, start beginning of CY06. More ambitious goals. Encourage further development, based on lessons from DC1. One simulated month.
- **DC3**, in CY07. Support for flight science production.


DC Components

- Focal point for many threads
 - Orbit, rocking, pointing history
 - Plausible model of the sky
 - Event Reconstruction
 - Background rejection and event selection
 - Instrument Response Functions
 - Data formats for input to high level tools
 - First look at major science tools Likelihood, Observation Simulator
 - Generation of datasets
 - Populate and exercise data servers at GSSC & SLAC
 - Code distribution on windows and linux
- Involve new users from across the collaboration

Teamwork!

Julie McEnery


From DC1 to DC2

- Taking a step into the unknown!
- One month of LAT data will provide the deepest image of GeV sky ever seen.
- Science model of the sky needs to be more detailed (and imaginative) than for DC1

Julie McEnery

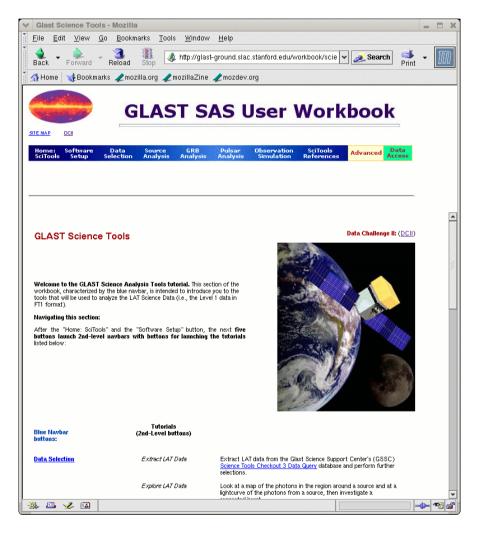
http://www-glast.slac.stanford.edu/software/DataChallenges/DC2/DC2Main.html

Date of the kickoff meeting: March 1-3 (please register). F-to-F meeting: March 4

Date of closeout meeting: Not defined (between April 26 and May 17)

Size of the data set Requirement: 30 days Goal: 55 days

Some background will be included.


http://confluence.slac.stanford.edu/display/DC2/Home

<u>ashboard</u> > <u>DC2</u> > <u>Home</u> > Mew	Searc
V DC2	Log In 🖶
Home	
<u>V</u> iew Info	Space (Space)
Added by <u>Julie McEnery</u> , last edited by <u>Matt Langston</u> on Sep 14, 2005	
Children Hide Children View in hierarchy	
Orbit and Pointing History (DC2)	
DC1 Processing Times (DC2)	
Gamma-Ray bursts (DC2)	
Candidate SAA boundary definition (DC2)	
AGN modeling (DC2)	
Interstellar Emission Modeling (DC2)	
Pulsars (DC2)	
Interim DC2 Run 20050715 (DC2)	
Interim DC2 Run 20050722 (DC2)	
Background Model (DC2)	
Data Processing (DC2)	
Residual Backgrounds for backgndavgpdr-v7r0p2 (DC2)	
Background Interleave (DC2)	
Monte Carlo Production Log (DC2)	Instrument Response Functions
Reprocessing Status 20051031 (DC2)	
Bad strips map for DC2 simulations (DC2)	
IRF Development (DC2)	
Running ScienceTools (DC2)	
Trigger and Filter settings and Event classes (DC2)	
Comments	
Johnnents	

Documentation

http://glast-ground.slac.stanford.edu/workbook/science-tools/sciTools_Home.htm

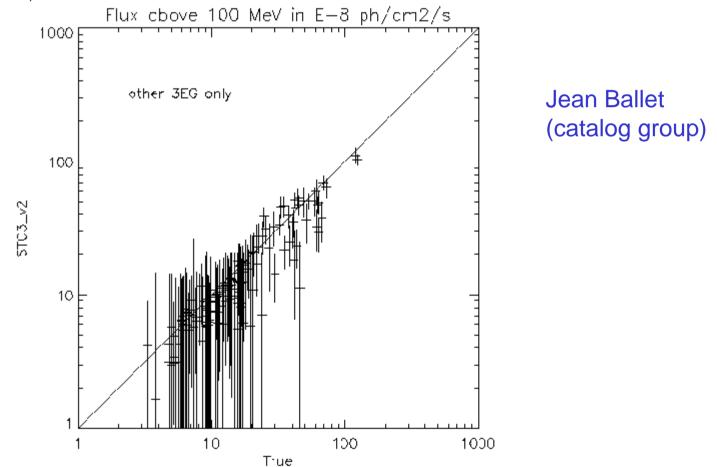
- SLAC: R. Cameron, J. Carson, J. Chiang, E. do Couto e Silva, G. Madejski, B. Lott
- Perugia: G. Tosti, P. Lubrano, S. Ciprini, A. Cucchiara, L. Furhmann
- ASI: P. Giommi, S. Cutini, D. Gasparrini
- GSFC: L. Reyes, J. Scargle
- Stockholm Observatory: S. Larsson, F. Ryde
- CENBG: Th. Reposeur, D. Smith

At the kickoff meeting, the catalog group will provide a list of candidate sources, with (approximate) position, flux and spectral index for each. This list will then be refined during DC2.

Establishing the first list requires about 2 weeks on a farm of 8 processors.

This means that:

- the identification of blazars in the sample is left to us;
- no variability information will be provided.


We will need to repeat the Likelihood analysis over a large number of sources, which is computing intensive. We need to be prepared.

Use of binned analysis ? Jennifer Carson is looking into this issue.

Optimal filter results

The run found <u>553 sources</u> (versus 510 with the wrong exposure) with <u>Test Statistic above 10</u>: all 105 bright blazars, all 14 pulsars, 142 other 3EG sources (among 148), <u>291 faint blazars (among 514)</u> and 1 y-ray burst. The FITS file can be found <u>here</u>. The figures shown in the previous report are qualitatively identical, except the flux which is now approximately correct (see below).

Goals for DC2

1. Blazar catalog, sample definition Source Identification in collaboration with the Catalog Group (Jürgen Knödlseder)

2. Gamma-ray statistical properties of the samples

- LogN-LogS, redshift distributions, luminosity function
- population studies: BL Lacs and FSRQs, bright radio galaxies, radio_quiet galaxies

3. General properties of GLAST-detected blazars

- spectral index
- spectral cutoffs
- luminosity and spectral variability
- duty cycle...

4. Specific Properties of Individual Source

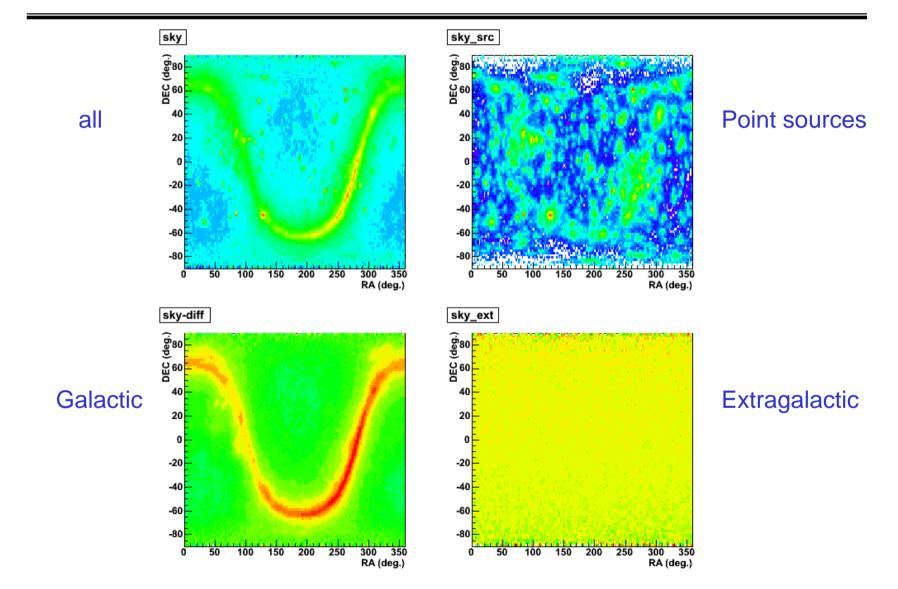
For the brightest sources: spectral evolution with time, flux detailed spectra (cutoff, curvature) non-simultaneous SEDs

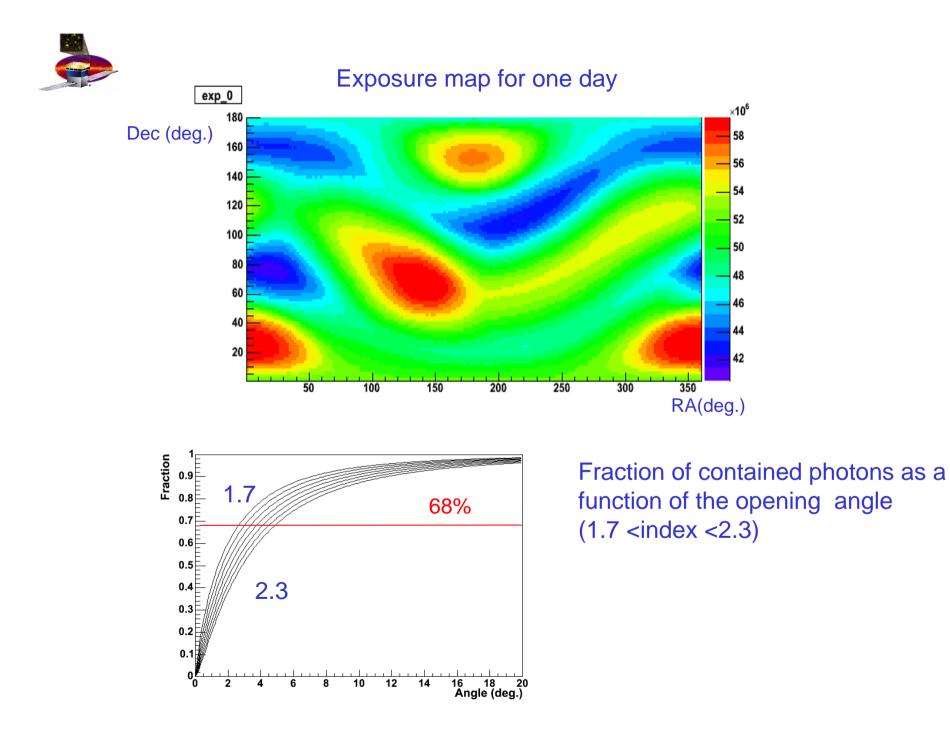
5. Extragalactic Background Light

Rough estimate of EBL density (if enough bright, high-redshift, high-energy sources...)

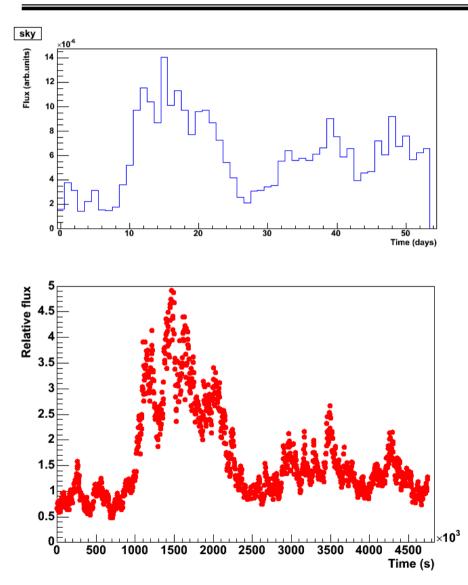
Variability

Variability studies


Impractical to run the Likelihood package on all sources as a function of time.


Possibility:

- create flux maps (count maps normalized with respect to exposure) for different time bins
- subtract Galactic + Extragalactic Diffuse Emission components,
- investigate if the measured variations of flux is consistent with a steady flux, for instance by computing the variability index (McLaughlin,Torres,...)



Maps

Light curve obtained

The distributions look similar but are not identical: pb with the exposure normalization.

Seed light curve (Gino Tosti's 34)