### Some Comments On MW Needs

#### G. Tosti & P. Giommi

## GLAST CAPABILITIES

- Coverage of the 20% of the sky at any instant
- Entire sky coverage in 190 min (~2 orbits)
- Uniform exposure in survey mode (sensitivity gain of a factor of ~1.7 in pointing mode)

Also, we have to take into account...

#### LAT Year 1 (Phase 1) Data Release Plan

- Proposed plan consistent with AO 99-OSS-03:
  - "At all times, including the first twelve months of science operations, the data from transient sources discovered or detected by GLAST will immediately be made publicly available."
    - operational definition of transient source: any source for which a significant change in source flux is detected on a timescale sufficiently short that rapid follow-up multi-wavelength observations are warranted (e.g. GRBs, a significant flare from a blazar, a solar flare, etc.)
  - "During the first twelve months of science operations, data from specific sources of interest to qualified individual researchers will be made available..."
    - Data products on specific sources of interest will be released, by the LAT team, periodically via a publicly assessable web site.
  - "During the first year, IDS investigators will work with the LAT team, will have access to the data, and will assist in the data verification activities."
    - "expected that the IDS investigators will work with the instrument team and have access to data to carryout their investigations, with the understanding that during the 1<sup>st</sup> year the data calibration may not be fully verified and could change."

#### (From Peter's presentation at the August 2005 Collaboration Meeting)

#### Monitor and regularly release data, via the web, to the entire community, on list of sources of interest (proposed list follows)

| Source type                                | Source name  | other name    | Average or min.                                        | Latitude |  |  |  |
|--------------------------------------------|--------------|---------------|--------------------------------------------------------|----------|--|--|--|
|                                            |              |               | flux $(10^{-8} \gamma \text{ cm}^{-2} \text{ s}^{-1})$ |          |  |  |  |
| Sources from 3 <sup>rd</sup> EGRET Catalog |              |               |                                                        |          |  |  |  |
| Blazar                                     | 0208-512     | 3EGJ0210-5055 | 85.5 ± 4.5                                             | -61.9    |  |  |  |
|                                            | PKS 0528+134 | 3EGJ0530+1323 | 93.5 ± 3.6                                             | -11.1    |  |  |  |
|                                            | 0827+243     | 3EGJ0829+2413 | $24.9 \pm 3.9$                                         | 31.7     |  |  |  |
|                                            | Mrk 421      | 3EGJ1104+3809 | $13.9 \pm 1.8$                                         | 65.0     |  |  |  |
|                                            | 3C 273       | 3EGJ1229+0210 | $15.4 \pm 1.8$                                         | 64.5     |  |  |  |
|                                            | 3C 279       | 3EGJ1255-0549 | $74.2 \pm 2.8$                                         | 57.0     |  |  |  |
|                                            | 1406-076     | 3EGJ1409-0745 | $27.4 \pm 2.8$                                         | 50.3     |  |  |  |
|                                            | PKS 1622-297 | 3EGJ1625-2955 | $47.4 \pm 3.7$                                         | 13.4     |  |  |  |
|                                            | 1633+383     | 3EGJ1635+3813 | 58.4 ± 5.2                                             | 42.3     |  |  |  |

(From Peter's presentation at the August 2005 Collaboration Meeting)

## Preliminary list – cont'd

|                                                                | 1730-130                  | 3EGJ1733-1313  | 36.1 ± 3.4                                                                                                                                                         | 10.6  |  |  |  |  |
|----------------------------------------------------------------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
|                                                                | NRAO 530                  |                |                                                                                                                                                                    |       |  |  |  |  |
|                                                                | 3C 454.3                  | 3EGJ2254+1601  | 53.7 ± 4.0                                                                                                                                                         | -38.3 |  |  |  |  |
|                                                                |                           |                |                                                                                                                                                                    |       |  |  |  |  |
| НМХВ                                                           | LSI +61 303/<br>2CG135+01 | 3EGJ0241+6103  | 69.3 ± 6.1                                                                                                                                                         | 1.0   |  |  |  |  |
| any source<br>(except Crab,<br>Vela and<br>Geminga<br>pulsars) |                           |                | monitor if flux<br>exceeds 2x10 <sup>-6</sup> cm <sup>-2</sup> s <sup>-1</sup><br>and report flux down<br>to 2 x 10 <sup>-7</sup> cm <sup>-2</sup> s <sup>-1</sup> |       |  |  |  |  |
| After confirmed detection by LAT                               |                           |                |                                                                                                                                                                    |       |  |  |  |  |
| Blazar                                                         | Mrk 501                   |                |                                                                                                                                                                    |       |  |  |  |  |
|                                                                | W Com                     | 3EG J1222+2841 | $11.5 \pm 1.8$                                                                                                                                                     | 83.5  |  |  |  |  |
|                                                                | 1219+285                  |                |                                                                                                                                                                    |       |  |  |  |  |
|                                                                | 1ES 1959+650              | TeV            |                                                                                                                                                                    |       |  |  |  |  |
|                                                                | 1ES 2344+514              | TeV            |                                                                                                                                                                    |       |  |  |  |  |
|                                                                | H 1426+428                | TeV            |                                                                                                                                                                    |       |  |  |  |  |
|                                                                | PKS 2155-304              | TeV            |                                                                                                                                                                    |       |  |  |  |  |

(From Peter's presentation at the August 2005 Collaboration Meeting)

#### MULTIFREQUENCY IS A KEY INGREDIENT FOR ALL THE SCIENTIFIC ITEMS...AND DUTIES

#### **BUT VERY DIFFICULT TO ARRANGE.....**



Fig. 8. Time history of PKS 1622-297 in  $\gamma$ -rays at energies above 100 MeV compared to the optical R band (symbols) during its 5-week flare state in 1995. The error bars are 1  $\sigma$ .

"....Due to the sparse sampling in the optical, flux correlations between optical and  $\gamma$ -ray energies cannot be identified" (Zhang et al 2002)



Only one Optical Point during the Maximum of the  $\gamma$ -ray flare

(data from Wharle et al.1998)

# How we are proceeding to setup a MW Plan

- Analysis of the pre-launch Blazar openquestions
  - Develop some Use cases and list resources needed (pre-launch, follow-up, simultaneous observations)
  - Develop an observing strategy for each Use Case based on GLAST simulation (derive limits on spatial,time and spectral resolution)
  - Pre-launch test of the feasibility of each Use Case (es. Organize some MW Campaign...)
- Leave an open door for New discoveries

## Some Pre-lanch Open Question

- Population studies, Luminosity functions, etc,
- Blazar emission models
- Blazar Long/Short term gamma variability
- Blazar gamma duty cycle
- EBL,
- Etc.

## Greg's Use Cases

| Greg's Science Goals                                                                | TARGET                                                       | APPROACH                                                  | MW DATA                       | TIME SCALE                               |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|------------------------------------------|
| 1-Blazar Sequence?<br>(A number of recent<br>papers do not confirm<br>the sequence) | About 20 Blazars                                             | SED fitting                                               | IR,OPT,X<br><b>(radio?)</b>   | Contemporaneous<br>( <b>snapshot?)</b>   |
| 2-SSC Model and HBL                                                                 | Mkn 421, Mkn<br>501,1ES1959+65                               | Detection of orphan<br>flares                             | Soft X-ray, TeV<br>(optical?) | Simultaneous<br>(Long/medium<br>period?) |
| 3-Are single zone<br>SCC/ECR model<br>applicable ?                                  | 3C279,PKS <b>1622-</b><br><b>297?</b> , PKS<br>0528+134, Etc | Relation between<br>synchrotron (SR) and<br>IC components | IR,OPT,UV<br>(radio? X?)      | Simultaneous - High time resolution      |
| 4-Are SR e IC cospatial?                                                            | Mkn 421, Mkn<br>501,1ES1959+65<br><b>(3C279 as in 3?)</b>    | Study of time lags at different energy                    | IR,OPT,UV<br>(radio? X?)      | Simultaneous - High time resolution      |
| 5-Inner jet content<br>(e+/e-, Poynting, )                                          | 3C279,PKS <b>1622-</b><br><b>297?</b> , PKS<br>0528+134, Etc | X ray precursor                                           | Soft X                        | Good coverage<br>(medium term period)    |
| 6-total Jet power,<br>efficiency                                                    | BL Lac, PKS 1510-<br>089                                     | Modeling of the<br>Compton component                      | Hard X                        | Simultaneous                             |
| 7-Gamma-ray flares<br>related to magnetic<br>dissipation?                           | AO 0235+164,<br>3C454.3                                      | Study of IR/opt<br>polarization near SR<br>peak           | OPT.IR                        | Simultaneous - High time resolution      |

# What we need (Specific Items)

#### - Simultaneous Observations

- Planned MW Campaign
  - » Source selection
  - » When to start the campaign (the period with the best object accessibility from ground and Space, problems: TAC, weather etc.)
  - » Observing strategy (energy Bands, time resolution)
  - » Duration
  - » Data Collection quality check of data and Analysis;
- ToT (large flares)
  - » Proposal , how to activate facilities
  - » Observing strategy (energy Bands, time resolution)
  - » Duration
  - » Data Collection quality check of data and Analysis;

# What we need (Specific Items)

#### - Follow-up Observations

- New Sources Characterization
  - » Facilities needed
  - » Observing strategy (energy Bands, time resolution
  - » Data Collection quality check of data and Analysis;
- Long Term Gamma-ray Variability, Duty Cycle
  - » Source sample
  - » Correltated MW variability
  - » Observing strategy (energy Bands, time resolution)
  - » Facilities needed
  - » Data Collection quality check of data and Analysis;

### What we need (an example)

#### - Follow-up Observations

Glast will detect 3000-10000 new blazar... Here we assume ~ 5000

#### - New Sources Characterization (es. optical variability)

- Facilities needed in the optical ?
  - » Which telescope size? (EGRET Blazar mag. Range 14-24)
  - →1-2m class telscopes
- Observing strategy
  - » energy Band: V & I (or B & I; or only R)
  - » time resolution: 1 obs. per month (or 1 per week)
- How many telescopes we need to observe just 1500 sources once per months?
  Total number of observations (1 yr):

1500(#obj)\*12(months)\*2(#exps)=36000 obs

#number of observations for a single telescope(1yr):

420(min 7 h per night)\*280(useful days 1 yr)/10(min 1 obs duration)=10500 obs

 $\rightarrow$  # of telescope ~4 (fully dedicated)

#### DO WE NEED SUCH KIND OF PROJECT?

# What we need (Specific Items)

- Pre-launch Activities
  - Population Studies
    - » Definition of statistically well-defined Blazar samples at different wavelenghts
    - » MW Characterization of known gamma-ray Blazars (Observing strategy, energy Bands, time resolution, facilities needed)
  - Long Term MW variability of known sources
    - » Source sample, (Histrorical LC from archivial data...)
    - » Observing strategy (energy Bands, time resolution)
    - » Facilities needed;
    - » Data Collection, quality check of data and Analysis;

# What We Need (primary items)

- Agreement with WEBT,GTN, X-ray Satellites, TeV,IR,Radio facilities
- A "Core Group" of facilities (radio,ir, optical,TeV) able to follow some selected sources when they are both in high and low states
- An observing strategy for each scientific Use case

### What We Need (secondary items)

- Strong GLAT Team support in preparation/submission of Proposal to Large Facilities (ESO, Hawaii, etc., Radio Tel.)
- Data policy: what can the Glast Team offer to the MW contributors?
- Do we need a communication system for alerts, data exchange (GCN?, ?,?)?
- Do we need a dedicated, object oriented, MW archive (historical data, new obs,literature, etc;e.g. each WG member could adopt a blazar)
- Discussion with the AGILE Team-AGN WG( many facilities involved to support AGILE next years, will be also involved to support GLAST).
- Support from all members of the WG and support for young people