X-rays capabilities for GLAST

• Which X-ray capabilities will better serve GLAST AGN science?

Rita Sambruna

Goddard Space Flight Center

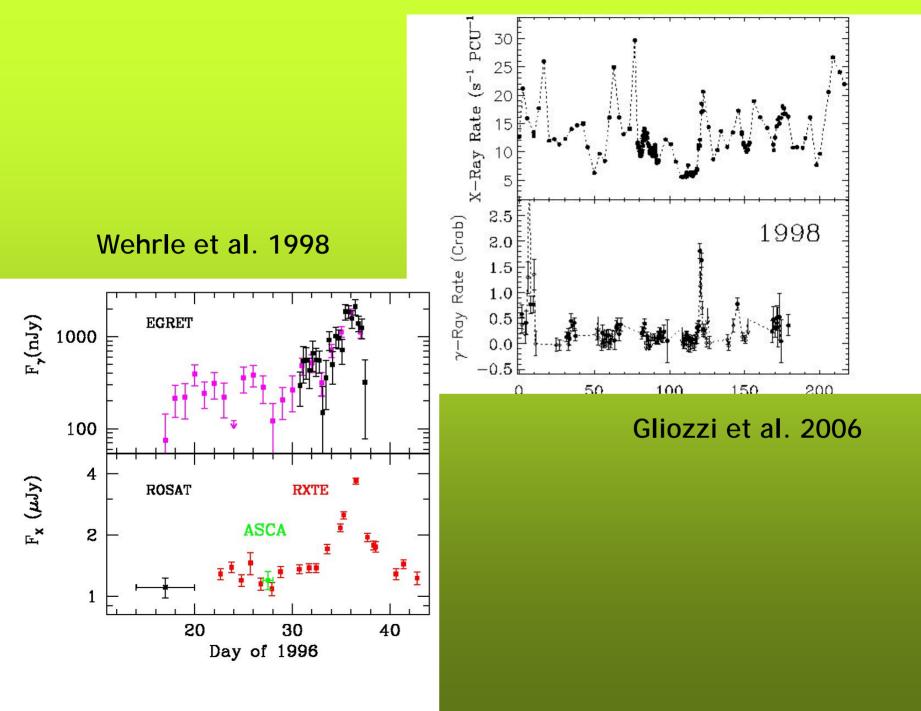
X-ray facilities

Table 1: Currently operating X-ray Telescopes

Name	Det.	FOV	Orbit	Energy Band	PSF/Ang res	Positional Acc.
Chandra X.MM Suzaku	ACIS EPIC XIS HXD	17'x17' 30' 18'x18' 4.5x4.5deg 34'x34'	High High Low	0.3-10 0.4-10 0.3-12 100-600 10-100	1 " 6" < 1.5'	0.2 " 1.0 "
Swift RXTE	XRT BAT PCA ASM	23.6'x23.6' 2sr 1 deg	Low Low	0.3-10 15-150 2-100 2-10	18" 17' 1 deg	3-5" 4'

Sensitivities (eff. area)

- @ 1.5 keV:
 EPIC pn: 1304 cm²
 ACIS FI: 525
 - XIS : 1600
 - XRT : 135
 - RXTE : 1300 cm² @ 6 keV XIS: 1000
- Background an issue for RXTE and EPIC


Flexibility of scheduling

- 1. How *fast* can a ToO be triggered?
- 2. How *long* to slew to new position?
- 3. For how long can the X-ray obs be *continuous*?

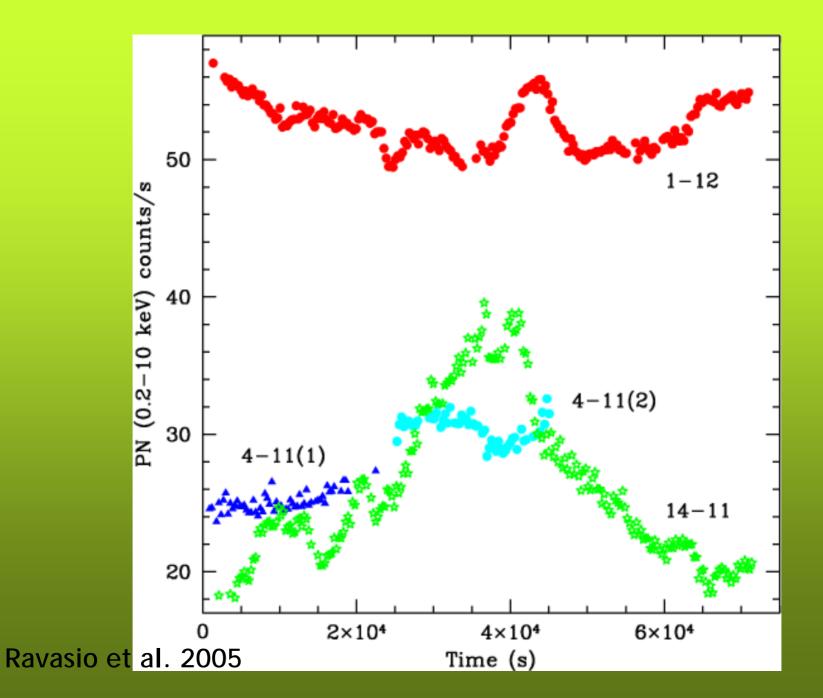
RXTE (still alive in 2008?)

- Typically 0.5 days to go into queue, 1 day worst case
- Slew time is 6 deg/minute
- Orbit = 5480 sec

15 orbits per day2/3 orbits go through SAA

Suzaku

- MINIMUM time is few days (approval + manual queue)
- Slew time depends on next TDRAS contact
- 15 orbits per day, 10 through SAA
- Maximum continuous time 0.5 days, more typically 60 min off, 35 min off


Swift

- Trigger time is fast, < 1 hour
- Slew time ~ minutes
- Low-orbit; same as XIS

Chandra and XMM

- High orbits → more continuous exposure
- ACIS: spectral degradation for bright sources (as GLAST blazars)
- EPIC: episodes of flaring background
- Both oversubscribed but not impossible

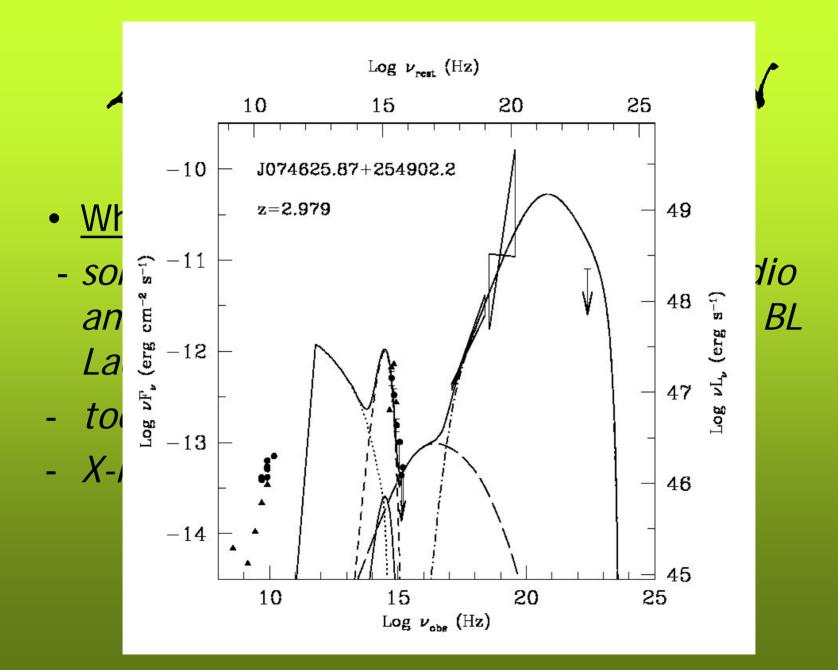
Summary Flexibility

- RXTE: great flexibility of scheduling, rapid response, limited sensitivity at lower energies
- Suzaku: great sensitivity, slower response
- Swift XRT: great flexibility, good sensitivity, also UVOT

Situations

- 1. Flaring AGN during survey mode
- 2. X-ray counterparts of survey sources
- 3. Multiwavelength campaigns

GLAST constraints


From Multiv. Report:

- Source detection: limited by number of photons
- Localization: 1' bright, 10' weak
- Flaring info takes 0.5 days to reach ground

1. X-ray follow-up of flaring AGN

• Flexibility of scheduling and rapid response: RXTE, Swift

• <u>Ouestion</u>: *Swift response is currently limited by GRB occurrence. Can Swift be dedicated to GLAST follow-ups after 2008?*

X-ray survey

- <u>Chandra ACIS</u>
 - + best angular resolution
 - + best astrometry

- limited FOV
- pileup threshold is low (~10⁻¹² cgs)

How X-ray bright will be (most of) the GLAST AGN?

1.5 Ms ACIS exposure of Hubble Deep Field NorthBauer et al. 2004:

For flux limit 2x10⁻¹⁶ cgs in 2-8 keV:

- 5 sources in 1', 471 in 10'
- 4 to 408 AGN

For fainter sources must have radio and optical as well!

X-ray survey

- XMM EPIC
 - + large FOV
 - + high pileup threshold
 - + more sensitivity in same exposure
 - lower angular resolution
 - flaring background

Choice Chandra/XMM is tradeoff resolution/FoV

100 ks XMM observation of Lockman hole Hasinger et al. 2001:

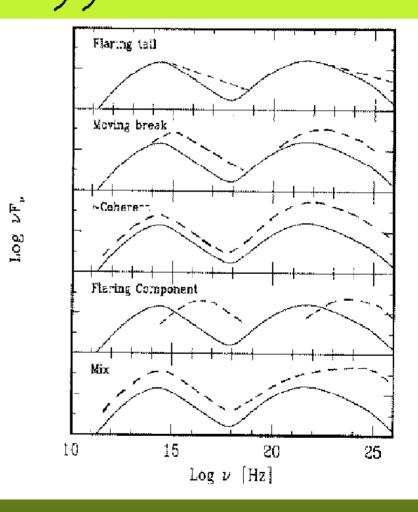
For flux limit 1.4x10⁻¹⁵ cgs in 2-10 keV:

• Expect 1-122 sources in LAT error circle

Summary

• Choice of Chandra or XMM depends on angular resolution, FOV needed

- <u>Questions</u>:
 - When start applying for time?
 - How many GLAST fields? All-sky?
 - Simultaneity? Desirable but difficult

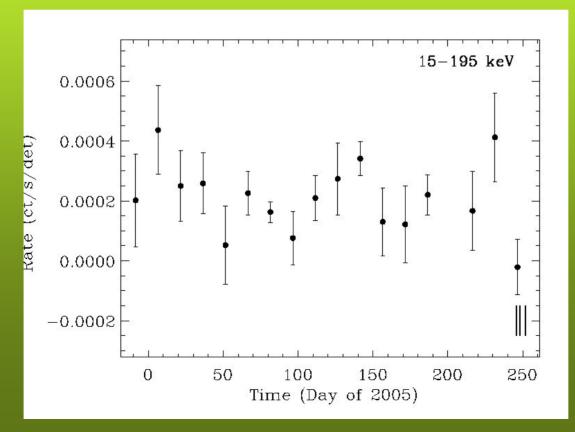

3. Multiwavelength campaigns

Strictly contingent upon science goals:

- Follow a flare: max coverage needed Chandra, XMM best Swift ?
 - RXTE (?)
- Snapshot SEDs:
 Suzaku (XIS + HXD), Swift

Which λ to trigger Too?

- For blazars, trigger could come from any wavelength
- Usually, IR-optical and X-ray-TeV
- Given the survey mode, it is more likely that the trigger will come from GLAST!


Ghisellini 1999

X-ray All-sky monitoring

 Both ASM and BAT have limited sensitivities (>10⁻¹¹ cgs)

BAT light curve of J0746 (F~10⁻¹⁰ cgs)

Conclusions

- Likely, the best GLAST science will be served by as many X-ray observatories as possible with complementary capabilities and observing constraints (duh!)
- All-sky X-ray monitoring for trigger: bleak

