GRB Spectra and their Evolution:

- prompt GRB spectra in the γ -regime

TUM GRB Seminar Andreas von Kienlin MPE -Gamma

14. November 2003

1

Outline

- Time averaged GRB spectra
 - Example spectra
 - Instrumental response
 - Band function
 - Spectral parameters α , β and E_{peak}
 - > Prompt γ -ray emission from GRBs
 - Comparison of the SSM with spectral parameters
- Temporal evolution of the spectral parameters
 - Hardness-intensitiv correlation
 - Hard-to-soft spectral evolution
- GRB spectra at very high energies
- XRF's

GRB pulse profile variety

 already presented by R. Diehl

GRB spectra

In contrast to the lightcurves of GRBs

➡ shape of GRB spectra is quite simple

Common GRB spectrum of all CGRO instruments

Upper plot:

> Photon number flux N_E :

 $vF_v - Plots:$

- > Energy flux $E^2 \times N_E = vFv$
- allows easy comparison of source luminosities in different wavelength bands.
- GRB luminosity maximal at E_P

Common GRB spectrum of all CGRO instruments

Instrument Response:

Andreas von Kienlin (MPE)

7

Band - function

- Spectral analysis by D. Band (D. Band et al. 1993, ApJ 413, 281)
 - time-averaged GRB-spectra of BATSE spectroscopy detectors
 - Spectra are well described by:
 - at low energies by a powerlaw with an exponential cutoff

 $N_E(E) \propto E^{\alpha} \exp(-E/E_0)$

• at high energies by a steeper powerlaw $N_{E}(E) \propto E^{\beta}$ with $\alpha > \beta$

"Band" – Function (empirical fit)

$$f(E) = \begin{cases} A(E/100)^{\alpha} e^{-E(2+\alpha)/E_{\text{peak}}} & \text{E}_{\text{peak}} = \text{E}_{0} (2+\alpha) \\ \text{if } E < \frac{(\alpha - \beta)E_{\text{peak}}}{(2+\alpha)} \equiv E_{\text{break}} , \\ A\left[\frac{(\alpha - \beta)E_{\text{peak}}}{100(2+\alpha)}\right]^{(\alpha - \beta)} \exp(\beta - \alpha)(E/100)^{\beta} \\ \text{if } E \ge \frac{(\alpha - \beta)E_{\text{peak}}}{(2+\alpha)} . \end{cases}$$

BATSE spectra

- Example of spectral fit:
 - Band function was fitted to the average spectrum of GRB 911127

Common GRB spectrum of all CGRO instruments

BATSE spectra

- The spectral parameters α , β , and E₀ vary from burst to burst
- Distribution of these parameters obtained from 5500 spectra of 156 bursts (Preece et al. 2000)
- Spectral models used:
 - "GRB Model": Bands GRB function
 - > "COMP model": in case the GRB model break energy lies above the detector energy range
 - > "BPL Model": in cases a sharp curvature of the spectrum results in a bad χ^2 of GRB model

Low energy power-law index

- Distribution
 - \blacktriangleright peaks at α = -1
 - > broader than expected statistical error for $\alpha = -1$
- Constrains the applicability of popular burst emission models
 - "Blast wave model"
 - "synchrotron emission from shocked electrons"
 - expectation from theory for singleparticle synchrotron emission:
 α = -2/3

Break Energy

- Synchrotron shock model (SSM) identifies spectral break with the characteristic synchrotron energy in the emitter's rest frame, boosted into the observer's frame
 - spectral break contain information about the bulk Lorentz motion of the emitter
- Most important signifier for spectral evolution
- Log-normal distribution
 - Peaking at 250 keV
 - FWHM less than a decade in energy

High energy power law index

- Peak of high energy power law distribution at: 2.35
- For $\beta \ge 2$ spectra diverges
 - cut-off hat high energies expected
- Blast wave model is quite sensitive to the relationship between the two power-law indices

Prompt γ-ray emission from GRBs

Internal – external shock scenario

- Inner compact source produces a variable relativistic wind
- GRBs are produced by relativistic internal shocks arising from the wind
 - Faster shells catch up with slower ones and collide
- > Afterglow emission is produced by the external shock \rightarrow see later talks

Prompt γ-ray emission from GRBs (Preece 2002)

- Optically thin synchrotron shock emission (SSM: synchrotron shock model)
 - 1. Power-law distribution for shocked electrons

 $N(\gamma_e) \sim \gamma_e^{-p}$ for $\gamma_{\min} < \gamma_e < \gamma_{\lim}$ with spectral index **p** > 2

 $\gamma_{\rm min} \simeq \gamma_E$ bulk Lorentz factor of the shock

- 2. Single particle synchrotron emissivity
 - Asymptotically –2/3 power law at low frequencies
 - Exponentially attenuated at high frequencies
 - Characteristic synchrotron energy in the observer frame

$$E_c = h\nu(\gamma_e)_{\rm obs} = \gamma_e^2 \gamma_E \frac{\hbar q_e B}{m_e c}$$

2. must be integrated over 1. in the comoving frame

► Results in
$$\nu^{-2/3}$$
 power law below $h\nu(\gamma_{\min})$
 $\nu^{-(p+1)/2}$ power law above $h\nu(\gamma_{\min})$

Prompt γ-ray emission of GRBs

• Important quantity: γ_{cool}

- is the electron energy, where the hydrodynamic cooling timescale just balances the energy dependent synchrotron cooling time
- "slow cooling" spectrum

$$N_{\nu, \,\text{slow}} \sim \begin{cases} \nu^{-2/3} & \nu < \nu_{\min} \ ,\\ \nu^{-(p+1)/2} & \nu_{\min} < \nu < \nu_{\text{cool}} \ ,\\ \nu^{-(p/2)-1} & \nu_{\text{cool}} < \nu \ , \end{cases}$$

During GRB phase, fast cooling of electrons by synchrotron

- Two component electron distribution
- Below γ_{cool} : energy index $p_{cool} = 2$

"fast cooling" spectrum

$$N_{\nu, \text{fast}} \sim \begin{cases} \nu^{-2/3} & \nu < \nu_{\text{cool}} \ ,\\ \nu^{-3/2} & \nu_{\text{cool}} < \nu < \nu_{\text{min}} \\ \nu^{-(p/2)-1} & \nu_{\text{min}} < \nu \ . \end{cases}$$

Comparison of the SSM with the spectral parameter

- Comparison of the SSM with the spectral Parameter
 - Preece, R.D. et al. 2002, ApJ 581, 1248
 - Evidence that basic model for synchrotron emission from internal shocks during GRB phase is inconsistent with the observation
 - Possible solution: due to deceleration each spectrum is composed of a set of seed spectra, shifted in energy
 - Particle acceleration during the prompt emission should not be ignored

fast, low:
$$\Delta s_{\text{fast}}(\nu_{\text{cool}}) = -\frac{2}{3} + \frac{3}{2} = \frac{5}{6}$$
,
fast, high: $\Delta s_{\text{fast}}(\nu_{\min}) = -\frac{3}{2} - \left(-\frac{p}{2} - 1\right) = \frac{p-1}{2}$,
slow, low: $\Delta s_{\text{slow}}(\nu_{\min}) = -\frac{2}{3} + \frac{p+1}{2} = \frac{p}{2} - \frac{1}{6}$,
slow, high: $\Delta s_{\text{slow}}(\nu_{\text{cool}}) = -\frac{p+1}{2} - \left(-\frac{p}{2} - 1\right) = \frac{1}{2}$
both: $\Delta s_{\text{both}}(\nu_{\text{peak}}) = -\frac{2}{3} - \left(-\frac{p}{2} - 1\right) = \frac{p}{2} + \frac{1}{3}$

Comparison of the

- Comparison of the SSM w ₄₀₀
 - ➢ Preece, R.D. et al. 2002,
 - Evidence that basic mode
 GRB phase is inconsister
 - Possible solution: due to seed spectra, shifted in e
 - Particle acceleration duri

pectral parameter

from internal shocks during

n is composed of a set of

uld not be ignored

GRB 990123

- Lightcurves in different energy-bands
 - ➢ BATSE
 - > COMPTEL

- Time evolution of Band function parameters α and E_P
 - hardness-intensity correlation
 - hard-to-soft evolution

• GRB 990123

- Hard-to-soft
- Hardness-intensity correlation
- Peak energy evolution in bright long BATSE bursts (37):
 - Ford, L.A. et al. 95, ApJ 439, 307

- Evolution of the low-energy photon spectra in GRBs
 - Crider, A. et al. 97, ApJ 479, L39
 - GRB spectral evolution for GRB 910927
 - High degree of positive correlation exists between the time resolved spectral break energy E_{pk} and α.

- Temporal behavior of the high-energy power-law portion of GRB spectra of 126
 - Preece, R.D. et al. 98, ApJ 496, 849
 - > Hard-to-soft spectral evolution in β for GRB 911118
 - > β in dependence of E_{peak} for GRB 911118 \Rightarrow correlation in time evolution

- Evolution of the spectral hardness E_{pk} as function of the fluence for 41 pulses in 26 GRBs
 - Crider, A. et al. 99, ApJ 519, 206
 - Trend: E_{pk} decays linearly with energy fluence

- Evolution of the spectral hardness E_{pk} as function of the fluence for 41 pulses in 26 GRBs
 - Crider, A. et al. 99, ApJ 519, 206
 - Trend: E_{pk} decays linearly with energy fluence
 - > Decay constant Φ_0 is log-normal distributed

Bursts with high-energy γ-Ray Emission

- In 1994 EGRET observed a γ -ray burst which showed high-energy
- (> 50 MeV) γ -ray emission
 - till 1.5 hours after start of burst
 - highest-observed energy: 18 GeV

The relation between high- and low-energy emission not yet understood!

EGRET-spectra in the MeV-GeV-range

- "Observation of the Highest Energy Gamma-Rays from GRBs"
 - Dingus, B.L. 2001, AIP 558, 383
 - Average spectrum measured by EGRET for 4 bursts (45 γ-rays above 30 MeV, 4 above 1 GeV, within BATSE T90 interval), Photon spectral index: 1.95 ± 0.25
 - Consistent with an extension of the electron synchrotron component

GRB 941017 measured with EGRET-TASC (Total Absorption Shower Counter)

"A γ -ray burst with a high-energy spectral component inconsistent with the synchrotron shock model"

Spectral fit by

Band-function +

Gonzales, M.M. et al. 2003, Nature 424, 749

TeV emission from GRBs

- Evidence of TeV emission from GRB 970417a using data from the Milagrito
 - photons with energies above 650 GeV
 - R. Atkins, R. et al. 03, ApJ 583, 824

X-Ray Flashes and GRBs

- Spectral Characteristics of X-Ray Flashes
 - Kippen, R.M. et al. 02, astro-ph/0203114
 - > T_{90} : 10 200 sec \rightarrow similar to GRBs
 - $\succ \alpha$: ~ -1, β : ~ -2.5 \rightarrow similar to GRBs
 - Main difference: E_{peak} in the X-ray range

FIGURE 1. Model-dependent deconvolution of spectral data from WFC (*solid diamonds*) and BATSE (*open circles*) for three X-ray flashes. The best-fit Band GRB function is shown as dashed lines. Also indicated are the change in chi-squared ($\Delta \chi^2$) from a single power law to the Band function and the best-fit values of E_{peak} with 1 σ errors.

X-Ray Flashes observed by HETE-2

- Defining "X-ray flashes" (Heise et al. 2000) as bursts for which log (S_X / S_γ) > 0 (i.e., > 30 times that for "normal" GRBs)
 - 1/3 of bursts localized by HETE-2 are XRFs
 - > 1/3 are "X-ray-rich" GRBs

X-Ray Flashes and GRBs

Strong evidence that properties of XRFs and GRBs form a continuum

- Both types of bursts are the same phenomenon
- Lamb, D.Q. et al. 03, astro-ph/0309456

Extremely Soft X-Ray Flash XRF 020903

- HETE-2 WXM observation
 - Sakamoto, T. et al. 03, astro-ph/0309455
- Redshift determination $\rightarrow z = 0.251$ (first X-ray flash with optical afterglow)
 - Soderberg, A.M. et al. 03, astro-ph/0311050

