

Cours N°2 : Les rayons cosmiques

- Objectifs astroparticules des sources à la détection
 - □ Cours essentiellement orienté vers l'astronomie gamma
 - Cours Denis Dumora
 - Les premiers concepts
 - Les rayons cosmiques
 - Découverte
 - Données observationnelles
 - Paramètres pertinents
 - Problèmes liés à la propagation depuis les sources
 - Processus physiques conduisant à des photons de Haute Energie
 - Observation des gamma de Haute Energie, techniques et résultats

Le rayonnement cosmique

- Le rayonnement cosmiques en quelques données
 - \Box Sur Terre, environ 1000 particules par m² et par seconde.
 - □ Le terme rayons cosmiques est réservé aux particules chargées
 - Essentiellement des noyaux pour la haute énergie (90%p, 9%He...)
 - □ Particules pour la plupart ultra-relativistes
 - □ Jusqu'à 10²¹eV soit l'énergie cinétique d'une balle de tennis au service!!!!!

Historique

- □ Premiers indices fin du XVIII^{ème} siècle, décharge d'objets isolés.
- Fin du XIX^{ème}, Wilson hypothèse d'un rayonnement extérieur à la Terre
- □ **1912** V. Hess mesure une augmentation du rayonnement ionisant avec l'altitude
- □ Les années 30, l'âge d'or découverte du monde des particules par l'étude du RC.

 Flux observé pour tous les primaires

Galactique: Supernovae

<u>Galactique</u>?, Étoiles à neutrons, super bulles, particules réaccélérées

Extragalactique?;
source?, composition?

Données observationnelles : composition

- O Abondance dans le système solaire
- Composition du rayonnement cosmique

- La composition du rayonnement cosmique diffère de celle trouvée dans le système solaire
 - □ Alternance pair-impair
 - Mais le RC contient des éléments pratiquement absents dans le système solaire
 - Il faut donc imaginer un processus qui modifie la composition initiale du rayonnement cosmique

Le rayonnement cosmique

Les sources de noyaux

Le rayonnement cosmique

• L'hypothèse du rayonnement primaire retravaillé par spallation

DEA APC Option Astroparticules

Le grammage

- Les rayons cosmiques interagissent dans le milieu interstellaire et forment de nouvelles espèces.
- La mesure des rapports d'abondance primaire/secondaire permet de mesurer la quantité de matière traversée
- C'est le grammage exprimé en g.cm⁻²
- Estimation du grammage

Distribution des grammages

- Valeurs mesurées sont des grammages moyens
- $P_0(x)$ (Path Length distribution) probabilité qu'un RC arrivant sur Terre ait traversé un grammage *x*.

$$\mathcal{P}_{\sigma}\left(x
ight) = \mathcal{P}_{0}\left(x
ight) \exp\left(-rac{\sigma x}{m}
ight)$$

• avec σ section efficace de spallation.

Donc $\overline{x} = \int_0^\infty x \mathcal{P}_\sigma(x) dx$ avec $1 = \int_0^\infty \mathcal{P}_\sigma(x) dx$ $N_p(\sigma) = \int_0^\infty \mathcal{P}_0(x) \exp\left(-\frac{\sigma x}{m}\right) dx \times N_p(\sigma = 0)$

- Les réactions de spallation affectent la densité des rayons cosmiques
- Les conséquences de observations
 - □ RC confinés
 - (distance caractéristique parcourue dans la Galaxie(grammage) >> rayon de la Galaxie)
 - □ RC peuvent s'échapper
 - (distance parcourue dans la Galaxie avant spallation >> rayon de la Galaxie)

Propagation des Rayons Cosmiques

- Mécanismes d'accélération et de propagation liés.
- Équation traitant l'ensemble du phénomène (Ginzburg, Syrovatskii)

- Modèle simplifié, mais qui fonctionne.
- Le modèle Leaky Box (la boîte qui fuit) tient compte de façon simple des deux grands mécanismes relevés précédemment confinement et échappement

- Hypothèses
 - □ Rayons cosmiques se propageant librement dans un volume avec une proba d'échappement constante $\tau_{esc}^{-1} \ll c/h$ *h* demi épaisseur du disque galactique *h*=100-150*pc*
 - \Box Le terme de diffusion est ici $-\frac{N}{\tau_{esc}}$
 - \Box τ_{esc} temps moyen passé par le rayon cosmique dans le volume de confinement
 - □ A l'équilibre l'équation de transport s'écrit

$$\frac{N_{i}(E)}{\tau_{esc}(E)} = Q_{i}(E) - \left(\frac{\beta c\rho}{\lambda_{i}} + \frac{1}{\gamma\tau_{i}}\right)N_{i}(E) + \frac{\beta c\rho}{m}\sum_{k\geq i}\sigma_{i,k}(E)N_{k}(E)$$
section efficace de spallation

- La grandeur $\lambda_{esc} \equiv \rho \beta c \tau_{esc}$ correspond au taux moyen de matière traversé par une particule de vitesse βc
- Des observations montrent que l'on peut décrire un grand nombre de noyaux galactiques avec une λ_{esc} unique.

$$\begin{split} \lambda_{esc} &= \beta c \rho \tau_{esc} = 10.8 g. cm^{-2} \beta \left(\frac{4}{R}\right)^{\delta} \quad \text{pour} \quad R > 4 G V \qquad \text{avec} \quad \delta = 0, 6 \\ \lambda_{esc} &= 10.8 g. cm^{-2} \beta \qquad \text{pour} \quad R < 4 G V \end{split}$$

R rigidité magnétique $B\rho = \frac{p}{Ze}$

Pour des particules ultra relativistes $R = \frac{E_{eV}}{Zc}$

Conséquence : pour un primaire
$$\frac{N_p(E)}{\tau_{esc}(E)} = Q_p(E) - \frac{\beta c\rho}{\lambda_P} N_p(E) \Rightarrow N_p(E) = \frac{Q_p(E) \tau_{esc}(E)}{1 + \frac{\lambda_{esc}}{\lambda_p}}$$

Pour des protons $\lambda \sim 55g.cm^{-2}$, on a $\lambda_{esc} \ll \lambda_p$

 $N_p(E) \sim Q_p(E) \tau_{esc}(E)$

- Or le spectre observé est en $E^{-2.7}$ ce qui donne pour le terme source $E^{-2.7+0.6} = E^{-2.1}$
- Cela conforte les modèle d'accélération type Fermi

Problème des secondaires instables $\frac{N_s}{N_p} = \frac{\sigma_{p \to s}}{\sigma_p} \frac{\lambda_{esc}}{\lambda_p \left[1 + \frac{\lambda_{esc}}{\lambda_s} + \frac{\tau_{esc}}{\gamma \tau_s}\right]}$

- Limitations des modèles Leaky Box
 - □ Pas d'explication physique aux phénomènes de confinement et d'échappement
 - Cependant malgré la simplicité, ils donnent de bons résultats pour les noyaux stables
 - □ Cependant, on souhaiterait
 - déterminer l'origine des rayons cosmiques
 - savoir quelles sont les sources
 - savoir où sont les sources
 - savoir comment varie la densité de rayonnement cosmique en fonction de la position dans la Galaxie
 - □ Pour espérer obtenir ces réponses, des modèles plus complexes sont nécessaires.
 - □ Ce sont les modèles dits de diffusion.

Rayons Cosmiques – Coupures basse énergie

- Les rayons cosmiques basse énergie sont piégés dans le champ magnétique terrestre.
 - □ Le spectre apparaît donc coupé à basse énergie
- L'activité solaire modifie le spectre

Correlation of the counting rate of the Leeds neutron monitor with monthly sunspot numbers.

Rayons Cosmiques – Coupures Haute Énergie – Effet GZK

Milieu interstellaire baigné par les photons du fond diffus cosmologique Energie caractéristique $E_{\gamma} = 2.5 \times 10^{-4} eV$

$$\left(P+p\right)^{\mu}\left(P+p\right)_{\mu}=\left(\omega+\epsilon\right)^{2}=\epsilon_{CM}^{2}$$

N+
$$\gamma \longrightarrow \pi + N$$

 $\omega \ge \frac{m_{\pi} (m_{\pi} + 2M_N)}{2\epsilon (1 - \cos \theta)}$
 $\omega \sim 10^{20} eV$

Un calcul rigoureux donne plutôt $\omega \sim 5 \times 10^{19} eV$

Rayons Cosmiques – Coupures Haute Énergie – Effet GZK

• Calcul du libre parcours des particules GZK

Une application numérique raisonnable donne

 $\lambda \approx 10^{23} m \sim 3 M pc$

- soit une durée de propagation $\tau \approx 10^7 ans$
- perte d'énergie du projectile à chaque interaction $\gamma m_{\pi}c^2$ soit $\frac{\Delta E}{E} \approx \frac{m_{\pi}}{m_p} \approx 10\%$
- Le proton a donc perdu toute son énergie au bout de 10⁸ ans soit un horizon de 30Mpc

Origine des rayons cosmiques Ultra Haute Énergie

- Plus de *300* modèles, qui doivent tenter d'expliquer
 - Les flux observés
 - □ l'apparente isotropie
 - □ les multiplets d'évènements
- Deux (trois) grandes familles
- Les modèles astrophysiques (bottom-up)
 - □ sources : objets connus, propagation classique
 - Etoiles à neutrons, objets compacts
 - Sursauts gamma
 - radio galaxies
 - sources proches et champ magnétique intense
- Les modèles top-down
 - □ sources : désintégration de particules de très grande masse
 - Défauts topologiques
 - Wimpzillas
- Modèles hybrides
 - \Box source classique, mais nouveau type de propagation