Update of GLAST LAT absolute timestamp end-to-end test

David Smith, Eric Grove, Denis Dumora, Patty Sandora, Eric Siskind with invaluable support from Anders Borgland and Gregg Thayer.

Reminder: why, and what

- Accurate measurement of gamma ray arrival times is <u>essential</u> for pulsar science.
- Example: PSR J0218+4232 has a rotation period of 2.3 ms.
- Time-stamping is non-trivial: significant problems on major missions.
- Muons allow a simple LAT end-to-end test.
- Bordeaux had the CELESTE VME GPS in the basement...
- …and NRL had a muon telescope from CAL integration.
- See my 10 November 2006 "SO VRVS" presentation.
- More details at my "blog" <u>https://confluence.slac.stanford.edu/display/CAL/Event+Timestamps</u>

November proof-of-principle (1 of 4) Written up in LAT-TD-08777-03

- ➢ Week of November 16, 2006: Eric, Patty, and I at General Dynamics.
- LAT separate from Spacecraft.
- Use Virtual SpaceCraft (VSC), but without GPS antenna.

Figure 1: Muon telescope placement. Left: for run 77013003, with the top scintillator unbolted from the stand. Right: for runs '947, '948, '970. No coincidences were observed in data taken in this configuration.

D. Smith et al

Timestamp update

November proof-of-principle (2 of 4)

- Aerial view of LAT and μ telescope.
- Extrapolate TKR tracks to scintillator heights:

XhitHi = Tkr1EndPos[0] + (-Tkr1EndPos[2]+ZPaddleHi)*Tkr1EndDir[0]/Tkr1EndDir[2] YhitHi = TkriEndPos[1] + (-TkriEndPos[2]+ZPaddleHi)*TkriEndDir[1]/TkriEndDir[2]

dT is time difference.

Then, to calculate dT, the time difference between the LAT and standalone GPS times, we Double_t dT = (double)(SecsBdx[iBdx]-TTCTSecs[iLAT]) + FracBdx[iBdx]-fraction[iLAT] **D** 1 1 1 1 **D** . 1 1 ono m

- Look for peak in dT distribution when you \succ select tracks passing through Hi and Lo scintillators (next page).
- Here: Spatial coincidences when selecting \succ small dT's.

0

500

2000

1500 mm

Treating the sector of the sec

2000 -1500 -1000 -500

-2500

Timestamp update

November proof-of-principle (3 of 4)

Side with telescope: signal!

Other side : accidentals

November proof-of-principle (4 of 4)

Written up in LAT-TD-08777-03

- Test scheme works muons passing through both the LAT and the telescope provide sub-microsecond sensitivity.
- Observed drift and offset consistent with expectations for VSC without GPS satellite lock.
- ➢ 6 February 2006: project office at GSFC gives green light for "real" tests.

A First Look at GLAST LAT Absolute Times Writeup on "blog" page, End2EndFeb07.pdf

- December: LAT integrated with observatory \triangleright
- mid-February: Flight IEM installed, as well as GPS in C&DH package. \triangleright (C&DH = Control & Data Handling)
- Feb 22, 23: Eric & Patty take data in Arizona, Dave analyses in Bordeaux. \triangleright

Something is wrong...

- ➢ 8 half-hour muon runs:
 - ✤ 4 for satellite side A, LAT config 1, and 4 for side/config B/2.
 - 4 with GPS lock, to test <10 μs absolute time requirement</p>
 - 4 without GPS, to test <0.01 μs/s drift requirement.
- > 0>dT>-1 ms sawtooth with ~290 s period during GPS lock runs.
- Need to add 1 second to Bordeaux times to match LAT

ש. סוווונוו כו מו

Details...

LAT run	GPS lock?	Config/Side	Diff. from 20 MHz	Observed dT drift	Wraparound?
			$(\sim 50 \text{ ns ticks})$		
77014191	Yes	2/B	110	$-3.4\mu s/s$	Yes
77014192	Yes	2/B	110	$-3.4\mu { m s/s}$	Yes
77014193	No	$2/\mathrm{B}$	306	$-13\mu s/s$	No
77014194	No	2/B	306	$-13\mu s/s$?	No
77014215	Yes	1/A		$-3.4\mu\mathrm{s/s}$	Yes
77014216	Yes	1/A	115 to 125	$-3.4\mu{\rm s/s}$	Yes
77014217	No	1/A	-70 to -60	$+7\mu s/s$	No
77014218	No	1/A	-60 to -50	$+7\mu s/s$	No

Table 1: The 8 data sets acquired February 22 and 23, 2007.

TicksPerSecond = scaler ticks between two successive PPS signals.

dTicks = 20,000,000 - TicksPerSecond

Figure 14: Run 77014210 (same S/C and LAT configuration as 14214, that is, GPS locked. dTicks, as in previous figure and text, plotted differently. Left: all events. Right: Zoom on central region. Credit: A. Borgland

> At wrap-around during GPS lock runs, dTicks acquires values of +/-10k and +20k ticks, i.e., +/-0.5 ms and +1 ms deviations from PPS. > The wrap-around process lasts about 3 seconds.

 \succ Anders added the above plots to the pipeline digi report.

 \succ We have several arguments to say that it is not the Bordeaux GPS system.

D. Smith et al

Diagnosis

- Once we were pretty sure of our result, we dumped it all on E. Siskind, who best knows LAT/GEM/Spacecraft circuitry (circuit diagrams hard to come by for the likes of me...)
- To make a long story short: the hypothesis that explains the observations the most easily is: *polarity inversion of the PPS signal between the spacecraft GPS and the UDL board?*

(UDL = Uplink DownLink, pronounced "oodle", as in "oodles of noodles".)

The UDL provides a reliable PPS to LAT & GBM even without GPS lock is lost, by "remembering" the "right" frequency from the previous 100 seconds.

D. Smith et al

Prognosis

- GSFC project office very supportive. We've discussed with GD engineers (GNC FSW, where GNC = Guidance and Navigation Control).
- As of yesterday: a S/C FSW modification has been identified ; it is undergoing internal review ; it would be included in the "next" build.
- S/C GNC has designed some tests & verifications at their end.
- They will request us to repeat the measurements.

Conclusions

- Will S/C GPS telemetry be available in ISOC "control room" ? In the MOC?
- Dave has a new GPS which he has used to re-verify the VME equipment (see End2EndFeb07.pdf) and its software gives lots of nifty diagnostics about GPS satellite configuration and resulting precision ("HDOP"=Horizontal Geometric Dilution of Precision, "PDOP" and that sort of thing) that it might be nice to have if we're ever scratching our heads about absolute pulsar phase.
- Oh by the way: Anders has added correct GEM-based times to the MeritTuple, if he hasn't already told you. From there to fits to Science Tools to Pulsars!

14

