

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

High Resolution Separator for DESIR

Teresa Kurtukian-Nieto

CEN Bordeaux-Gradignan

DESIR Meeting November 27th. 2007

Design goals for the High Resolution Separator (HRS)

Proposed layout:

*Argonne CARIBU as an starting point

Ion optics discussion

Layout showing DESIR location

HRS Design Goals

Beam emittance :

1 π mm mrad for a 1 μA beam at 60 keV

More conservative:

10 π mm mrad for a 100 nA beam at 60 keV

$$\varepsilon = \frac{\pi}{4} \delta x \cdot \delta a$$

 $\delta \mathbf{x} \rightarrow \mathbf{beam} \ \mathbf{width}$

 $\delta a \rightarrow angular \ acceptance$

Beam start with 1mm width, and ±20 mrad

HRS Design Goals

Resolving power:

Ideal case:

$$R = \frac{m}{dm}$$
$$R = \frac{(x \mid \delta)}{2x_{00}(x \mid x)} = \frac{D}{2x_{00}M_x}$$

Aberrations decrease the resolving power:

$$R = \frac{(x \mid \delta)}{2x_{00}(x \mid x) + \Delta}$$

 $\boldsymbol{\Delta}$ is the total amount of aberrations

To second order

$$x_{f} = (x \mid x)x + (x \mid a)a + (x \mid \delta)\delta + (x \mid xx)x^{2} + (x \mid xa)xa + (x \mid x\delta)x\delta + (x \mid aa)a^{2} + (x \mid a\delta)a\delta + (x \mid \delta\delta)\delta^{2} + (x \mid yy)y^{2} + (x \mid yb)yb + (x \mid bb)b^{2}$$

x and *y* are the horizontal and vertical positions, *a* and *b* (p_x/p_0) and (p_y/p_0) and δ the change in total energy $(E-E_0/E_0)$ of the particle

In order to obtain high resolution, a large value of $(x|\delta)$ and small values of (x|x) and Δ are desirable.

Resolving powers needed

Some representative cases:

Nuclei	Mass	R neighbor	R for ¹³² Sn	
¹³² Cd ₄₈	131.9455500	10103	4756	
¹³² In ₄₉	131.9324903	8991	8990	
¹³² Sn ₅₀	131.9178157	39392		T
¹³² Sb ₅₁	131.9144669	22306	39392	To separate 132 Sn from 132
¹³² Te ₅₂	131.9085532	237340	14242	R~40000
132 53	131.9079974	34316	13436	
¹³² Xe ₅₄	131.9041535	57832	9656	
¹³² Cs ₅₅	131.9064343	96074	11591	
¹³² Ba ₅₆	131.9050613		10343	

Resolving powers needed

Nuclei	Mass	R neighbor	R for ⁷⁸ Ni
⁷⁸ Ni ₂₈	77.9631800	6949	
⁷⁸ Cu ₂₉	77.9519600	5766	6949
⁷⁸ Zn ₃₀	77.9384402	11408	3151
⁷⁸ Ga ₃₁	77.9316082	8901	2469
⁷⁸ Ge ₃₂	77.9228527	75988	1933
⁷⁸ As ₃₃	77.9218273	17249	1885
⁷⁸ Se ₃₄	77.9173099		1700

Nuclei	Mass	R neighbor	R for ³¹ Ar
³¹ Ar ₁₈	31.0121230	1573	
³¹ Cl ₁₇	30.9924131	2410	1573
³¹ S ₁₆	30.9795547	5348	952
³¹ P ₁₅	30.9737616	19339	808
³¹ S ₁₄	30.9753632	3609	844
³¹ Al ₁₃	30.9839466	2459	1101
³¹ Mg ₁₂	30.9965460	1819	1991
³¹ Na ₁₁	31.0135855	1588	21206
³¹ Ne ₁₀	31.0331100	1136	1478
³¹ F ₉	31.0604290		642

CARIBU Isobar separator @ Argonne as an starting point

s ρ=.5 m, θ=60° Mass resolution M $/\Delta M \ge 20,000:1$ Beam emittance $< 3\pi$ mm-mr at 50 keV Focussing and corrective elements are all electrostatic, settings are independent of mass

- Symmetric design helps to minimize aberrations.
- Large mass dispersion (x|δ) and small aberration coefficients are obtained by increasing the incident and exit angles at the boundary of a magnetic sector.
 - ✓ For CARIBU 23^o was chosen for the 60^o bending dipoles
- Quadrupoles are used as the focusing mode in the y-direction and the defocusing mode in the x-direction.
 - Sy choosing suitable distances and fitting the quadrupole strengths, a beam profile in the dipole gap can be made very wide in the x-direction and narrow in the y-direction, attaining two advantages simultaneously:
 - ★ High transmission
 - * Small image magnification (x|x) to attain high resolution

- The quadrupole doublet matching section produces a ribbon-shaped beam, so yangles are small, minimizing b aberrations
- The first quadrupole diverges in x and converges in y, giving a small y size which minimizes y aberrations
- The large x area in the magnets gives mass dispersion
- Focus conditions in centre: (a|a)=(y|b)=(b|y)=0
- The reverse matching section transforms the ribbon-shaped beam back to a circular cross-section, allowing a 1 mm x-selection slit at the focal plane
- The 2 sextupoles and 1 multipole to correct aberrations to 5th order
- COSY INFINITY 9.0 for the ion optics calculations

Summary: proposed layout for DESIR HRS

NBG

Spiral 2

Outlook

- Mass resolving power of at least ~20000 is desirable for DESIR High Resolution Separator.
- This high resolution can be achieved using the CARIBU isobar separator scheme as an starting point.
- COSY INFINITY is being used for the ion optics calculations and to track particles through the separator
- Ion optics simulations are in process for the optimal design of the HRS