

H. Savajols

Beams from the Super Separator Spectrometer

Hervé Savajols GANIL, France on behalf the S³ Collaborations

LINAC stable beams

Physics objectives

Optics : Basic design (Argonne NL)

Principle : Two-stage selection (Bp & m/q) that will achieve very good rejection of both the beam and adjacent mass channels of reaction products

GANIL/Irfu-Saclay/ANL

Optical calculations

High power target stations

Isobar contaminant issues

⁵⁸Ni + Ti \Rightarrow ¹⁰⁰Sn (1 Mev/A, 4 pps + 10⁸ isobars/s)

Isotope	Mass (amu)	Separation (M/∆M)
Sn100	99.938954	
In100	99.931149	12800
Cd100	99.920230	5330
Ag100	99.916069	4370
Pd100	99.908505	3280

A=100 Isobar mass contamination @ FP

DESIR Workshop 2010

90% of contaminants are isobar 10% of contaminants are from M/Q neighbors

S³ Low energy branch

Possible gas catcher and mass separator layout for S³

- High intensity RF gas catcher followed by gas cooler
- 50 kV platform for gas catcher and cooler
- Acceleration and matching section
- High resolution separator with 120 degree total magnetic bend, electrostatic quadrupoles and multipoles, yielding 20000 mass resolution on small footprint
- Electrostatic switchyard to distribute beam to experiments in S3 hall, or in DESIR hall, or to post-accelerator

O Operation

- Chemical independent
- Isobar selection
- Fast extraction time

O Applications

- selectivity
- Laser spectroscopy system
- some decay correlations
- mass measurements
- Merging to a common small spot

ANL

S³ Low energy branch

CARIBU geometry :

- 120 degrees total bend
- Bending radius 50 cm
- Dispersion about ~ 22 meters, 1mm slit size R ~20000

New geometry (HRS DESIR)

- 180 degrees total bend
- Dispersion about ~ 32 meters, 1mm slit size R ~31000

- magnetical design of dipole on the way
- mechanical design and integration to be completed
- for the end of the year: « cahier de charge » for dipole magnets
- detailed drawings of all elements for end 2010
- ordering of dipoles in 2011

Laser Ion Gas Cell

Resonant Laser Ionisation

Operation

- universal
- element dependent scheme (atomic)
- multi-step schemes
- + mass separator = Isotope selection

Applications

- selectivity (broad)
- spectroscopy (narrow)
- spin assignments
- magnetic moments
- charge radii
- quadrupole moments collinear

Laser Ion Gas Cell

LISOL Gas Cells

DESIR Workshop 2010

Measuring station

Various RIB beams in DESIR

	al 2	S³: Letter of Intents (LoIs)			
	H IC	Day 1 experiments - SPIRAL2 phase 1			
	Spectroscopy	 LoI_Day1_2 : Production and spectroscopy of heavy and superheavy elements using S3 and LINAG (P. GREENLEES) - Neutron deficient nuclei around Z=92 N=126 (K. Hauschild) - K-isomerism studies in the Z=100-110 region (Ch. Theisen) - Study of neutron rich isotopes produced by asymmetric reactions (A. Korichi) - Production of SHE with Z=106-108-112 with Uranium target (C. Stodel) 			
	scopy	LoI_Day1_11 : ¹⁰⁰ Sn factory - studies of the structure of nuclei in the ¹⁰⁰ Sn region (D. SEWERYNIAK) LoI_Day1_6 : Single particle states and proton-neutron interaction in the ¹⁰⁰ Sn region (L. CACERES, F. Azaiez)			
	Spectro	 LoI_Day1_8 : Shell structure, Isospin symmetry and shape changes in N=Z nuclei (G. DE ANGELIS, B. Wadsworth) Coulomb excitation of ¹⁰⁴Sn: probing large scale shell model calculation Coulomb excitations of the T=1 bands of the odd-odd ⁶²Ga, ⁶⁶As and ⁷⁰Br nuclei 			
	beam	LoI_Day1_7 : In-beam gamma spectroscopy of neutron-rich nuclei studied with PARIS at the intermediate focal plane of S3 (I. STEFAN, B. Fornal)			
	In-	LoI_Day1_9 : Quadrupole Moments of isomeric states using the Tilted-foils Technique at S3 (G. GEORGIEV, M. Hass)			
	es	LoI_Day1_3 : In-source resonant laser ion spectroscopy of ⁹⁴ Ag (I. G. DARBY)			
S	erti	LoI_Day1_4 : In-source resonant laser ion spectroscopy of the light Sn isotopes A =101-107 (I. G. DARBY)			
\cup	prop	LoI_Day1_5 : In source resonant laser ion spectroscopy of Z >=92 (I. G. DARBY)			
Ŷ		LoI_Day1_10 : Precision study of the superallowed beta decay of heavy odd-odd N=Z nuclei (B. BLANK)			
DESI		LoI_Day1_1 : Fast ion-slow ion collisions -FISIC project (E. LAMOUR)			

Laser Spectroscopy of radioactive Isotopes Survey

Medium mass N=Z region

G ANIL Spinal

Precision study of the superallowed -decay of heavy odd-odd N = Z nuclei B. Blank (CENBG) & J. C Thomas (Ganil)

Nuclei & Measurements

Mass measurements for Z>100

4,00E-05

1,50E-06

1,00E-02

3,61E+00

1,18E+00

1,51E+04

2,61E+00

1,77E-01

1,50E+03

2,10E-01

1,77E-02

1,50E+02

H. Savajols

50Ti + 208Pb

26Mg + 238U

160 + 2380

I = 100 pμA (6.10¹⁴ pps) Rf (104)

Rf (104)

Fm (100)

S3 low energy branch

S³ offers unique potential for important isotopes produced with low cross section, in particular proton rich nuclei and very heavy elements.

The low-energy branch of S3 will allow the production of beams of refractory elements as well as of very short-lived isotopes at ISOL energies

Link between S3 and DESIR

We believe that such a scheme enriches significantly the capabilities of SPIRAL2 in terms of experiments with low-energy beams and provides unique possibilities for the study of fundamental properties of heavy elements, refractory elements or very short-lived isotopes at SPIRAL2 with intensities not available at any other facility worldwide. The DESIR and S3 communities are convinced that the coupling of the two facilities is the most efficient way to take advantage of these possibilities

Equipment to be fed by the device

- Penning trap
- Laser spectroscopy system
- Decay station