SHIRaC : the Spiral 2 High Intensity Radiofrequency Cooler for the DESIR Facility

Florian Duval LPC-Ensicaen, Université de Caen, CNRS/IN2P3, France

Sochi, Russia, Tuesday 29th September 2009

Tuesday 29th September 2009

Exon 2009, Sochi, Russia

Context

- Development for the DESIR facility. http://www.cenbg.in2p3.fr/desir/
- Spiral 2 High Intensity Radiofrequency Cooler
- Goal : Cooling of µA-beams from Spiral2 to low emittance.

$Cooling \equiv Reducing \ phase \ space \ of \ the \ beams$

Tuesday 29th September 2009

Exon 2009, Sochi, Russia

HRS mass resolution

- T. Kurtukian-Nieto *et al.*, CENBG Bordeaux
- Mass resolution:

$$\Re = \frac{m}{\Delta m} \le \frac{D\,\delta a}{\varepsilon}$$

- δa : angular acceptance of the magnet
- ε : beam emittance

Tuesday 29th September 2009

Exon 2009, Sochi, Russia

Principle

Specificity

• Main specificity of our device :

>Between 10 and 100 times higher beams intensities to $cool \rightarrow \sim \mu A$.

- > Space charge \equiv coulombian repulsion between ions.
- Strong RF fields needed.
 - > High RF potential ~ $10kV_{pp}$ (Present technology ~ $500V_{pp}$)
 - > Low inner radius ~ 3 5mm (Present technology ~ 5 20 mm)

Space charge considerations

- Limitations of the RFQ Cooler (static model) :
 - Dehmelt model : maximum charge density which can be confined

SHIRaC-Prototype 1

Transmission efficiency

- Operating parameters :
 - Single-charged alkali beams at 3keV and few 10 nA
 - $f_{RF} \approx 5 6.3 \text{ MHz}$
 - $P_{He} = \text{few } 10^{-2} \text{ mbar}$
- Maximum transmission : 25% for ²³Na⁺ and ⁸⁷Rb⁺
 - Close to required specifications

Extracted emittance

• Study of the emittance reduction at 3keV :

Longitudinal energy spread

- Measurement of the extracted intensity versus DC potential on the last section.
- Energy spread measured before reacceleration

Tuesday 29th September 2009

Specifications versus results

• Efficiencies :

Mass		Specifications	Results
Efficiency	²³ Na+	20 %	25%
	⁸⁷ Rb+	60 %	25%
Emittance at 60keV		< 3π.mm.mrad	$\sim 2\pi$.mm.mrad
Energy spread		≤ 1eV	~ 146meV

- Studies at low intensities (I ~ 25nA)
 - Energy spread and emittance reduction completed
 - Transmission 2-times lower for ⁸⁷Rb⁺
- Beam quality for experimental studies better than Spiral2.
 - Transmission need to be improved
 - Larger inner radius $: 3mm \rightarrow 5mm$

SHIRaC-Prototype 2 : Conception

SHIRaC-Prototype 2

• The design of SHIRaC-P2 is completed

- RF system improved : V_{RF} up to $7kV_{pp}$
- Assembly in progress at LPC.
- Tests starts in 2010

Tuesday 29th September 2009

SHIRaC-Prototype 2 : Developments

- 500W Amplifier.
- Vacuum capacitive 9-60pF.
- More suitable assembly.

Results :

- 7kV_{pp} between 5.9MHz and 7.3MHz.
- Limitations due to Electrical Breakdown on our test bench.

Conclusion-outlook

- High intensity Cooler for DESIR
 - Current 10-100 times higher than present technology
- SHIRaC-Prototype 1 :
 - Built at CSNSM-Orsay
 - Developed and studied at LPC-Caen
 - ≥ 25%-transmission for ²³Na⁺ and ⁸⁷Rb⁺
 - \geq Emittance $\approx 2\pi$.mm.mrad @ 60keV
 - Energy spread = 146meV before re-acceleration
- SHIRaC-Prototype 2 :
 - Better transmission expected
 - Mounting currently in progress at LPC-Caen
 - Tests starts in 2010

Thanks for your attention

- LPC-Caen :
 - G. Ban
 - F. Boumard
 - J. Bregeault
 - R. Buisson
 - J.F. Cam

- H. De Preaumont
- P. Desrues
- F. Duval
- Y. Merrer
- H. Plard
- C. Vandamme

- CSNSM-Orsay :
 - S. Cabaret
 - D. Lunney

Mc Gill university:
 – R.B. Moore

HRS mass resolution versus input emittance

• T. Kurtukian-Nieto's calculations (CENBG-Bordeaux)

Space charge considerations

• Radial force balance equation :

E.P. Gilson *et al.*, Phys. Rev. Lett 92, n°15, 155002 (2004)

$$m\omega_0^2 r_{charge}^2 = m.\frac{q^2}{8}.\omega_{RF}^2.r_{charge}^2 = 2kT + \frac{Ie}{4\pi\varepsilon_0 v}$$
Confinement term

• Beam heating by space charge effect.

• Ions ¹³³Cs⁺
• I = 1µA
• T = 1eV
$$\left\{ \frac{e}{4\pi\varepsilon_0 v} \approx 7 \, meV \, .nA^{-1} \longrightarrow 30 \, meV \, at \, 60 \, keV \, and \, 1\muA \right\}$$

Space charge considerations

Mathieu's equations with space charge.

2

$$\frac{d^{2}u}{dt^{2}} + \frac{q_{u} \cdot \omega_{RF}^{2}}{2} \cdot \cos(\omega_{RF} \cdot t) \cdot u = 0$$

$$\frac{d^{2}u}{dt^{2}} + \frac{q_{u} \cdot \omega_{RF}^{2}}{2} \cdot \cos(\omega_{RF} \cdot t) \cdot u = -\frac{e}{m} \frac{\partial V_{SC}}{\partial u}$$

= 1pA Numerical resolution 0,24 $\Delta f \approx 140 kHz$ I_{max} = 500nA 0,22 _{max} = 1µA 0,20 0,18 0,16 Increase of the ion Amplitude (ua) 0,14 temperature (macromotion) 0,12 0,10 0,08 0,06 **Frequency shift** 0,04 0,02 0,00

2,25

2,00

1,50

Frequence (MHz)

1,75

1,25

1,00

SHIRaC-Prototype 2 : Developments

