

Collaboration Spokesperson: B. Blank, CENBG Facility coordinator: J.-C. Thomas, GANIL

Experimental equipment

Project Management within the SPIRAL2 Phase 1+ context

- > DESIR as a "+" for the SPIRAL2 Phase 1 project
 - → DESIR construction managed by the SPIRAL2 SFRE group
 - ✓ DESIR Technical coordinator belonging to the SFRE (L. Serani, CENBG)
 - ✓ DESIR EQUIPEX: Building & beam lines work packages managed by SFRE
 - ✓ Current budget of the SPIRAL2 DESIR project = 8 M€
- Delay in the construction of SPIRAL2 Phase 2
 - → Renegotiation of the SPIRAL2 Phase 2 contract to build the DESIR hall and two beam transport tunnels from SPIRAL1 and S³-LEB
 - √ New specifications of the DESIR hall to reduce costs (Dec 2013)
 - ✓ Integration of the HRS in the beam transport tunnels
 - → New schematic drawings of the DESIR building proposed in June 2104
 - → Beginning of the DESIR preliminary design study phase in Jan. 2015
 - → Reevaluation of the timeline and of the budget

Buildings

From 2011.....

Buildings

to June 2014

Building preliminary drawings (June 2104)

- Integration of SHIRaC + HRS
- No Basement; concrete structure
- Since June: analysis of the drawings and proposed optimizations:
 - supplies, technical rooms, accesses
 - equipment handling (cranes)
 - building infrastructure: pillars?

→ Beginning of the APS phase in January 2015

Timeline

Scenario 2: DESIR concidered as independent by safety authorities

Budget

Cost estimates (May 2014): EQUIPEX Funding (ANR):

> Building (2180 m²): 15.9 M€ > Construction: 6.7 M€

▶ Beam lines (~140 m): 5.6 M€ > Beam lines: 1.2 M€

Total (10% overheads): 21.5 M€ > **Operation:** 1. M€

Missing: 13.6 M€ > Management: 0.1 M€

Total: 9 M€

CPER Funding:

> SHIRaC+HRS: 1.13 M€

Estimated cost of the experimental equipment: ~5 M€

Beam lines (L. Perrot, IPN Orsay)

L. Perrot and H. Cherif, EPJ Web of Conference 66 (2014) 08029, INPC 2013

- Beam optics (toward DESIR)
 - √ first order simulations
 - √ error calculations
 - √ "HRS loop" to be studied
- Beam optics (inside DESIR)
 - √ to be done
- → Beam line review in Jan. 2015

S³-LEB -> DESIR (44 m)

SPIRAL1 -> DESIR (50 m)

- > Design study of the beam line equipments (electrostatic)
 - ✓ Quad triplet + steerers prototype: built, to be tested at CENBG in 2015
 - √ 45° deflector design: to be built and tested in 2015
- Next steps:
 - √ consolidation of the beam line studies
 - ✓ partnership with BARC, India?

T. Kurtukian Nieto et al., Nuclear Instruments and Methods in Physics Research B 317 (2013) 284

Beam preparation: HRS (T. Kurtukian Nieto, CENBG)

T. Kurtukian Nieto et al., Nuclear Instruments and Methods in Physics Research B 317 (2013) 284

- > Optical design of the HRS done
- > Dipole magnets delivered
 - √ field map scans at GANIL in 2015
 - √ expected field homogeneity: 10⁻⁵ over 300 mm
 - √ curvature of the poles to be defined at CENBG

- √ optics defined
- √ drawings and specification ok
- √ call for tender to be launched by FAIR
- > Design of the multipole
 - √ optics studied -> April 2015
 - √call for tender to be launched by FAIR
- → Commissioning of the HRS at CENBG in 2016

Expected performances: $M/\Delta M = 20000$ at 60 kV with 3 π .mm.mrad beams, $\Delta E \sim 1$ eV

Beam preparation: PIPERADE (S. Grévy, CENBG)

Ph-D theses: A. de Roubin, MPIK, P. Dupré, CSNSM,, H. Guérin, CENBG – Post-Docs: P.Ascher, E. Minaya Ramirez, MPIK P. Ascher et al., EPJ Web of Conference 66 (2014) 11029, INPC 2013

Beam preparation: PIPERADE (S. Grévy, CENBG)

- > The stable ion source and associated optics
 - ✓ in operation at CENBG

- > The GPIB
 - √ to be coupled soon to the ion source
 - \checkmark expected performances: 10⁵-10⁶ ions/bunch at 100 Hz, 1 π .mm.mrad
- > The double Penning trap
 - √ simulations at CSNSM and MPIK
 - √ design ok; assembly at MPIK beginning of 2015
 - √ delivery at CENBG in 2016
 - \checkmark expected performances: M/∆M = 10⁵; > 10⁴ 10⁵ ions/bunch, 2-20 Hz

Update of the scientific program

http://www.cenbg.in2p3.fr/desir/-DESIR-S3-LEB-workshop-

> 18 letters of intent presented at the joint DESIR - S³-LEB workshop (GANIL, March 2014)

List of DESIR (updated) LoIs presented at the DESIR – S³-LEB workshop held at GANIL in March 2014

In-trap decay studies

1. E. Liénard et al., LPC Caen, "High precision measurement in mirror β decays to test the CVC hypothesis and the CKM unitarity"

2. X. Fléchard et al., LPC Caen, "Search for exotic couplings using precision measurements of nuclear β decay"

3. P. Delahaye et al., GANIL, "Test of the time reversal symmetry in the beta decay of ²³Mg and ³⁹Ca using an in-trap polarization method

at DESIR"

4. B. Blank et al., CENBG, "Search for scalar currents with β -delayed proton emitters"

5. S. Grévy et al., CENBG, "In-trap decay spectroscopy to measure neutron energies"

Radioactive decay studies

6. T. Kurtukian Nieto et al., CENBG, "High precision measurements of half-lives and branching ratios in mirror β decay"

7. H. Guérin et al., CENBG, "High precision studies of the super-allowed beta decay of $T_z = 0$, -1 and -2 nuclei"

8. J. Giovinazzo et al., CENBG, "Study of the beta-delayed two-proton decay"

9. A. Algora et al., IFIC Valencia, "Beta strength measurements in the ¹⁰⁰Sn region"

10. B. Blank et al., CENBG, "Search for cluster radioactivity in the region above 100Sn"

S³-LEB

SPIRAL 1 Upgrade

Laser spectroscopy

11. T. Cocolios et al., Univ. Manchester, "From N=Z=28 to the proton drip line at LUMIERE"

12. M. Bissell et al., IKS Leuven, "Collinear laser spectroscopy of neutron deficient isotopes of Ag and Sn across the N=50 shell closure"

13. D. Yordanov et al., IPN Orsay, "Laser spectroscopy of very neutron deficient indium and cadmium isotopes"

Mass measurements

14. Ch. Weber et al., LMU Munich, "Mass Measurements with MLLTRAP at DESIR: Transfermium nuclides & super-allowed β emitters revisited"

15. D. Lunney et al., CSNSM Orsay, "The mass of 100 Sn and the extraordinary binding of N = Z nuclides"

16. M. MacCormick et al., IPN Orsay, "High-resolution mass measurements of odd-odd T=1 nuclides"

17. D. Lunney et al., CSNSM Orsay, "Mass measurements for SPIRAL2 - phase 1+: mapping the proton drip line in the A=150 region"

18. P. Ascher et al., MKPI Heidelberg, "Mass measurement of light nuclei using an MR-TOF-MS or a Penning Trap @ DESIR"

> 8 LoI with upgraded SPIRAL1 beams and 10 with S³-LEB beams

Update of the scientific program

http://www.cenbg.in2p3.fr/desir/-DESIR-S3-LEB-workshop-

- > Technical and scientific synergies with S³-LEB
 - → MR-ToF-MS technique
 - → 90° 4-arms deflector
 - → Need for a "fast gas cell"
 - → laser light "sharing"
 - → Common region of interest: ¹00Sn
 - → Complementary laser spectroscopy studies ("in-source" viz. "collinear")
 - → Complementary mass measurements (precision, intensity, purity)

MLLTrap (P.Thirolf, Ch. Weber, LMU)

Ch. Weber et al., Int. J. Mass Spectrom. 349 - 350, 270 (2013) Ch. Weber et al., Nucl. Instr. Meth. B 317, 532 (2013)

 \triangleright Implementation of an α Si strip detector and an e- pixel detector to perform in-trap decay spectroscopy of very-heavy isotopes

- $\triangleright \alpha$ detection:
 - characterization of the magnetic field/T° effects
 - → ∆E correction required
 - → precision of the position reconstruction?

- > e- detection:
 - aim: $T_{1/2}$ of excited states populated in α decay (~100 ps)
 - \rightarrow separation of the e- originating from the α decaying ion (shake-off) AND from the recoiling ion (Auger e- following conversion e- emission)
 - ←response function investigated with a dedicated low-energy e- gun (0-10 keV)
 - > Operation of MLLTrap at ALTO: from mid-2016 to 2019?
 - dedicated beam line + RFQ-CB to be built

LUMIERE (IKS Leuven, IPN Orsay, Univ. Manchester, IPHC)

- > "CRIS" line: collinear spectroscopy by resonant laser ionization
 - improvement of the total efficiency (~1%) and selectivity (10⁶)
 - laser specifications from laser-ion interaction simulations and online tests
 with a stable ³⁹K beam
 - possibility to transport the laser light from S³-LEB under investigation

 T.Cocolios, Univ. Manchester
- > "LINO": Laser-Induced Nuclear Orientation at ALTO
 - β -delayed spectroscopy with polarized beam + conventional β -NMR and fluorescence detection techniques
 - →Nuclear spins of the populated nuclear states in addition to the ground state

 moments and spin of the decaying nucleus

 D. Yordanov, IPNO
 - n-rich Ag isotopes to be studied at ALTO before the setup moves to DESIR
- > "ConeTraps": laser spectroscopy of cold ions (trapping at 1 keV)
 - novel project following an ongoing development at JYFL (exp. In 2015)

P.Campbell, Univ. Manchester

DTAS (J.L. Tain, IFIC Valencia)

- > 18 15x15x25 cm NaI(Tl) crystals to perform full absorption spectroscopy experiments with pure beams
- > 2014 run in combination with the JYFL trap:
 - double beta decay
 - reactor decay heat
 - reactor antineutrino spectrum

DTAS@IGISOL-JYFLTRAP

- > Online tests of a digital electronics
- **→ Offline response function studies (24Na)**
 - **→**Full characterization of the spectrometer
 - + Geant4 simulations benchmarking

Conclusions

- Optimistic scenario: building delivery by the mid-2018 commissioning at the beginning of 2019
- → Alright with respect to:
 - the availability of SPIRAL 1 and S³-LEB beams
 - the construction of the beam lines and beam preparation devices
 - the development of the experimental equipment
- > Scientific strategy:
 - operation of the setups at other facilities (science + training)
 - synergies with S³ (scientific program, lasers, MR-ToF-MS, beam line equipments, ...)
- > Issues:
 - building architecture (pillars)
 - building construction viz. S³ operation
 - funding (~14 M€ missing)

.... And to the contributors to this report: B. Blank, P. Campbell, T. Cocolios, S. Grévy, T. Kurtukian Nieto, L. Perrot, E. Petit, L. Serani, J.L. Tain, F. Varenne, Ch. Weber, D. Yordanov