JG ROOT Tools libraries
version 5.0 - august 2014
Main Page
Related Pages
Namespaces
Classes
Files
File List
File Members
GRootToolsFFTDoc.hh
Go to the documentation of this file.
1
//======================================================================
2
/*! \file GRootToolsFFTDoc.hh
3
*
4
* Include file containing documentation page for FFT classes.
5
*/
6
//======================================================================
7
8
//======================================================================
9
/*! \page groot_fft Documentation for GFTT classes and functions
10
*
11
* \author J. Giovinazzo (giovinaz@cenbg.in2p3.fr)
12
*
13
* This collection of classes and functions provide some base tools for
14
* samples processing using Fourier transforms for (de)convolution.
15
*
16
*
17
* \par The GFFT package
18
*
19
* - see \ref FFT_Dianelson_Lanczos for the FFT algorithm
20
*
21
* - GBaseSampleFFT is an abstract base class to handle the sampling of a
22
* signal (either real or complex) and it's FFT.
23
*
24
* - GRealSampleFFT is the class to use for samples with real samples values.
25
*
26
*
27
* \anchor GFFT_time_scale_mode
28
* \par Setting a time scale
29
*
30
* A time scale can be defined (instead of point number).
31
* This can be done specifying a time interval, that can be interpreted in
32
* 2 ways:
33
* - the limits correspond to the first and last points exactly (N-1 intervals)
34
* - the limits correspond to an equivalent binning of the samples, each point
35
* being the center of the bin (N intervals)
36
* This is specified in the functions setting the time scale (constructors or
37
* setting functions).
38
* By default (default argument or \b false), the first mode is set
39
* (not centered).
40
*
41
*
42
* \par Releases
43
*
44
* - version 1.2 (10/2017)
45
* - included in the GCpp (base classes) and GRootTools (ROOT classe)
46
* packages
47
* - version 1.1 (04/2016)
48
* - modified samples limits setting for bin mode / center point mode
49
* in GBaseSampleFFT::SetTimeRange function
50
* - added mean and RMS functions for real samples
51
*/
52
53
//======================================================================
54
/*! \page FFT_Dianelson_Lanczos Danielson-Lanczos algorithm for FFT
55
*
56
* \par Danielson-Lanczos algorithm
57
*
58
* The Danielson-Lanczos algorithm is a Fast Fourier Transform algorithm
59
* with a computing time for convolutions / deconvolution proportionnal
60
* to \b N*log2(N) (where N is the sample dimension), while a standard
61
* algorithm would need \b N*N.
62
*
63
* The sample dimension \b N must be a power of 2.
64
*
65
*
66
* \par Real values functions
67
*
68
* In the case of a real function sample, the discrete Fourier
69
* transform is complex.
70
* If there are \b N real samples, there can be only \b N data
71
* real data in the complex FT: the FT is defined by \b N/2+1
72
* complex numbers, but the first (low frequency) and the last
73
* (high frequency) terms of the FT are pure real.
74
* In order to fit in an array of \b N (real) data, the FFT algorithms
75
* stores the last element (real) in the imaginary part of the fist
76
* element.
77
*
78
* \note
79
* - the functions work with real number arrays; complex numbers are
80
* defined with 2 real values, and the complex types of C/C++ are
81
* note used.
82
*
83
*/
84
//======================================================================
85
86
87
//======================================================================
src
docs
GRootToolsFFTDoc.hh
Generated by
1.8.5